Show simple item record

Estimation of pharmacokinetic parameters from DCE‐MRI by extracting long and short time‐dependent features using an LSTM network

dc.contributor.authorZou, Jiaren
dc.contributor.authorBalter, James M.
dc.contributor.authorCao, Yue
dc.date.accessioned2020-09-02T14:58:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:58:57Z
dc.date.issued2020-08
dc.identifier.citationZou, Jiaren; Balter, James M.; Cao, Yue (2020). "Estimation of pharmacokinetic parameters from DCE‐MRI by extracting long and short time‐dependent features using an LSTM network." Medical Physics (8): 3447-3457.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/156437
dc.publisherWiley Periodicals, Inc.
dc.subject.othercontrast agent
dc.subject.otherpharmacokinetic model
dc.subject.othertemporal correlation
dc.subject.othermachine learning
dc.subject.otherlong‐short‐term memory
dc.subject.otherDCE‐MRI
dc.titleEstimation of pharmacokinetic parameters from DCE‐MRI by extracting long and short time‐dependent features using an LSTM network
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156437/2/mp14222.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156437/1/mp14222_am.pdfen_US
dc.identifier.doi10.1002/mp.14222
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceSingh A, Rathore RKS, Haris M, Verma SK, Husain N, Gupta RK. Improved bolus arrival time and arterial input function estimation for tracer kinetic analysis in DCE‐MRI. J Magn Reson Imaging. 2009; 29: 166 – 176.
dc.identifier.citedreferencePruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999; 42: 952 – 962.
dc.identifier.citedreferenceUecker M, Lai P, Murphy MJ, et al. ESPIRiT ‐ An eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014; 71: 990 – 1001.
dc.identifier.citedreferenceCao Y, Li D, Shen Z, Normolle D. Sensitivity of quantitative metrics derived from DCE MRI and a pharmacokinetic model to image quality and acquisition parameters. Acad Radiol. 2010; 17: 468 – 478.
dc.identifier.citedreferenceMurase K. Efficient method for calculating kinetic parameters using T1‐weighted dynamic contrast‐enhanced magnetic resonance imaging. Magn Reson Med. 2004; 51: 858 – 862.
dc.identifier.citedreferenceWang C, Yin FF, Chang Z. An efficient calculation method for pharmacokinetic parameters in brain permeability study using dynamic contrast‐enhanced MRI. Magn Reson Med. 2016; 75: 739 – 749.
dc.identifier.citedreferenceUlas C, Tetteh G, Thrippleton MJ, et al. Direct Estimation of Pharmacokinetic Parameters from DCE‐MRI using Deep CNN with Forward Physical Model Loss. 2018;11070 LNCS:39‐47.
dc.identifier.citedreferenceUlas C, Das D, Thrippleton MJ, et al. Convolutional neural networks for direct inference of pharmacokinetic parameters: application to stroke dynamic contrast‐enhanced MRI. Front Neurol. 2019; 9.
dc.identifier.citedreferenceHochreiter S, Schmidhuber J. Long short‐term memory. Neural Comput. 1997; 9: 1735 – 1780.
dc.identifier.citedreferenceDonahue J, Hendricks LA, Rohrbach M, et al. Long‐term recurrent convolutional networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell. 2017; 39: 677 – 691.
dc.identifier.citedreferenceChen J, Yang L, Zhang Y, Alber M, Chen DZ. Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: Advances in Neural Information Processing Systems.; 2016:3044–3052. http://arxiv.org/abs/1609.01006.
dc.identifier.citedreferenceAntropova N, Huynh B, Li H, Giger ML. Breast lesion classification based on dynamic contrast‐enhanced magnetic resonance images sequences with long short‐term memory networks. J Med Imaging. 2018; 6: 1.
dc.identifier.citedreferenceTofts PS. Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging. J Magn Reson Imaging. 1997; 7: 91 – 101.
dc.identifier.citedreferenceLeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436 – 444.
dc.identifier.citedreferencePaldino MJ, Barboriak DP. Fundamentals of quantitative dynamic contrast‐enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009; 17: 277 – 289.
dc.identifier.citedreferenceCao Y. WE‐D‐T‐ 6C‐03: development of image software tools for radiation therapy assessment. Med Phys. 2005; 32: 2136 – 2136.
dc.identifier.citedreferenceLustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007; 58: 1182 – 1195.
dc.identifier.citedreferenceBendinger AL, Debus C, Glowa C, Karger CP, Peter J, Storath M. Bolus arrival time estimation in dynamic contrast‐enhanced magnetic resonance imaging of small animals based on spline models. Phys Med Biol. 2019; 64: 045003.
dc.identifier.citedreferenceFritz‐Hansen T, Rostrup E, Larsson HBW, Søndergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd‐DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996; 36: 225 – 231.
dc.identifier.citedreferenceRobben D, Suetens P. Perfusion parameter estimation using neural networks and data augmentation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 11383 LNCS. Springer Verlag; 2019:439‐446.
dc.identifier.citedreferenceKingma DP, Adam BJL. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 ‐ Conference Track Proceedings. 2015. http://arxiv.org/abs/1412.6980
dc.identifier.citedreferenceArbelle A, Raviv TR. Microscopy cell segmentation via convolutional LSTM networks. In: Proceedings ‐ International Symposium on Biomedical Imaging. Vol 2019‐April. IEEE; 2019:1008‐1012
dc.identifier.citedreferenceZhang D, Icke I, Dogdas B, et al. A multi‐level convolutional LSTM model for the segmentation of left ventricle myocardium in infarcted porcine cine MR images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Vol 2018‐April. IEEE; 2018:470‐473
dc.identifier.citedreferenceSimeth J, Cao Y. GAN and dual‐input two‐compartment model‐based training of a neural network for robust quantification of contrast uptake rate in gadoxetic acid‐enhanced MRI. Med Phys. 2020; 1 – 11.
dc.identifier.citedreferenceCao Y, Popovtzer A, Li D, et al. Early prediction of outcome in advanced head‐and‐neck cancer based on Tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys. 2008; 72: 1287 – 1290.
dc.identifier.citedreferenceGaddikeri S, Gaddikeri RS, Tailor T, Anzai Y. Dynamic contrast‐enhanced MR imaging in head and neck cancer: techniques and clinical applications. Am J Neuroradiol. 2016; 37: 588 – 595.
dc.identifier.citedreferenceCao Y, Aryal M, Li P, et al. Predictive values of MRI and PET derived quantitative parameters for patterns of failure in both p16+ and p16– High risk head and neck cancer. Front Oncol. 2019; 9: 1 – 11.
dc.identifier.citedreferenceKim MM, Parmar HA, Aryal MP, et al. Developing a pipeline for Multiparametric MRI‐guided radiation therapy: initial results from a phase II clinical trial in newly diagnosed Glioblastoma. Tomogr (Ann Arbor, Mich). 2019; 5: 118 – 126.
dc.identifier.citedreferenceKhalifa F, Soliman A, El‐Baz A, et al. Models and methods for analyzing DCE‐MRI: a review. Med Phys. 2014; 41: 1 – 32.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.