Show simple item record

Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats

dc.contributor.authorKumar, Mekhala
dc.contributor.authorDeshmukh, Sachin S.
dc.date.accessioned2020-09-02T15:00:15Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-09-02T15:00:15Z
dc.date.issued2020-09
dc.identifier.citationKumar, Mekhala; Deshmukh, Sachin S. (2020). "Differential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats." Hippocampus 30(9): 970-986.
dc.identifier.issn1050-9631
dc.identifier.issn1098-1063
dc.identifier.urihttps://hdl.handle.net/2027.42/156461
dc.description.abstractThe functional connectivity of the hippocampus with its primary cortical input, the entorhinal cortex, is organized topographically. In area CA1 of the hippocampus, this leads to different functional gradients along the proximodistal and septotemporal axes of spatial/sensory responsivity and spatial resolution respectively. CA1 ripples, a network phenomenon, allow us to test whether the hippocampal neural network shows corresponding gradients in functional connectivity along the two axes. We studied the occurrence and propagation of ripples across the entire proximodistal axis along with a comparable spatial range of the septotemporal axis of dorsal CA1. We observed that ripples could occur at any location, and their amplitudes were independent of the tetrode location along the proximodistal and septotemporal axes. When a ripple was detected on a particular tetrode (“reference tetrode”), however, the probability of cooccurrence of ripples and ripple amplitude observed on the other tetrodes decreased as a function of distance from the reference tetrode. This reduction was greater along the proximodistal axis than the septotemporal axis. Furthermore, we found that ripples propagate primarily along the proximodistal axis. Thus, over a spatial scale of ∼1.5 mm, the network is anisotropic along the two axes, complementing the topographically organized cortico‐hippocampal connections.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othermedial Entorhinal cortex (MEC)
dc.subject.otherproximodistal (transverse) axis
dc.subject.otherripples
dc.subject.otherseptotemporal (longitudinal) axis
dc.subject.otherlateral Entorhinal cortex (LEC)
dc.subject.otherhippocampus
dc.titleDifferential propagation of ripples along the proximodistal and septotemporal axes of dorsal CA1 of rats
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156461/3/hipo23211-sup-0001-Supinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156461/2/hipo23211_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156461/1/hipo23211.pdfen_US
dc.identifier.doi10.1002/hipo.23211
dc.identifier.sourceHippocampus
dc.identifier.citedreferenceSasaki, T., Piatti, V. C., Hwaun, E., Ahmadi, S., Lisman, J. E., Leutgeb, S., & Leutgeb, J. K. ( 2018 ). Dentate network activity is necessary for spatial working memory by supporting CA3 sharp‐wave ripple generation and prospective firing of CA3 neurons. Nature Neuroscience, 21, 258 – 269.
dc.identifier.citedreferenceJung, M. W., Wiener, S. I., & McNaughton, B. L. ( 1994 ). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. The Journal of Neuroscience, 14, 7347 – 7356.
dc.identifier.citedreferenceKlausberger, T., Márton, L. F., Baude, A., Roberts, J. D. B., Magill, P. J., & Somogyi, P. ( 2004 ). Spike timing of dendrite‐targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neuroscience, 7, 41 – 47.
dc.identifier.citedreferenceKnierim, J. J. ( 2002 ). Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. The Journal of Neuroscience, 22, 6254 – 6264.
dc.identifier.citedreferenceKnierim, J. J., Neunuebel, J. P., & Deshmukh, S. S. ( 2014 ). Functional correlates of the lateral and medial entorhinal cortex: Objects, path integration, and local‐global reference frames. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130369.
dc.identifier.citedreferenceMaurer, A. P., VanRhoads, S. R., Sutherland, G. R., Lipa, P., & McNaughton, B. L. ( 2005 ). Self‐motion and the origin of differential spatial scaling along the septo‐temporal axis of the hippocampus. Hippocampus, 15, 841 – 852.
dc.identifier.citedreferenceMizuseki, K., Diba, K., Pastalkova, E., & Buzsáki, G. ( 2011 ). Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neuroscience, 14, 1174 – 1181.
dc.identifier.citedreferenceMizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. ( 2009 ). Theta oscillations provide temporal windows for local circuit computation in the entorhinal‐hippocampal loop. Neuron, 64, 267 – 280.
dc.identifier.citedreferenceNaber, P. A., Lopes da Silva, F. H., & Witter, M. P. ( 2001 ). Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, 11, 99 – 104.
dc.identifier.citedreferenceOliva, A., Fernández‐Ruiz, A., Buzsáki, G., & Berényi, A. ( 2016a ). Role of hippocampal CA2 region in triggering sharp‐wave ripples. Neuron, 91, 1342 – 1355.
dc.identifier.citedreferenceOliva, A., Fernández‐Ruiz, A., Buzsáki, G., & Berényi, A. ( 2016b ). Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus, 26, 1593 – 1607.
dc.identifier.citedreferenceOliva, A., Fernández‐Ruiz, A., Fermino de Oliveira, E., & Buzsáki, G. ( 2018 ). Origin of gamma frequency power during hippocampal sharp‐wave ripples. Cell Reports, 25, 1693 – 1700.
dc.identifier.citedreferenceO’Neill, J., Boccara, C. N., Stella, F., Schoenenberger, P., & Csicsvari, J. ( 2017 ). Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science, 355, 184 – 188.
dc.identifier.citedreferencePatel, J., Schomburg, E. W., Berényi, A., Fujisawa, S., & Buzsáki, G. ( 2013 ). Local generation and propagation of ripples along the Septotemporal Axis of the hippocampus. The Journal of Neuroscience, 33, 17029 – 17041.
dc.identifier.citedreferencePaxinos, G., & Watson, C. ( 2007 ). The rat brain in stereotaxic coordinates ( 6th ed. ). Burlington, MA: Elsevier/Academic Press.
dc.identifier.citedreferencePeyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. ( 2009 ). Replay of rule‐learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919 – 926.
dc.identifier.citedreferenceRothschild, G., Eban, E., & Frank, L. M. ( 2016 ). A Cortio‐hippocampal cortical loop of information processing during memory consolidation. Nature Neuroscience, 20, 251 – 259.
dc.identifier.citedreferenceSik, A., Penttonen, M., Ylinen, A., & Buzsáki, G. ( 1995 ). Hippocampal CA1 interneurons: An in vivo intracellular labelling study. The Journal of Neuroscience, 15, 6651 – 6665.
dc.identifier.citedreferenceStensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M. B., & Moser, E. I. ( 2012 ). The entorhinal grid map is discretized. Nature, 492, 72 – 78.
dc.identifier.citedreferenceSteward, O., & Scoville, S. A. ( 1976 ). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. The Journal of Comparative Neurology, 169, 347 – 370.
dc.identifier.citedreferenceSullivan, D., Csicsvari, J., Mizuseki, K., Montgomery, S., Diba, K., & Buzsáki, G. ( 2011 ). Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: Influence of dentate and entorhinal cortical activity. The Journal of Neuroscience, 31, 8605 – 8616.
dc.identifier.citedreferenceViney, T. J., Lasztoczi, B., Katona, L., Crump, M. G., Tukker, J. J., Klausberger, T., & Somogyi, P. ( 2013 ). Network state‐dependent inhibition of identified hippocampal CA3 axo‐axonic cells in vivo. Nature Neuroscience, 16, 1802 – 1811.
dc.identifier.citedreferenceWitter, M. P., & Amaral, D. G. ( 2004 ). Hippocampal formation. In G. Paxinos (Ed.), The rat nervous system (pp. 637 – 704 ). Amsterdam: Elsevier/Academic Press.
dc.identifier.citedreferenceYamamoto, J., & Tonegawa, S. ( 2017 ). Direct medial Entorhinal cortex input to hippocampal CA1 is crucial for extended quiet awake replay. Neuron, 96, 217 – 227.
dc.identifier.citedreferenceYlinen, A., Bragin, A., Nádasdy, Z., Jandó, G., Szabó, I., Sik, A., & Buzsáki, G. ( 1995 ). Sharp wave‐associatedhigh‐frequency oscillation (200 Hz) in the intact hippocampus: Network and intracellular mechanisms. The Journal of Neuroscience, 15, 30 – 46.
dc.identifier.citedreferenceAmaral, D. G., & Witter, M. P. ( 1989 ). The three‐dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience, 31, 571 – 591.
dc.identifier.citedreferenceAndersen, P., Bliss, V. P., & Skrede, K. K. ( 1971 ). Lamellar organization of hippocampal excitatory pathways. Experimental Brain Research, 13, 222 – 238.
dc.identifier.citedreferenceBuzsáki, G. ( 2015 ). Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 1073 – 1188.
dc.identifier.citedreferenceBuzsáki, G., Horváth, Z., Urioste, R., Hetke, J., & Wise, K. ( 1992 ). High‐frequency network oscillation in the hippocampus. Science, 256, 1025 – 1027.
dc.identifier.citedreferenceChrobak, J. J., & Buzsáki, G. ( 1994 ). Selective activation of deep layer (V‐VI) Retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. The Journal of Neuroscience, 14, 6160 – 6170.
dc.identifier.citedreferenceChrobak, J. J., & Buzsáki, G. ( 1996 ). High‐frequency oscillations in the output networks of the hippocampal‐Entorhinal Axis of the freely behaving rat. The Journal of Neuroscience, 16, 3056 – 3066.
dc.identifier.citedreferenceCsicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., & Buzsáki, G. ( 1999 ). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. The Journal of Neuroscience, 19, 274 – 287.
dc.identifier.citedreferenceCsicsvari, J., Hirase, H., Mamiya, A., & Buzsáki, G. ( 2000 ). Ensemble patterns of hippocampal CA3‐CA1 neurons during sharp wave – Associated population events. Neuron, 28, 585 – 594.
dc.identifier.citedreferenceDeshmukh, S. S., & Knierim, J. J. ( 2011 ). Representation of non‐spatial and spatial information in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience, 5, 1 – 13.
dc.identifier.citedreferenceDragoi, G., Carpi, D., Recce, M., Csicsvari, J., & Buzsáki, G. ( 1999 ). Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. The Journal of Neuroscience, 19, 6191 – 6199.
dc.identifier.citedreferenceHafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. ( 2005 ). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801 – 806.
dc.identifier.citedreferenceHargreaves, E. L., Rao, G., & Knierim, J. J. ( 2005 ). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308, 1792 – 1794.
dc.identifier.citedreferenceHenriksen, E. J., Colgin, L. L., Barnes, C. A., Witter, M. P., Moser, M. B., & Moser, E. I. ( 2010 ). Spatial representation along the Proximodistal Axis of CA1. Neuron, 68, 127 – 137.
dc.identifier.citedreferenceIshizuka, N., Weber, J., & Amaral, D. G. ( 1990 ). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. The Journal of Comparative Neurology, 295, 580 – 623.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.