Show simple item record

Vascular dysfunction in aged mice contributes to persistent lung fibrosis

dc.contributor.authorCaporarello, Nunzia
dc.contributor.authorMeridew, Jeffrey A.
dc.contributor.authorAravamudhan, Aja
dc.contributor.authorJones, Dakota L.
dc.contributor.authorAustin, Susan A.
dc.contributor.authorPham, Tho X.
dc.contributor.authorHaak, Andrew J.
dc.contributor.authorMoo Choi, Kyoung
dc.contributor.authorTan, Qi
dc.contributor.authorHaresi, Adil
dc.contributor.authorHuang, Steven K.
dc.contributor.authorKatusic, Zvonimir S.
dc.contributor.authorTschumperlin, Daniel J.
dc.contributor.authorLigresti, Giovanni
dc.date.accessioned2020-09-02T14:59:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:59:57Z
dc.date.issued2020-08
dc.identifier.citationCaporarello, Nunzia; Meridew, Jeffrey A.; Aravamudhan, Aja; Jones, Dakota L.; Austin, Susan A.; Pham, Tho X.; Haak, Andrew J.; Moo Choi, Kyoung; Tan, Qi; Haresi, Adil; Huang, Steven K.; Katusic, Zvonimir S.; Tschumperlin, Daniel J.; Ligresti, Giovanni (2020). "Vascular dysfunction in aged mice contributes to persistent lung fibrosis." Aging Cell 19(8): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/156458
dc.description.abstractIdiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non‐resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro‐fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non‐resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ‐induced pro‐fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ‐induced lung fibroblast activation in 2D and 3D co‐cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.Bleomycin‐induced lung injury promotes transient fibrosis accompanied by increased capillary density in young mice. In contrast, persistent fibrosis, capillary rarefaction, loss of endothelial cell identity, and reduction of Nos3 are observed in aged mice. eNOS/NO signal is an important driver of fibroblast quiescence and fibrosis resolution, that is lost with aging. Lung vascular bed plays a critical role during lung repair and fibrosis resolution.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlung fibrosis
dc.subject.othervascular dysfunction
dc.subject.otheraging
dc.subject.othereNOS
dc.subject.otherfibroblast activation
dc.titleVascular dysfunction in aged mice contributes to persistent lung fibrosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156458/2/acel13196_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156458/1/acel13196.pdfen_US
dc.identifier.doi10.1111/acel.13196
dc.identifier.sourceAging Cell
dc.identifier.citedreferencePiera‐Velazquez, S., & Jimenez, S. A. ( 2019 ). Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiological Reviews, 99 ( 2 ), 1281 – 1324. https://doi.org/10.1152/physrev.00021.2018
dc.identifier.citedreferenceMaeda, S., Suzuki, S., Suzuki, T., Endo, M., Moriya, T., Chida, M., … Sasano, H. ( 2002 ). Analysis of intrapulmonary vessels and epithelial‐endothelial interactions in the human developing lung. Laboratory Investigation, 82 ( 3 ), 293 – 301.
dc.identifier.citedreferenceMeiners, S., Eickelberg, O., & Konigshoff, M. ( 2015 ). Hallmarks of the ageing lung. European Respiratory Journal, 45 ( 3 ), 807 – 827. https://doi.org/10.1183/09031936.00186914
dc.identifier.citedreferenceMishra, B. B., Rathinam, V. A., Martens, G. W., Martinot, A. J., Kornfeld, H., Fitzgerald, K. A., & Sassetti, C. M. ( 2013 ). Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome‐dependent processing of IL‐1beta. Nature Immunology, 14 ( 1 ), 52 – 60. https://doi.org/10.1038/ni.2474
dc.identifier.citedreferenceMlika, M., Bacha, S., Braham, E., & El Mezni, F. ( 2016 ). The inter‐connection between fibrosis and microvascular remodeling in idiopathic pulmonary fibrosis: Reality or just a phenomenon. Respiratory Medicine Case Reports, 17, 30 – 33. https://doi.org/10.1016/j.rmcr.2015.11.006
dc.identifier.citedreferenceMoore, M. W., & Herzog, E. L. ( 2013 ). Regulation and relevance of myofibroblast responses in idiopathic pulmonary fibrosis. Current Pathobiology Reports, 1 ( 3 ), 199 – 208. https://doi.org/10.1007/s40139‐013‐0017‐8
dc.identifier.citedreferenceMora, A. L., Rojas, M., Pardo, A., & Selman, M. ( 2017 ). Emerging therapies for idiopathic pulmonary fibrosis, a progressive age‐related disease. Nature Reviews Drug Discovery, 16 ( 11 ), 755 – 772. https://doi.org/10.1038/nrd.2017.225
dc.identifier.citedreferenceMurray, L. A., Habiel, D. M., Hohmann, M., Camelo, A., Shang, H., Zhou, Y., … Herzog, E. L. ( 2017 ). Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight, 2. https://doi.org/10.1172/jci.insight.92192
dc.identifier.citedreferenceNakayama, T., Sato, W., Kosugi, T., Zhang, L. I., Campbell‐Thompson, M., Yoshimura, A., … Nakagawa, T. ( 2009 ). Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. American Journal of Physiology. Renal Physiology, 296 ( 2 ), F317 – 327. https://doi.org/10.1152/ajprenal.90450.2008
dc.identifier.citedreferenceNg, B., Dong, J., D’Agostino, G., Viswanathan, S., Widjaja, A. A., Lim, W.‐W., … Cook, S. A. ( 2019 ). Interleukin‐11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 11, 6234 – 6242. https://doi.org/10.1126/scitranslmed.aaw1237
dc.identifier.citedreferenceNoguchi, S., Yatera, K., Wang, K.‐Y., Oda, K., Akata, K., Yamasaki, K., … Mukae, H. ( 2014 ). Nitric oxide exerts protective effects against bleomycin‐induced pulmonary fibrosis in mice. Respiratory Research, 15, 92. https://doi.org/10.1186/s12931‐014‐0092‐3
dc.identifier.citedreferenceNolan, D. J., Ginsberg, M., Israely, E., Palikuqi, B., Poulos, M. G., James, D., … Rafii, S. ( 2013 ). Molecular signatures of tissue‐specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Developmental Cell, 26 ( 2 ), 204 – 219. https://doi.org/10.1016/j.devcel.2013.06.017
dc.identifier.citedreferencePark, M., Choi, S., Kim, S., Kim, J., Lee, D. K., Park, W., … Kim, Y. M. ( 2019 ). NF‐kappaB‐responsive miR‐155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Experimental & Molecular Medicine, 51 ( 2 ), 1 – 12. https://doi.org/10.1038/s12276‐019‐0212‐8
dc.identifier.citedreferencePodolsky, M. J., Yang, C. D., Valenzuela, C. L., Datta, R., Huang, S. K., Nishimura, S. L., … Atabai, K. ( 2020 ). Age‐dependent regulation of cell‐mediated collagen turnover. JCI Insight. https://doi.org/10.1172/jci.insight.137519
dc.identifier.citedreferencePolverino, F., Celli, B. R., & Owen, C. A. ( 2018 ). COPD as an endothelial disorder: Endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series). Pulmonary Circulation, 8 ( 1 ), 204589401875852. https://doi.org/10.1177/2045894018758528
dc.identifier.citedreferenceRenzoni, E. A. ( 2004 ). Neovascularization in idiopathic pulmonary fibrosis: too much or too little? American Journal of Respiratory and Critical Care Medicine, 169 ( 11 ), 1179 – 1180. https://doi.org/10.1164/rccm.2403006
dc.identifier.citedreferenceScioli, M. G., Bielli, A., Arcuri, G., Ferlosio, A., & Orlandi, A. ( 2014 ). Ageing and microvasculature. Vascular Cell, 6 ( 1 ), 19. https://doi.org/10.1186/2045‐824X‐6‐19.
dc.identifier.citedreferenceSeals, D. R., Jablonski, K. L., & Donato, A. J. ( 2011 ). Aging and vascular endothelial function in humans. Clinical Science (Lond), 120 ( 9 ), 357 – 375. https://doi.org/10.1042/CS20100476
dc.identifier.citedreferenceSomogyi, V., Chaudhuri, N., Torrisi, S. E., Kahn, N., Muller, V., & Kreuter, M. ( 2019 ). The therapy of idiopathic pulmonary fibrosis: What is next? European Respiratory Reviews, 28, 190021. https://doi.org/10.1183/16000617.0021‐2019
dc.identifier.citedreferenceStasch, J. P., Schlossmann, J., & Hocher, B. ( 2015 ). Renal effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Current Opinion in Pharmacology, 21, 95 – 104. https://doi.org/10.1016/j.coph.2014.12.014
dc.identifier.citedreferenceStout‐Delgado, H. W., Cho, S. J., Chu, S. G., Mitzel, D. N., Villalba, J., El‐Chemaly, S., … Rosas, I. O. ( 2016 ). Age‐dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. American Journal of Respiratory Cell and Molecular Biology, 55 ( 2 ), 252 – 263. https://doi.org/10.1165/rcmb.2015‐0222OC
dc.identifier.citedreferenceTan, Q., Choi, K. M., Sicard, D., & Tschumperlin, D. J. ( 2017 ). Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials, 113, 118 – 132. https://doi.org/10.1016/j.biomaterials.2016.10.046
dc.identifier.citedreferenceTashiro, J., Rubio, G. A., Limper, A. H., Williams, K., Elliot, S. J., Ninou, I., … Glassberg, M. K. ( 2017 ). Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne), 4, 118. https://doi.org/10.3389/fmed.2017.00118
dc.identifier.citedreferenceThomas, D. D., Liu, X., Kantrow, S. P., & Lancaster, J. R. Jr ( 2001 ). The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O2. Proceedings of the National Academy of Sciences of the United States of America, 98 ( 1 ), 355 – 360. https://doi.org/10.1073/pnas.011379598
dc.identifier.citedreferenceTorres‐González, E., Bueno, M., Tanaka, A., Krug, L. T., Cheng, D.‐S., Polosukhin, V. V., … Mora, A. L. ( 2012 ). Role of endoplasmic reticulum stress in age‐related susceptibility to lung fibrosis. American Journal of Respiratory Cell and Molecular Biology, 46 ( 6 ), 748 – 756. https://doi.org/10.1165/rcmb.2011‐0224OC
dc.identifier.citedreferenceTrojanowska, M. ( 2010 ). Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nature Reviews Rheumatology, 6 ( 8 ), 453 – 460. https://doi.org/10.1038/nrrheum.2010.102
dc.identifier.citedreferenceTsai, E. J., & Kass, D. A. ( 2009 ). Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacology & Therapeutics, 122 ( 3 ), 216 – 238. https://doi.org/10.1016/j.pharmthera.2009.02.009
dc.identifier.citedreferenceWan, Y.‐Y., Tian, G.‐Y., Guo, H.‐S., Kang, Y.‐M., Yao, Z.‐H., Li, X.‐L., … Lin, D.‐J. ( 2013 ). Endostatin, an angiogenesis inhibitor, ameliorates bleomycin‐induced pulmonary fibrosis in rats. Respiratory Research, 14 ( 1 ), 56. https://doi.org/10.1186/1465‐9921‐14‐56
dc.identifier.citedreferenceWang, Y., Krämer, S., Loof, T., Martini, S., Kron, S., Kawachi, H., … Peters, H. ( 2006 ). Enhancing cGMP in experimental progressive renal fibrosis: Soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. American Journal of Physiology. Renal Physiology, 290 ( 1 ), F167 – 176. https://doi.org/10.1152/ajprenal.00197.2005
dc.identifier.citedreferenceWolters, P. J., Collard, H. R., & Jones, K. D. ( 2014 ). Pathogenesis of idiopathic pulmonary fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157 – 179. https://doi.org/10.1146/annurev‐pathol‐012513‐104706
dc.identifier.citedreferenceXu, J., Gonzalez, E. T., Iyer, S. S., Mac, V., Mora, A. L., Sutliff, R. L., … Rojas, M. ( 2009 ). Use of senescence‐accelerated mouse model in bleomycin‐induced lung injury suggests that bone marrow‐derived cells can alter the outcome of lung injury in aged mice. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64 ( 7 ), 731 – 739. https://doi.org/10.1093/gerona/glp040
dc.identifier.citedreferenceYang, J. H., Wylie‐Sears, J., & Bischoff, J. ( 2008 ). Opposing actions of Notch1 and VEGF in post‐natal cardiac valve endothelial cells. Biochemical and Biophysical Research Communications, 374 ( 3 ), 512 – 516. https://doi.org/10.1016/j.bbrc.2008.07.057
dc.identifier.citedreferenceYue, X., Shan, B., & Lasky, J. A. ( 2010 ). TGF‐beta: Titan of lung fibrogenesis. Current Enzyme Inhibition. https://doi.org/10.2174/10067
dc.identifier.citedreferenceZhang, B., Niu, W., Dong, H. Y., Liu, M. L., Luo, Y., & Li, Z. C. ( 2018 ). Hypoxia induces endothelial‐mesenchymal transition in pulmonary vascular remodeling. International Journal of Molecular Medicine, 42 ( 1 ), 270 – 278. https://doi.org/10.3892/ijmm.2018.3584
dc.identifier.citedreferenceAdams, T. S., Schupp, J. C., Poli, S., Neumark, N., Ahangari, F., Chu, S. G., … Rosas, I. ( 2020 ). Single Cell RNA‐seq reveals ectopic and aberrant lung resident cell populations in Idiopathic Pulmonary Fibrosis. Science Advances, 6 ( 28 ), 2375 – 2548. https://doi.org/10.1126/sciadv.aba1983
dc.identifier.citedreferenceAird, W. C. ( 2007 ). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research, 100 ( 2 ), 174 – 190. https://doi.org/10.1161/01.RES.0000255690.03436.ae
dc.identifier.citedreferenceAngelidis, I., Simon, L. M., Fernandez, I. E., Strunz, M., Mayr, C. H., Greiffo, F. R., … Schiller, H. B. ( 2019 ). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nature Communications, 10 ( 1 ), https://doi.org/10.1038/s41467‐019‐08831‐9
dc.identifier.citedreferenceBarratt, S. L., Flower, V. A., Pauling, J. D., & Millar, A. B. ( 2018 ). VEGF (Vascular Endothelial Growth Factor) and fibrotic lung disease. International Journal of Molecular Sciences, 19 ( 5 ), 1269 – https://doi.org/10.3390/ijms19051269
dc.identifier.citedreferenceBarratt, S., & Millar, A. ( 2014 ). Vascular remodelling in the pathogenesis of idiopathic pulmonary fibrosis. QJM, 107 ( 7 ), 515 – 519. https://doi.org/10.1093/qjmed/hcu012
dc.identifier.citedreferenceBasile, D. P., Friedrich, J. L., Spahic, J., Knipe, N., Mang, H., Leonard, E. C., … Sutton, T. A. ( 2011 ). Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American Journal of Physiology. Renal Physiology, 300 ( 3 ), F721 – 733. https://doi.org/10.1152/ajprenal.00546.2010
dc.identifier.citedreferenceCao, Z., Lis, R., Ginsberg, M., Chavez, D., Shido, K., Rabbany, S. Y., … Ding, B.‐S. ( 2016 ). Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nature Medicine, 22 ( 2 ), 154 – 162. https://doi.org/10.1038/nm.4035
dc.identifier.citedreferenceCaporarello, N., Meridew, J. A., Jones, D. L., Tan, Q., Haak, A. J., Choi, K. M., … Ligresti, G. ( 2019 ). PGC1alpha repression in IPF fibroblasts drives a pathologic metabolic, secretory and fibrogenic state. Thorax, 74 ( 8 ), 749 – 760. https://doi.org/10.1136/thoraxjnl‐2019‐213064
dc.identifier.citedreferenceCarmeliet, P. ( 2003 ). Angiogenesis in health and disease. Nature Medicine, 9 ( 6 ), 653 – 660. https://doi.org/10.1038/nm0603‐653
dc.identifier.citedreferenceCau, S. B., Carneiro, F. S., & Tostes, R. C. ( 2012 ). Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Frontiers in Physiology, 3, 218. https://doi.org/10.3389/fphys.2012.00218
dc.identifier.citedreferenceCosgrove, G. P., Brown, K. K., Schiemann, W. P., Serls, A. E., Parr, J. E., Geraci, M. W., … Worthen, G. S. ( 2004 ). Pigment epithelium‐derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. American Journal of Respiratory and Critical Care Medicine, 170 ( 3 ), 242 – 251. https://doi.org/10.1164/rccm.200308‐1151OC
dc.identifier.citedreferenceDang, L. T. H., Aburatani, T., Marsh, G. A., Johnson, B. G., Alimperti, S., Yoon, C. J., … Duffield, J. S. ( 2017 ). Hyperactive FOXO1 results in lack of tip stalk identity and deficient microvascular regeneration during kidney injury. Biomaterials, 141, 314 – 329. https://doi.org/10.1016/j.biomaterials.2017.07.010
dc.identifier.citedreferenceDeLisser, H. M., Helmke, B. P., Cao, G., Egan, P. M., Taichman, D., Fehrenbach, M., … Savani, R. C. ( 2006 ). Loss of PECAM‐1 function impairs alveolarization. Journal of Biological Chemistry, 281 ( 13 ), 8724 – 8731. https://doi.org/10.1074/jbc.M511798200
dc.identifier.citedreferenceDimmeler, S., & Zeiher, A. M. ( 1999 ). Nitric oxide‐an endothelial cell survival factor. Cell Death and Differentiation, 6 ( 10 ), 964 – 968. https://doi.org/10.1038/sj.cdd.4400581
dc.identifier.citedreferenceDing, B.‐S., Nolan, D. J., Butler, J. M., James, D., Babazadeh, A. O., Rosenwaks, Z., … Rafii, S. ( 2010 ). Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 468 ( 7321 ), 310 – 315. https://doi.org/10.1038/nature09493
dc.identifier.citedreferenceDing, B.‐S., Nolan, D. J., Guo, P., Babazadeh, A. O., Cao, Z., Rosenwaks, Z., … Rafii, S. ( 2011 ). Endothelial‐derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell, 147 ( 3 ), 539 – 553. https://doi.org/10.1016/j.cell.2011.10.003
dc.identifier.citedreferenceDunkern, T. R., Feurstein, D., Rossi, G. A., Sabatini, F., & Hatzelmann, A. ( 2007 ). Inhibition of TGF‐beta induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. European Journal of Pharmacology, 572 ( 1 ), 12 – 22. https://doi.org/10.1016/j.ejphar.2007.06.036
dc.identifier.citedreferenceFleming, J. N., Nash, R. A., McLeod, D. O., Fiorentino, D. F., Shulman, H. M., Connolly, M. K., … Schwartz, S. M. ( 2008 ). Capillary regeneration in scleroderma: Stem cell therapy reverses phenotype? PLoS One, 3 ( 1 ), e1452. https://doi.org/10.1371/journal.pone.0001452
dc.identifier.citedreferenceGeschka, S., Kretschmer, A., Sharkovska, Y., Evgenov, O. V., Lawrenz, B., Hucke, A., … Stasch, J.‐P. ( 2011 ). Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt‐sensitive Dahl rats. PLoS One, 6 ( 7 ), e21853. https://doi.org/10.1371/journal.pone.0021853
dc.identifier.citedreferenceGhofrani, H. A., & Grimminger, F. ( 2009 ). Soluble guanylate cyclase stimulation: An emerging option in pulmonary hypertension therapy. European Respiratory Reviews, 18 ( 111 ), 35 – 41. https://doi.org/10.1183/09059180.00011112
dc.identifier.citedreferenceGong, H., Lyu, X., Wang, Q., Hu, M., & Zhang, X. ( 2017 ). Endothelial to mesenchymal transition in the cardiovascular system. Life Sciences, 184, 95 – 102. https://doi.org/10.1016/j.lfs.2017.07.014
dc.identifier.citedreferenceHecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. ( 2014 ). Reversal of persistent fibrosis in aging by targeting Nox4‐Nrf2 redox imbalance. Science Translational Medicine, 6 ( 231 ), 231ra47. https://doi.org/10.1126/scitranslmed.3008182
dc.identifier.citedreferenceJane‐Wit, D., & Chun, H. J. ( 2012 ). Mechanisms of dysfunction in senescent pulmonary endothelium. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67 ( 3 ), 236 – 241. https://doi.org/10.1093/gerona/glr248
dc.identifier.citedreferenceKato, S., Inui, N., Hakamata, A., Suzuki, Y., Enomoto, N., Fujisawa, T., … Suda, T. ( 2018 ). Changes in pulmonary endothelial cell properties during bleomycin‐induced pulmonary fibrosis. Respiratory Research, 19 ( 1 ). https://doi.org/10.1186/s12931‐018‐0831‐y
dc.identifier.citedreferenceKazakov, A., Hall, R., Jagoda, P., Bachelier, K., Müller‐Best, P., Semenov, A., … Laufs, U. ( 2013 ). Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovascular Research, 100 ( 2 ), 211 – 221. https://doi.org/10.1093/cvr/cvt181
dc.identifier.citedreferenceKim, P. K., Kwon, Y. G., Chung, H. T., & Kim, Y. M. ( 2002 ). Regulation of caspases by nitric oxide. Annals of the New York Academy of Sciences, 962, 42 – 52. https://doi.org/10.1111/j.1749‐6632.2002.tb04054.x
dc.identifier.citedreferenceKitao, A., Sato, Y., Sawada‐Kitamura, S., Harada, K., Sasaki, M., Morikawa, H., … Nakanuma, Y. ( 2009 ). Endothelial to mesenchymal transition via transforming growth factor‐beta1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. American Journal of Pathology, 175 ( 2 ), 616 – 626. https://doi.org/10.2353/ajpath.2009.081061
dc.identifier.citedreferenceKnorr, A., Hirth‐Dietrich, C., Alonso‐Alija, C., Härter, M., Hahn, M., Keim, Y., … Stasch, J.‐P. ( 2008 ). Nitric oxide‐independent activation of soluble guanylate cyclase by BAY 60–2770 in experimental liver fibrosis. Arzneimittel‐Forschung, 58 ( 2 ), 71 – 80. https://doi.org/10.1055/s‐0031‐1296471
dc.identifier.citedreferenceKolb, M., Raghu, G., Wells, A. U., Behr, J., Richeldi, L., Schinzel, B., … Martinez, F. J. ( 2018 ). Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. New England Journal of Medicine, 379 ( 18 ), 1722 – 1731. https://doi.org/10.1056/NEJMoa1811737
dc.identifier.citedreferenceKollau, A., Gesslbauer, B., Russwurm, M., Koesling, D., Gorren, A. C. F., Schrammel, A., & Mayer, B. ( 2018 ). Modulation of nitric oxide‐stimulated soluble guanylyl cyclase activity by cytoskeleton‐associated proteins in vascular smooth muscle. Biochemical Pharmacology, 156, 168 – 176. https://doi.org/10.1016/j.bcp.2018.08.009
dc.identifier.citedreferenceLambers, C., Boehm, P. M., Karabacak, Y., Samaha, E., Benazzo, A., Jaksch, P., & Roth, M. ( 2019 ). Combined activation of guanylate cyclase and cyclic AMP in lung fibroblasts as a novel therapeutic concept for lung fibrosis. BioMed Research International, 2019, 1345402. https://doi.org/10.1155/2019/1345402
dc.identifier.citedreferenceLasithiotaki, I., Giannarakis, I., Tsitoura, E., Samara, K. D., Margaritopoulos, G. A., Choulaki, C., … Antoniou, K. M. ( 2016 ). NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. European Respiratory Journal, 47 ( 3 ), 910 – 918. https://doi.org/10.1183/13993003.00564‐2015
dc.identifier.citedreferenceLe, T. T., Karmouty‐Quintana, H., Melicoff, E., Le, T. T., Weng, T., Chen, N. Y., … Blackburn, M. R. ( 2014 ). Blockade of IL‐6 Trans signaling attenuates pulmonary fibrosis. The Journal of Immunology, 193 ( 7 ), 3755 – 3768. https://doi.org/10.4049/jimmunol.1302470
dc.identifier.citedreferenceLederer, D. J., & Martinez, F. J. ( 2018 ). Idiopathic pulmonary fibrosis. New England Journal of Medicine, 378 ( 19 ), 1811 – 1823. https://doi.org/10.1056/NEJMra1705751
dc.identifier.citedreferenceLigresti, G., Aplin, A. C., Zorzi, P., Morishita, A., & Nicosia, R. F. ( 2011 ). Macrophage‐derived tumor necrosis factor‐alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 31 ( 5 ), 1151 – 1159. https://doi.org/10.1161/ATVBAHA.111.223917
dc.identifier.citedreferenceLoganathan, K., Salem Said, E., Winterrowd, E., Orebrand, M., He, L., Vanlandewijck, M., … Jeansson, M. ( 2018 ). Angiopoietin‐1 deficiency increases renal capillary rarefaction and tubulointerstitial fibrosis in mice. PLoS One, 13 ( 1 ), e0189433. https://doi.org/10.1371/journal.pone.0189433
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.