Show simple item record

Direct Observation of Alternating Octahedral and Prismatic Sodium Layers in O3- Type Transition Metal Oxides

dc.contributor.authorKim, Jae Chul
dc.contributor.authorKwon, Deok‐hwang
dc.contributor.authorYang, Julia H.
dc.contributor.authorKim, Hyunchul
dc.contributor.authorBo, Shou‐hang
dc.contributor.authorWu, Lijun
dc.contributor.authorKim, Haegyeom
dc.contributor.authorSeo, Dong‐hwa
dc.contributor.authorShi, Tan
dc.contributor.authorWang, Jingyang
dc.contributor.authorZhu, Yimei
dc.contributor.authorCeder, Gerbrand
dc.date.accessioned2020-09-02T14:59:46Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:59:46Z
dc.date.issued2020-08
dc.identifier.citationKim, Jae Chul; Kwon, Deok‐hwang ; Yang, Julia H.; Kim, Hyunchul; Bo, Shou‐hang ; Wu, Lijun; Kim, Haegyeom; Seo, Dong‐hwa ; Shi, Tan; Wang, Jingyang; Zhu, Yimei; Ceder, Gerbrand (2020). "Direct Observation of Alternating Octahedral and Prismatic Sodium Layers in O3- Type Transition Metal Oxides." Advanced Energy Materials 10(31): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/156453
dc.description.abstractThe oxygen stacking of O3- type layered sodium transition metal oxides (O3- NaTMO2) changes dynamically upon topotactic Na extraction and reinsertion. While the phase transition from octahedral to prismatic Na coordination that occurs at intermediate desodiation by transition metal slab gliding is well understood, the structural evolution at high desodiation, crucial to achieve high reversible capacity, remains mostly uncharted. In this work, the phase transitions of O3- type layered NaTMO2 at high voltage are investigated by combining experimental and computational approaches. An OP2- type phase that consists of alternating octahedral and prismatic Na layers is directly observed by in situ X- ray diffraction and high- resolution scanning transmission electron microscopy. The origin of this peculiar phase is explained by atomic interactions involving Jahn- Teller active Fe4+ and distortion tolerant Ti4+ that stabilize the local Na environment. The path- dependent desodiation and resodiation pathways are also rationalized in this material through the different kinetics of the prismatic and octahedral layers, presenting a comprehensive picture about the structural stability of the layered materials upon Na intercalation.A novel phase transition to an OP2- type stacking sequence from an O3- layered sodium transition metal oxide (NaTi0.25Fe0.25Co0.25Mn0.25O2) is directly observed and investigated by in situ X- ray diffraction, high- resolution scanning transmission electron microscopy, and first- principles calculations. This study discusses how Jahn- Teller active Fe4+ ion promotes OP2 formation, which leads to hysteresis during resodiation.
dc.publisherSpringer Nature
dc.publisherWiley Periodicals, Inc.
dc.subject.otherenergy storage
dc.subject.otherlayered structure
dc.subject.otherNa- ion batteries
dc.subject.otherO3 structure
dc.subject.otherOP2 structure
dc.titleDirect Observation of Alternating Octahedral and Prismatic Sodium Layers in O3- Type Transition Metal Oxides
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156453/3/aenm202001151.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156453/2/aenm202001151-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156453/1/aenm202001151_am.pdfen_US
dc.identifier.doi10.1002/aenm.202001151
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceM. Aydinol, A. Kohan, G. Ceder, K. Cho, J. Joannopoulos, Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 1354.
dc.identifier.citedreferenceM. Sathiya, J. Thomas, D. Batuk, V. Pimenta, R. Gopalan, J. M. Tarascon, Chem. Mater. 2017, 29, 5948.
dc.identifier.citedreferenceM. Jeong, H. Lee, J. Yoon, W.- S. Yoon, J. Power Sources 2019, 439, 227064.
dc.identifier.citedreferenceE. Talaie, V. Duffort, H. L. Smith, B. Fultz, L. F. Nazar, Energy Environ. Sci. 2015, 8, 2512.
dc.identifier.citedreferenceN. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512.
dc.identifier.citedreferenceD. D. Yuan, Y. X. Wang, Y. L. Cao, X. P. Ai, H. X. Yang, ACS Appl. Mater. Interfaces 2015, 7, 8585.
dc.identifier.citedreferenceR. Berthelot, M. Pollet, D. Carlier, C. Delmas, Inorg. Chem. 2011, 50, 2420.
dc.identifier.citedreferenceJ. W. Somerville, A. Sobkowiak, N. Tapia- Ruiz, J. Billaud, J. G. Lozano, R. A. House, L. C. Gallington, T. Ericsson, L. Häggström, M. R. Roberts, U. Maitra, P. G. Bruce, Energy Environ. Sci. 2019, 12, 2223.
dc.identifier.citedreferenceP. Vassilaras, S. T. Dacek, H. Kim, T. T. Fister, S. Kim, G. Ceder, J. C. Kim, J. Electrochem. Soc. 2017, 164, A3484.
dc.identifier.citedreferenceJ. L. Yue, Y. N. Zhou, X. Yu, S. M. Bak, X. Q. Yang, Z. W. Fu, J. Mater. Chem. A 2015, 3, 23261.
dc.identifier.citedreferenceV. F. Sears, Neutron News 1992, 3, 26.
dc.identifier.citedreferenceC. Ma, J. Alvarado, J. Xu, R. J. Clément, M. Kodur, W. Tong, C. P. Grey, Y. S. Meng, J. Am. Chem. Soc. 2017, 139, 4835.
dc.identifier.citedreferenceS. J. Pennycook, Scanning Transmission Electron Microscopy, Springer Nature, New York 2011.
dc.identifier.citedreferenceE. J. Kirkland, Advanced Computing in Electron Microscopy, Springer Nature, New York 2010.
dc.identifier.citedreferenceS. J. Pennycook, P. D. Nellist, Scanning Transmission Electron Microscopy, Springer Nature, New York 2011.
dc.identifier.citedreferenceS. Guo, Y. Sun, J. Yi, K. Zhu, P. Liu, Y. Zhu, G. Zhu, M. Chen, M. Ishida, H. Zhou, NPG Asia Mater. 2016, 8, e266.
dc.identifier.citedreferenceS. Muhammad, H. Kim, Y. Kim, D. Kim, J. H. Song, J. Yoon, J.- H. Park, S.- J. Ahn, S.- H. Kang, M. M. Thackeray, W.- S. Yoon, Nano Energy 2016, 21, 172.
dc.identifier.citedreferenceA. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 2013, 46, 1216.
dc.identifier.citedreferenceX. Lu, L. Gu, Y. S. Hu, H. C. Chiu, H. Li, G. P. Demopoulos, L. Chen, J. Am. Chem. Soc. 2015, 137, 1581.
dc.identifier.citedreferenceY. Hinuma, H. Hayashi, Y. Kumagai, I. Tanaka, F. Oba, Phys. Rev. B 2017, 96, 094102.
dc.identifier.citedreferenceJ. H. Yang, D. A. Kitchaev, G. Ceder, Phys. Rev. B 2019, 100, 035132.
dc.identifier.citedreferenceJ. L. Kaufman, A. Van Der Ven, Phys. Rev. Mater. 2019, 3, 015402.
dc.identifier.citedreferenceX. Li, D. Wu, Y. N. Zhou, L. Liu, X. Q. Yang, G. Ceder, Electrochem. Commun. 2014, 49, 51.
dc.identifier.citedreferenceX. Chen, S. Hwang, R. Chisnell, Y. Wang, F. Wu, S. Kim, J. W. Lynn, D. Su, X. Li, Adv. Funct. Mater. 2018, 28, 1803896.
dc.identifier.citedreferenceP. Vassilaras, D. H. Kwon, S. T. Dacek, T. Shi, D. H. Seo, G. Ceder, J. C. Kim, J. Mater. Chem. A 2017, 5, 4596.
dc.identifier.citedreferenceS. Maletti, A. Sarapulova, A. Schökel, D. Mikhailova, ACS Appl. Mater. Interfaces 2019, 11, 33923.
dc.identifier.citedreferenceC. A. Marianetti, D. Morgan, G. Ceder, Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 224304.
dc.identifier.citedreferenceR. J. Clément, Z. Lun, G. Ceder, Energy Environ. Sci. 2020, 13, 345.
dc.identifier.citedreferenceA. Urban, A. Abdellahi, S. Dacek, N. Artrith, G. Ceder, Phys. Rev. Lett. 2017, 119, 176402.
dc.identifier.citedreferenceY. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2014, 26, 5208.
dc.identifier.citedreferenceC. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Boin, J. Bloch, T. Proffen, S. J. L. Billinge, J. Phys.: Condens. Matter 2007, 19, 335219.
dc.identifier.citedreferenceC. Shahi, J. Sun, J. P. Perdew, Phys. Rev. B 2018, 97, 094111.
dc.identifier.citedreferenceD. A. Kitchaev, H. Peng, Y. Liu, J. Sun, J. P. Perdew, G. Ceder, Phys. Rev. B 2016, 93, 045132.
dc.identifier.citedreferenceS. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Comput. Mater. Sci. 2013, 68, 314.
dc.identifier.citedreferenceP. F. Wang, H. R. Yao, X. Y. Liu, Y. X. Yin, J. N. Zhang, Y. Wen, X. Yu, L. Gu, Y. G. Guo, Sci. Adv. 2018, 4, eaar6018.
dc.identifier.citedreferenceH. Yu, Y. Ren, D. Xiao, S. Guo, Y. Zhu, Y. Qian, L. Gu, H. Zhou, Angew. Chem., Int. Ed. 2014, 53, 8963.
dc.identifier.citedreferenceH. R. Yao, P. F. Wang, Y. Gong, J. Zhang, X. Yu, L. Gu, C. Ouyang, Y. X. Yin, E. Hu, X. Q. Yang, E. Stavitski, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2017, 139, 8440.
dc.identifier.citedreferenceX. Li, Y. Wang, D. Wu, L. Liu, S. H. Bo, G. Ceder, Chem. Mater. 2016, 28, 6575.
dc.identifier.citedreferenceM. Guilmard, C. Pouillerie, L. Croguennec, C. Delmas, Solid State Ionics 2003, 160, 39.
dc.identifier.citedreferenceG. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu, S. X. Dou, J. Power Sources 2000, 85, 279.
dc.identifier.citedreferenceH. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, K. Kang, Adv. Energy Mater. 2016, 6, 1600943.
dc.identifier.citedreferenceN. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
dc.identifier.citedreferenceC. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 1980, 99, 81.
dc.identifier.citedreferenceS. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680.
dc.identifier.citedreferenceJ. Reed, G. Ceder, Electrochem. Solid- State Lett. 2002, 5, 145.
dc.identifier.citedreferenceJ. Reed, G. Ceder, Chem. Rev. 2004, 104, 4513.
dc.identifier.citedreferenceS. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710.
dc.identifier.citedreferenceH. Yao, P. Wang, Y. Wang, X. Yu, Y. Yin, Y. Guo, Adv. Energy Mater. 2017, 7, 1700189.
dc.identifier.citedreferenceC. Zhao, F. Ding, Y. Lu, L. Chen, Y. S. Hu, Angew. Chem., Int. Ed. 2020, 59, 264.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.