Show simple item record

Poly‐aneuploid cancer cells promote evolvability, generating lethal cancer

dc.contributor.authorPienta, Kenneth J.
dc.contributor.authorHammarlund, Emma U.
dc.contributor.authorAxelrod, Robert
dc.contributor.authorBrown, Joel S.
dc.contributor.authorAmend, Sarah R.
dc.date.accessioned2020-09-02T14:59:05Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:59:05Z
dc.date.issued2020-08
dc.identifier.citationPienta, Kenneth J.; Hammarlund, Emma U.; Axelrod, Robert; Brown, Joel S.; Amend, Sarah R. (2020). "Poly‐aneuploid cancer cells promote evolvability, generating lethal cancer." Evolutionary Applications 13(7): 1626-1634.
dc.identifier.issn1752-4571
dc.identifier.issn1752-4571
dc.identifier.urihttps://hdl.handle.net/2027.42/156440
dc.description.abstractCancer cells utilize the forces of natural selection to evolve evolvability allowing a constant supply of heritable variation that permits a cancer species to evolutionary track changing hazards and opportunities. Over time, the dynamic tumor ecosystem is exposed to extreme, catastrophic changes in the conditions of the tumor—natural (e.g., loss of blood supply) or imposed (therapeutic). While the nature of these catastrophes may be varied or unique, their common property may be to doom the current cancer phenotype unless it evolves rapidly. Poly‐aneuploid cancer cells (PACCs) may serve as efficient sources of heritable variation that allows cancer cells to evolve rapidly, speciate, evolutionarily track their environment, and most critically for patient outcome and survival, permit evolutionary rescue, therapy resistance, and metastasis. As a conditional evolutionary strategy, they permit the cancer cells to accelerate evolution under stress and slow down the generation of heritable variation when conditions are more favorable or when the cancer cells are closer to an evolutionary optimum. We hypothesize that they play a critical and outsized role in lethality by their increased capacity for invasion and motility, for enduring novel and stressful environments, and for generating heritable variation that can be dispensed to their 2N+ aneuploid progeny that make up the bulk of cancer cells within a tumor, providing population rescue in response to therapeutic stress. Targeting PACCs is essential to cancer therapy and patient cure—without the eradication of the resilient PACCs, cancer will recur in treated patients.
dc.publisherNational Cancer Institute, National Institutes of Health
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPGCC
dc.subject.otherpoly‐aneuploid cancer cell
dc.subject.otherpolyploid giant cancer cell
dc.subject.othertherapeutic resistance
dc.subject.othertherapy resistance
dc.subject.otherevolvability
dc.subject.othercancer ecology
dc.subject.othercancer speciation
dc.subject.othercancer lethality
dc.subject.othermetastasis
dc.titlePoly‐aneuploid cancer cells promote evolvability, generating lethal cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156440/2/eva12929_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156440/1/eva12929.pdfen_US
dc.identifier.doi10.1111/eva.12929
dc.identifier.sourceEvolutionary Applications
dc.identifier.citedreferencePereira, M., Petretto, E., Gordon, S., Bassett, J. H. D., Williams, G. R., & Behmoaras, J. ( 2018 ). Common signalling pathways in macrophage and osteoclast multinucleation. Journal of Cell Science, 131.
dc.identifier.citedreferenceMaley, C. C., Galipeau, P. C., Finley, J. C., Wongsurawat, V. J., Li, X., Sanchez, C. A., … Reid, B. J. ( 2006 ). Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics, 38, 468 – 473.
dc.identifier.citedreferenceMirzayans, R., Andrais, B., & Murray, D. ( 2018 ). Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers (Basel), 10, E118.
dc.identifier.citedreferenceMitelman, F. ( 2006 ). 50,000 tumors, 40,000 aberrations, and 300 fusion genes: How much remains? 50 years of 46 human chromosomes: Progress in cytogenetics. Bethesda: National Cancer Institute, National Institutes of Health.
dc.identifier.citedreferenceMittal, K., Donthamsetty, S., Kaur, R., Yang, C., Gupta, M. V., Reid, M. D., … Aneja, R. ( 2017 ). Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. British Journal of Cancer, 116, 1186 – 1194.
dc.identifier.citedreferenceNavarro‐Serer, B., Childers, E. P., Hermance, N. M., Mercadante, D., & Manning, A. L. ( 2019 ). Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget, 10, 1649 – 1659.
dc.identifier.citedreferenceNg, C. Y., Wang, L., Chowdhury, A., & Maranas, C. D. ( 2019 ). Pareto optimality explanation of the glycolytic alternatives in nature. Scientific Reports, 9, 2633.
dc.identifier.citedreferenceNiculescu, V. F. (in‐press). aCLS cancers: genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene, 726, 144174.
dc.identifier.citedreferenceNiu, N., Mercado‐Uribe, I., & Liu, J. ( 2017 ). Dedifferentiation into blastomere‐like cancer stem cells via formation of polyploid giant cancer cells. Oncogene, 36, 4887 – 4900.
dc.identifier.citedreferenceOgden, A., Rida, P. C., Knudsen, B. S., Kucuk, O., & Aneja, R. ( 2015 ). Docetaxel‐induced polyploidization may underlie chemoresistance and disease relapse. Cancer Letters, 367, 89 – 92.
dc.identifier.citedreferencePawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., … Bowser, S. S. ( 2003 ). The evolution of early foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 100, 11494 – 11498.
dc.identifier.citedreferenceRisgaard‐Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S. M., Op den Camp, H. J. M., … van der Zwaan, G. J. ( 2006 ). Evidence for complete denitrification in a benthic foraminifer. Nature, 443, 93 – 96.
dc.identifier.citedreferenceRobertson, B. A., Ostfeld, R. S., & Keesing, F. ( 2017 ). Trojan females and Judas goats: evolutionary traps as tools in wildlife management. BioScience, 67, 983 – 994. https://doi.org/10.1093/biosci/bix116
dc.identifier.citedreferenceRobertson, B. A., Rehage, J. S., & Sih, A. ( 2013 ). Ecological novelty and the emergence of evolutionary traps. Trends in Ecology & Evolution, 28, 552 – 560.
dc.identifier.citedreferenceSchatten, H., & Ripple, M. O. ( 2018 ). The impact of centrosome pathologies on prostate cancer development and progression. Advances in Experimental Medicine and Biology, 1095, 67 – 81.
dc.identifier.citedreferenceSchuech, R., Hoehfurtner, T., Smith, D. J., & Humphries, S. ( 2019 ). Motile curved bacteria are pareto‐optimal. Proc Natl Acad Sci U S A, 116, 14440 – 14447.
dc.identifier.citedreferenceSekino, Y., Oue, N., Koike, Y., Shigematsu, Y., Sakamoto, N., Sentani, K., … Yasui, W. ( 2019 ). KIFC1 inhibitor CW069 induces apoptosis and reverses resistance to docetaxel in prostate cancer. Journal of Clinical Medicine, 8, E225.
dc.identifier.citedreferenceSelmecki, A. M., Maruvka, Y. E., Richmond, P. A., Guillet, M., Shoresh, N., Sorenson, A. L., … Dowell, R. ( 2015 ). Polyploidy can drive rapid adaptation in yeast. Nature, 519, 349.
dc.identifier.citedreferenceSiegel, R. L., Miller, K. D., & Jemal, A. ( 2018 ). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7 – 30.
dc.identifier.citedreferenceSimionescu, A., & Pavlath, G. K. ( 2011 ). Molecular mechanisms of myoblast fusion across species. Advances in Experimental Medicine and Biology, 713, 113 – 135.
dc.identifier.citedreferenceStorchova, Z., Breneman, A., Cande, J., Dunn, J., Burbank, K., O’Toole, E., & Pellman, D. ( 2006 ). Genome‐wide genetic analysis of polyploidy in yeast. Nature, 443, 541 – 547.
dc.identifier.citedreferenceTian, T., Olson, S., Whitacre, J. M., & Harding, A. ( 2010 ). The origins of cancer robustness and evolvability. Integrative Biology, 3, 17 – 30.
dc.identifier.citedreferenceVergilino, R., Markova, S., Ventura, M., Manca, M., & Dufresne, F. ( 2011 ). Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Molecular Ecology, 20, 1191 – 1207.
dc.identifier.citedreferenceVincent, T. L., Cohen, Y., & Brown, J. S. ( 1993 ). Evolution via strategy dynamics. Theoretical Population Biology, 44, 149 – 176.
dc.identifier.citedreferenceXiao, Y. X., Shen, H. Q., She, Z. Y., Sheng, L., Chen, Q. Q., Chu, Y. L., … Yang, W. X. ( 2017 ). C‐terminal kinesin motor KIFC1 participates in facilitating proper cell division of human seminoma. Oncotarget, 8, 61373 – 61384.
dc.identifier.citedreferenceXu, S., Spitze, K., Ackerman, M. S., Ye, Z. Q., Bright, L., Keith, N., … Lynch, M. ( 2015 ). Hybridization and the origin of contagious asexuality in Daphnia pulex. Molecular Biology and Evolution, 32, 3215 – 3225.
dc.identifier.citedreferenceYang, F., Teoh, F., Tan, A. S. M., Cao, Y., Pavelka, N., & Berman, J. ( 2019 ). Aneuploidy enables cross‐adaptation to unrelated drugs. Molecular Biology and Evolution, 36, 1768 – 1782.
dc.identifier.citedreferenceYao, Y., Carretero‐Paulet, L., & Van de Peer, Y. ( 2019 ). Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy, PLoS ONE, 14, e0220257.
dc.identifier.citedreferenceZhang, J., Cunningham, J. J., Brown, J. S., & Gatenby, R. A. ( 2017 ). Integrating evolutionary dynamics into treatment of metastatic castrate‐resistant prostate cancer. Nature Communications, 8, 1816.
dc.identifier.citedreferenceZhang, S., Mercado‐Uribe, I., Xing, Z., Sun, B., Kuang, J., & Liu, J. ( 2014 ). Generation of cancer stem‐like cells through the formation of polyploid giant cancer cells. Oncogene, 33, 116 – 128.
dc.identifier.citedreferenceAdamowicz, S. J., Gregory, T. R., Marinone, M. C., & Hebert, P. D. N. ( 2002 ). New insights into the distribution of polyploid daphnia: the holarctic revisited and Argentina explored. Molecular Ecology, 11, 1209 – 1217. https://doi.org/10.1046/j.1365-294X.2002.01517.x
dc.identifier.citedreferenceAkimoto, K., Hattori, M., Uematsu, K., & Kato, C. ( 2001 ). The deepest living foraminifera, challenger deep, Mariana Trench. Marine Micropaleontology, 42, 95 – 97.
dc.identifier.citedreferenceAlharbi, A. M., De Marzo, A. M., Hicks, J. L., Lotan, T. L., & Epstein, J. I. ( 2018 ). Prostatic adenocarcinoma with focal pleomorphic giant cell features: a series of 30 cases. American Journal of Surgical Pathology, 42, 1286 – 1296.
dc.identifier.citedreferenceAlve, E., & Goldstein, S. T. ( 2003 ). Propagule transport as a key method of dispersal in benthic foraminifera (Protista). Limnology and Oceanography, 48, 2163 – 2170.
dc.identifier.citedreferenceAlve, E., & Goldstein, S. T. ( 2010 ). Dispersal, survival and delayed growth of benthic foraminiferal propagules. Journal of Sea Research, 63, 36 – 51.
dc.identifier.citedreferenceAmend, S. R., & Pienta, K. J. ( 2015 ). Ecology meets cancer biology: The cancer swamp promotes the lethal cancer phenotype. Oncotarget, 6, 9669 – 9678. https://doi.org/10.18632/oncotarget.3430
dc.identifier.citedreferenceAmend, S. R., Torga, G., Lin, K. C., Kostecka, L. G., de Marzo, A., Austin, R. H., & Pienta, K. J. ( 2019 ). Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate, 79 ( 13 ), 1489 – 1497. https://doi.org/10.1002/pros.23877
dc.identifier.citedreferenceAmini, R., Goupil, E., Labella, S., Zetka, M., Maddox, A. S., Labbe, J. C., & Chartier, N. T. ( 2015 ). C. elegans Anillin proteins regulate intercellular bridge stability and germline syncytial organization. Journal of Cell Biology, 209, 467.
dc.identifier.citedreferenceAntao, N. V., Marcet‐Ortega, M., Cifani, P., Kentsis, A., & Foley, E. A. ( 2019 ). A cancer‐associated missense mutation in PP2A‐aalpha increases centrosome clustering during mitosis, iScience, 19, 74 – 82.
dc.identifier.citedreferenceBasanta, D., Gatenby, R. A., & Anderson, A. R. ( 2012 ). Exploiting evolution to treat drug resistance: Combination therapy and the double bind. Molecular Pharmaceutics, 9, 914 – 921. https://doi.org/10.1021/mp200458e
dc.identifier.citedreferenceBen‐David, U., & Amon, A. ( 2019 ). Context is everything: Aneuploidy in cancer. Nature Reviews Genetics, 21 ( 1 ), 44 – 62. https://doi.org/10.1038/s41576-019-0171-x
dc.identifier.citedreferenceBray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. ( 2018 ). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394 – 424. https://doi.org/10.3322/caac.21492
dc.identifier.citedreferenceBrooks, P. J., Glogauer, M., & McCulloch, C. A. ( 2019 ). An overview of the derivation and function of multinucleated giant cells and their role in pathologic processes. American Journal of Pathology, 189, 1145 – 1158.
dc.identifier.citedreferenceCarlson, S. M., Cunningham, C. J., & Westley, P. A. H. ( 2014 ). Evolutionary rescue in a changing world. Trends in Ecology & Evolution, 29, 521 – 530.
dc.identifier.citedreferenceChen, J., Niu, N., Zhang, J., Qi, L., Shen, W., Donkena, K. V., … Liu, J. ( 2019 ). Polyploid giant cancer cells (PGCCs): The evil roots of cancer. Current Cancer Drug Targets, 19, 360 – 367.
dc.identifier.citedreferenceCoffey, D. S. ( 1998 ). Self‐organization, complexity and chaos: The new biology for medicine. Nature Medicine, 4, 882 – 885. https://doi.org/10.1038/nm0898-882
dc.identifier.citedreferenceCree, I. A., & Charlton, P. ( 2017 ). Molecular chess? Hallmarks of anti‐cancer drug resistance. BMC Cancer, 17, 10.
dc.identifier.citedreferencede Jong, E. D. ( 2007 ). A monotonic archive for pareto‐coevolution. Evolutionary Computation, 15, 61 – 93.
dc.identifier.citedreferenceDiaz, P., Wood, A. M., Sibley, C. P., & Greenwood, S. L. ( 2014 ). Intermediate conductance Ca2+‐activated K+ channels modulate human placental trophoblast syncytialization. PLoS ONE, 9, e90961.
dc.identifier.citedreferenceDuesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. ( 1998 ). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692 – 13697.
dc.identifier.citedreferenceErenpreisa, J., & Cragg, M. S. ( 2013 ). Three steps to the immortality of cancer cells: Senescence, polyploidy and self‐renewal. Cancer Cell International, 13, 92.
dc.identifier.citedreferenceFei, F., Zhang, D., Yang, Z., Wang, S., Wang, X., Wu, Z., … Zhang, S. ( 2015 ). The number of polyploid giant cancer cells and epithelial‐mesenchymal transition‐related proteins are associated with invasion and metastasis in human breast cancer. Journal of Experimental & Clinical Cancer Research, 34, 158. https://doi.org/10.1186/s13046-015-0277-8
dc.identifier.citedreferenceGatenby, R., & Brown, J. ( 2018 ). The evolution and ecology of resistance in cancer therapy. Cold Spring Harbor Perspectives in Medicine, 8.
dc.identifier.citedreferenceGatenby, R. A., Zhang, J., & Brown, J. S. ( 2019 ). First strike‐second strike strategies in metastatic cancer: lessons from the evolutionary dynamics of extinction. Cancer Research, 79, 3174 – 3177. https://doi.org/10.1158/0008-5472.CAN-19-0807
dc.identifier.citedreferenceGomulkiewicz, R., & Holt, R. D. ( 1995 ). When does evolution by natural selection prevent extinction? Evolution, 49, 201 – 207.
dc.identifier.citedreferenceGronlien, H. K., Hagen, B., & Sand, O. ( 2011 ). Microstome‐macrostome transformation in the polymorphic ciliate Tetrahymena vorax leads to mechanosensitivity associated with prey‐capture behaviour. Journal of Experimental Biology, 214, 2258 – 2266.
dc.identifier.citedreferenceHammarlund, E. U., Von Stedingk, K., & Påhlman, S. ( 2018 ). Refined control of cell stemness allowed animal evolution in the oxic realm. Nature Ecology & Evolution, 2, 220.
dc.identifier.citedreferenceHanahan, D., & Weinberg, R. A. ( 2011 ). Hallmarks of cancer: The next generation. Cell, 144, 646 – 674. https://doi.org/10.1016/j.cell.2011.02.013
dc.identifier.citedreferenceHeng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., & Ye, C. J. ( 2011 ). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217 – 253.
dc.identifier.citedreferenceHenry, A., Hemery, M., & Francois, P. ( 2018 ). phi‐evo: A program to evolve phenotypic models of biological networks. PLoS Computational Biology, 14, e1006244.
dc.identifier.citedreferenceIllidge, T. M., Cragg, M. S., Fringes, B., Olive, P., & Erenpreisa, J. A. ( 2000 ). Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biology International, 24, 621 – 633.
dc.identifier.citedreferenceJames, T. C., Usher, J., Campbell, S., & Bond, U. ( 2008 ). Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Current Genetics, 53, 139 – 152.
dc.identifier.citedreferenceJinsong, L. ( 2019 ). The "life code": A theory that unifies the human life cycle and the origin of human tumors. Seminars in Cancer Biology.
dc.identifier.citedreferenceKim, J. H., Jin, P., Duan, R., & Chen, E. H. ( 2015 ). Mechanisms of myoblast fusion during muscle development. Current Opinion in Genetics & Development, 32, 162 – 170.
dc.identifier.citedreferenceLi, Y. H., Lu, W. Y., Chen, D. Q., Boohaker, R. J., Zhai, L., Padmalayam, I., … Zhang, W. ( 2015 ). KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biology & Therapy, 16, 1316 – 1322.
dc.identifier.citedreferenceLin, K. C., Torga, G., Sun, Y., Axelrod, R., Pienta, K. J., Sturm, J. C., & Austin, R. H. ( 2019 ). The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clinical & Experimental Metastasis. https://doi.org/10.1007/s10585-019-09958-1
dc.identifier.citedreferenceLin, K. C., Torga, G., Wu, A., Rabinowitz, J. D., Murray, W. J., Sturm, J. C., … Austin, R. ( 2017 ). Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Convergent Science Physical Oncology, 3, 045001.
dc.identifier.citedreferenceLloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. ( 2016 ). Darwinian dynamics of intratumoral heterogeneity: Not solely random mutations but also variable environmental selection forces. Cancer Research, 76, 3136 – 3144. https://doi.org/10.1158/0008-5472.CAN-15-2962
dc.identifier.citedreferenceLoeb, L. A., Bielas, J. H., & Beckman, R. A. ( 2008 ). Cancers exhibit a mutator phenotype: Clinical implications. Cancer Research, 68, 3551 – 3557; discussion 57.
dc.identifier.citedreferenceLopez‐Sanchez, L. M., Jimenez, C., Valverde, A., Hernandez, V., Penarando, J., Martinez, A., … Rodriguez‐Ariza, A. ( 2014 ). CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE, 9, e99143.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.