Show simple item record

Fifty Years of Research on the Madden‐Julian Oscillation: Recent Progress, Challenges, and Perspectives

dc.contributor.authorJiang, Xianan
dc.contributor.authorAdames, Ángel F.
dc.contributor.authorKim, Daehyun
dc.contributor.authorMaloney, Eric D.
dc.contributor.authorLin, Hai
dc.contributor.authorKim, Hyemi
dc.contributor.authorZhang, Chidong
dc.contributor.authorDeMott, Charlotte A.
dc.contributor.authorKlingaman, Nicholas P.
dc.date.accessioned2020-09-02T15:00:31Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-09-02T15:00:31Z
dc.date.issued2020-09-16
dc.identifier.citationJiang, Xianan; Adames, Ángel F. ; Kim, Daehyun; Maloney, Eric D.; Lin, Hai; Kim, Hyemi; Zhang, Chidong; DeMott, Charlotte A.; Klingaman, Nicholas P. (2020). "Fifty Years of Research on the Madden‐Julian Oscillation: Recent Progress, Challenges, and Perspectives." Journal of Geophysical Research: Atmospheres 125(17): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/156463
dc.description.abstractSince its discovery in the early 1970s, the crucial role of the Madden‐Julian Oscillation (MJO) in the global hydrological cycle and its tremendous influence on high‐impact climate and weather extremes have been well recognized. The MJO also serves as a primary source of predictability for global Earth system variability on subseasonal time scales. The MJO remains poorly represented in our state‐of‐the‐art climate and weather forecasting models, however. Moreover, despite the advances made in recent decades, theories for the MJO still disagree at a fundamental level. The problems of understanding and modeling the MJO have attracted significant interest from the research community. As a part of the AGU’s Centennial collection, this article provides a review of recent progress, particularly over the last decade, in observational, modeling, and theoretical study of the MJO. A brief outlook for near‐future MJO research directions is also provided.Plain Language SummaryThe Madden‐Julian Oscillation (MJO), first discovered by Madden and Julian in 1971, is a prominent tropical phenomenon with a typical period of 30–60 days and featured by a large‐scale envelope of cloud clusters and rain systems moving eastward along the equator. The MJO significantly influences not only intense tropical rainstorms, such as hurricanes, but also extreme weather over the middle to high latitudes. Skillful prediction of the MJO several weeks ahead, therefore, will be greatly valuable for disaster mitigation purposes. However, many present‐day climate models have great difficulty in realistically simulating the MJO for reasons that are not well understood. This article provides a comprehensive review of the recent progress in the observational, modeling, and theoretical study of the MJO, with a particular focus on the most recent decade. Several future research directions are also suggested to further advance our understanding and prediction capability of the MJO.Key PointsThis article provides a comprehensive review of recent progress in observational, modeling, and theoretical studies of the MJO
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Geophysical Union
dc.subject.otherMadden‐Julian Oscillation
dc.subject.otherseasonal‐to‐subseasonal prediction
dc.subject.otherclimate modeling
dc.subject.othertropical convection
dc.titleFifty Years of Research on the Madden‐Julian Oscillation: Recent Progress, Challenges, and Perspectives
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156463/2/jgrd56373.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156463/1/jgrd56373_am.pdfen_US
dc.identifier.doi10.1029/2019JD030911
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSobel, A. H., Maloney, E. D., Bellon, G., & Frierson, D. M. ( 2010 ). Surface fluxes and tropical intraseasonal variability: A reassessment. Journal of Advances in Modeling Earth Systems, 2, 2. https://doi.org/10.3894/JAMES.2010.2.2
dc.identifier.citedreferenceZhang, C. ( 1996 ). Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. Journal of the Atmospheric Sciences, 53, 739 – 758.
dc.identifier.citedreferenceZhang, C. ( 2012 ). Vertical structure from recent observations. Chapter 16. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system (Ch. 16, pp. 537 – 548 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceZhang, C. ( 2013 ). Madden‐Julian Oscillation: Bridging weather and climate. Bulletin of the American Meteorological Society, 94, 1849 – 1870. https://doi.org/10.1175/bams-d-12-00026.1
dc.identifier.citedreferenceZhang, C., Adames, Á. F., Khouider, B., Wang, B., & Yang, D. ( 2020 ). Four theories of the Madden‐Julian Oscillation. Reviews of Geophysics, e2019RG000685. https://doi.org/10.1029/2019RG000685
dc.identifier.citedreferenceZhang, C., & Gottschalck, J. ( 2002 ). SST anomalies of ENSO and the Madden‐Julian Oscillation in the equatorial Pacific. Journal of Climate, 15, 2429 – 2445. https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
dc.identifier.citedreferenceZhang, C., Gottschalck, J., Maloney, E. D., Moncrieff, M. W., Vitart, F., Waliser, D. E., Wang, B., & Wheeler, M. C. ( 2013 ). Cracking the MJO nut. Geophysical Research Letters, 40, 1223 – 1230. https://doi.org/10.1002/grl.50244
dc.identifier.citedreferenceZhang, C., & Hendon, H. H. ( 1997 ). Propagating and standing components of the intraseasonal oscillationin tropical convection. Journal of the Atmospheric Sciences, 54, 741 – 752. https://doi.org/10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2
dc.identifier.citedreferenceZhang, C., & Ling, J. ( 2012 ). Potential vorticity of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 69, 65 – 78. https://doi.org/10.1175/JAS-D-11-081.1
dc.identifier.citedreferenceZhang, C., & Ling, J. ( 2017 ). Barrier effect of the Indo‐Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. Journal of Climate, 30, 3439 – 3459. https://doi.org/10.1175/JCLI-D-16-0614.1
dc.identifier.citedreferenceZhang, C., Ling, J., Hagos, S., Tao, W.‐K., Lang, S., Takayabu, Y. N., Shige, S., Katsumata, M., Olson, W. S., & L’Ecuyer, T. ( 2010 ). MJO signals in latent heating: Results from TRMM retrievals. Journal of the Atmospheric Sciences, 67, 3488 – 3508. https://doi.org/10.1175/2010jas3398.1
dc.identifier.citedreferenceZhang, C., & Webster, P. J. ( 1989 ). Effects of zonal flows on equatorially trapped waves. Journal of the Atmospheric Sciences, 46, 3632 – 3652. https://doi.org/10.1175/1520-0469(1989)046<3632:Eozfoe>2.0.Co;2
dc.identifier.citedreferenceZhang, C., & Zhang, B. ( 2018 ). QBO‐MJO connection. Journal of Geophysical Research: Atmospheres, 123, 2957 – 2967. https://doi.org/10.1002/2017JD028171
dc.identifier.citedreferenceZhang, C. ( 2005 ). Madden‐Julian Oscillation. Reviews of Geophysics, 43, RG2003. https://doi.org/10.1029/2004RG000158
dc.identifier.citedreferenceZhang, C., & Dong, M. ( 2004 ). Seasonality in the Madden‐Julian Oscillation. Journal of Climate, 17, 3169 – 3180.
dc.identifier.citedreferenceZhang, C., Dong, M., Gualdi, S., Hendon, H. H., Maloney, E. D., Marshall, A., Sperber, K. R., & Wang, W. Q. ( 2006 ). Simulations of the Madden‐Julian Oscillation in four pairs of coupled and uncoupled global models. Climate Dynamics, 27, 573 – 592.
dc.identifier.citedreferenceZhang, C., & McPhaden, M. J. ( 2000 ). Intraseasonal surface cooling in the equatorial western Pacific. Journal of Climate, 13, 2261 – 2276.
dc.identifier.citedreferenceZhang, D., Cronin, M. F., Meinig, C., Farrar, J. T., Jenkins, R., Peacock, D., Keene, J., Sutton, A., & Yang, Q. ( 2019 ). Comparing air‐sea flux measurements from a new unmanned surface vehicle and proven platforms during the SPURS‐2 field campaign. Oceanography, 32, 122 – 133. https://doi.org/10.5670/oceanog.2019.220
dc.identifier.citedreferenceZhang, G. J., & Mu, M. ( 2005 ). Simulation of the Madden‐Julian Oscillation in the NCAR CCM3 using a revised Zhang‐McFarlane convection parameterization scheme. Journal of Climate, 18, 4046 – 4064. https://doi.org/10.1175/jcli3508.1
dc.identifier.citedreferenceZhang, G. J., & Song, X. L. ( 2009 ). Interaction of deep and shallow convection is key to Madden‐Julian Oscillation simulation. Geophysical Research Letters, 36, L09708. https://doi.org/10.1029/2009GL037340
dc.identifier.citedreferenceZhao, N., & Nasuno, T. ( 2020 ). How does the air‐sea coupling frequency affect convection during the MJO passage? Journal of Advances in Modeling Earth Systems, 12, e2020MS002058. https://doi.org/10.1029/2020MS002058
dc.identifier.citedreferenceZheng, C., Chang, E. K.‐M., Kim, H.‐M., Zhang, M., & Wang, W. ( 2018 ). Impacts of the Madden‐Julian Oscillation on storm‐track activity, surface air temperature, and precipitation over North America. Journal of Climate, 31, 6113 – 6134. https://doi.org/10.1175/jcli-d-17-0534.1
dc.identifier.citedreferenceZhou, L., & Murtugudde, R. ( 2020 ). Oceanic impacts on MJOs detouring near the Maritime Continent. Journal of Climate, 33, 2371 – 2388. https://doi.org/10.1175/jcli-d-19-0505.1
dc.identifier.citedreferenceZhou, L., Neale, R. B., Jochum, M., & Murtugudde, R. ( 2012 ). Improved Madden‐Julian Oscillations with improved physics: The impact of modified convection parameterizations. Journal of Climate, 25, 1116 – 1136. https://doi.org/10.1175/2011jcli4059.1
dc.identifier.citedreferenceZhou, S., L’Heureux, M., Weaver, S., & Kumar, A. ( 2012 ). A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States. Climate Dynamics, 38, 1459 – 1471. https://doi.org/10.1007/s00382-011-1001-9
dc.identifier.citedreferenceZhu, C., Nakazawa, T., Li, J., & Chen, L. ( 2003 ). The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophysical Research Letters, 30 ( 18 ), 1952. https://doi.org/10.1029/2003GL017817
dc.identifier.citedreferenceZhu, H., & Hendon, H. H. ( 2015 ). Role of large‐scale moisture advection for simulation of the MJO with increased entrainment. Quarterly Journal of the Royal Meteorological Society, 141, 2127 – 2136. https://doi.org/10.1002/qj.2510
dc.identifier.citedreferenceZhu, H. Y., Hendon, H., & Jakob, C. ( 2009 ). Convection in a parameterized and superparameterized model and its role in the representation of the MJO. Journal of the Atmospheric Sciences, 66, 2796 – 2811. https://doi.org/10.1175/2009jas3097.1
dc.identifier.citedreferenceZuluaga, M. D., & Houze, R. A. ( 2013 ). Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 70, 2713 – 2725. https://doi.org/10.1175/JAS-D-12-0311.1
dc.identifier.citedreferenceJohnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. ( 1999 ). Trimodal characteristics of tropical convection. Journal of Climate, 12, 2397 – 2418.
dc.identifier.citedreferenceAbhik, S., & Hendon, H. H. ( 2019 ). Influence of the QBO on the MJO during coupled model multiweek forecasts. Geophysical Research Letters, 46, 9213 – 9221. https://doi.org/10.1029/2019GL083152
dc.identifier.citedreferenceAbhik, S., Hendon, H. H., & Wheeler, M. C. ( 2019 ). On the sensitivity of convectively coupled equatorial waves to the quasi‐biennial oscillation. Journal of Climate, 32. https://doi.org/10.1175/jcli-d-19-0010.1
dc.identifier.citedreferenceAdames, Á. F. ( 2017 ). Precipitation budget of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 74, 1799 – 1817. https://doi.org/10.1175/JAS-D-16-0242.1
dc.identifier.citedreferenceAdames, Á. F., & Kim, D. ( 2016 ). The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73, 913 – 941. https://doi.org/10.1175/JAS-D-15-0170.1
dc.identifier.citedreferenceAdames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., & Wu, J. ( 2017a ). Changes in the structure and propagation of the MJO with increasing CO 2. Journal of Advances in Modeling Earth Systems, 9, 1251 – 1268. https://doi.org/10.1002/2017MS000913
dc.identifier.citedreferenceAdames, Á. F., Kim, D., Sobel, A. H., Del Genio, A., & Wu, J. ( 2017b ). Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO 2. Journal of Advances in Modeling Earth Systems, 9, 2946 – 2967. https://doi.org/10.1002/2017MS001040
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2014 ). Three‐dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. Journal of the Atmospheric Sciences, 71, 4661 – 4681. https://doi.org/10.1175/jas-d-14-0091.1
dc.identifier.citedreferenceAdames, Á. F., & Wallace, J. M. ( 2015 ). Three‐dimensional structure and evolution of the moisture field in the MJO. Journal of the Atmospheric Sciences, 72, 3733 – 3754. https://doi.org/10.1175/JAS-D-15-0003.1
dc.identifier.citedreferenceAhn, M.‐S., Kim, D., Ham, Y.‐G., & Park, S. ( 2020 ). Role of Maritime Continent land convection on the mean state and MJO propagation. Journal of Climate, 33, 1659 – 1675. https://doi.org/10.1175/jcli-d-19-0342.1
dc.identifier.citedreferenceAhn, M.‐S., Kim, D., Kang, D., Lee, J., Sperber, K. R., Glecker, P. J., Jiang, X., Ham, Y.‐G., & Kim, H. ( 2020 ). MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophysical Research Letters, 47, e2020GL087250. https://doi.org/10.1029/2020GL087250
dc.identifier.citedreferenceAhn, M.‐S., Kim, D., Park, S., & Ham, Y.‐G. ( 2019 ). Do we need to parameterize mesoscale convective organization to mitigate the MJO‐mean state trade‐off? Geophysical Research Letters, 46, 2293 – 2301. https://doi.org/10.1029/2018GL080314
dc.identifier.citedreferenceAhn, M.‐S., Kim, D., Sperber, K. R., Kang, I.‐S., Maloney, E., Waliser, D., & Hendon, H. ( 2017 ). MJO simulation in CMIP5 climate models: MJO skill metrics and process‐oriented diagnosis. Climate Dynamics, 1 – 23. https://doi.org/10.1007/s00382-017-3558-4
dc.identifier.citedreferenceAiyyer, A., & Molinari, J. ( 2008 ). MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. Journal of the Atmospheric Sciences, 65, 2691 – 2704.
dc.identifier.citedreferenceAllen, M. R., & Ingram, W. J. ( 2002 ). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228 – 232. https://doi.org/10.1038/nature01092
dc.identifier.citedreferenceAlvarez, M. S., Vera, C. S., Kiladis, G. N., & Liebmann, B. ( 2016 ). Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Climate Dynamics, 46, 245 – 262. https://doi.org/10.1007/s00382-015-2581-6
dc.identifier.citedreferenceAndersen, J. A., & Kuang, Z. ( 2012 ). Moist static energy budget of MJO‐like disturbances in the atmosphere of a zonally symmetric aquaplanet. Journal of Climate, 25, 2782 – 2804. https://doi.org/10.1175/jcli-d-11-00168.1
dc.identifier.citedreferenceAnderson, S. P., Weller, R. A., & Lukas, R. B. ( 1996 ). Surface buoyancy forcing and the mixed layer of the Western Pacific Warm Pool: Observations and 1D model results. Journal of Climate, 9, 3056 – 3085. https://doi.org/10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2
dc.identifier.citedreferenceArnold, N. P., Branson, M., Kuang, Z., Randall, D. A., & Tziperman, E. ( 2015 ). MJO intensification with warming in the superparameterized CESM. Journal of Climate, 28, 2706 – 2724. https://doi.org/10.1175/jcli-d-14-00494.1
dc.identifier.citedreferenceArnold, N. P., Kuang, Z., & Tziperman, E. ( 2013 ). Enhanced MJO‐like variability at High SST. Journal of Climate, 26, 988 – 1001. https://doi.org/10.1175/jcli-d-12-00272.1
dc.identifier.citedreferenceArnold, N. P., & Randall, D. A. ( 2015 ). Global‐scale convective aggregation: Implications for the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 7, 1499 – 1518. https://doi.org/10.1002/2015MS000498
dc.identifier.citedreferenceBaggett, C. F., Barnes, E. A., Maloney, E. D., & Mundhenk, B. D. ( 2017 ). Advancing atmospheric river forecasts into subseasonal‐to‐seasonal time scales. Geophysical Research Letters, 44, 7528 – 7536. https://doi.org/10.1002/2017GL074434
dc.identifier.citedreferenceBerg, W., L’Ecuyer, T., & Haynes, J. M. ( 2010 ). The distribution of rainfall over oceans from spaceborne radars. Journal of Applied Meteorology and Climatology, 49, 535 – 543. https://doi.org/10.1175/2009jamc2330.1
dc.identifier.citedreferenceBaggett, C. F., Nardi, K. M., Childs, S. J., Zito, S. N., Barnes, E. A., & Maloney, E. D. ( 2018 ). Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden‐Julian Oscillation. Journal of Geophysical Research: Atmospheres, 123, 12,661 – 12,675. https://doi.org/10.1029/2018JD029059
dc.identifier.citedreferenceBaldwin, M. P., & Dunkerton, T. J. ( 2001 ). Stratospheric harbingers of anomalous weather regimes. Science, 294, 581. https://doi.org/10.1126/science.1063315
dc.identifier.citedreferenceBaldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., & Takahashi, M. ( 2001 ). The quasi‐biennial oscillation. Reviews of Geophysics, 39, 179 – 229. https://doi.org/10.1029/1999RG000073
dc.identifier.citedreferenceBaranowski, D. B., Flatau, M. K., Flatau, P. J., & Matthews, A. J. ( 2016 ). Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophysical Research Letters, 43, 8269 – 8276. https://doi.org/10.1002/2016GL069602
dc.identifier.citedreferenceBaranowski, D. B., Waliser, D. E., Jiang, X., Ridout, J. A., & Flatau, M. K. ( 2019 ). Contemporary GCM fidelity in representing the diurnal cycle of precipitation over the Maritime Continent. Journal of Geophysical Research: Atmospheres, 124, 747 – 769. https://doi.org/10.1029/2018JD029474
dc.identifier.citedreferenceBarnes, E. A., Samarasinghe, S. M., Ebert‐Uphoff, I., & Furtado, J. C. ( 2019 ). Tropospheric and stratospheric causal pathways between the MJO and NAO. Journal of Geophysical Research: Atmospheres, 124, 9356 – 9371. https://doi.org/10.1029/2019JD031024
dc.identifier.citedreferenceBarnes, H. C., & Houze, R. A. ( 2013 ). The precipitating cloud population of the Madden‐Julian Oscillation over the Indian and west Pacific Oceans. Journal of Geophysical Research: Atmospheres, 118, 6996 – 7023. https://doi.org/10.1002/jgrd.50375
dc.identifier.citedreferenceBarnes, H. C., & Houze, R. A. ( 2014 ). Precipitation hydrometeor type relative to the mesoscale airflow in mature oceanic deep convection of the Madden‐Julian Oscillation. Journal of Geophysical Research: Atmospheres, 119, 13,990 – 14,014. https://doi.org/10.1002/2014JD022241
dc.identifier.citedreferenceBarrett, B. S., Carrasco, J. F., & Testino, A. P. ( 2011 ). Madden‐Julian Oscillation (MJO) modulation of atmospheric circulation and Chilean winter precipitation. Journal of Climate, 25, 1678 – 1688. https://doi.org/10.1175/JCLI-D-11-00216.1
dc.identifier.citedreferenceBarrett, B. S., & Gensini, V. A. ( 2013 ). Variability of central United States April–May tornado day likelihood by phase of the Madden‐Julian Oscillation. Geophysical Research Letters, 40, 2790 – 2795. https://doi.org/10.1002/grl.50522
dc.identifier.citedreferenceBaxter, S., Weaver, S., Gottschalck, J., & Xue, Y. ( 2014 ). Pentad evolution of wintertime impacts of the Madden‐Julian Oscillation over the contiguous United States. Journal of Climate, 27, 7356 – 7367. https://doi.org/10.1175/jcli-d-14-00105.1
dc.identifier.citedreferenceBechtold, P., Kohler, M., Jung, T., Doblas‐Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., & Balsamo, G. ( 2008 ). Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales. Quarterly Journal of the Royal Meteorological Society, 134, 1337 – 1351. https://doi.org/10.1002/Qj.289
dc.identifier.citedreferenceBecker, E. J., Berbery, E. H., & Higgins, R. W. ( 2011 ). Modulation of cold‐season U.S. daily precipitation by the Madden‐Julian Oscillation. Journal of Climate, 24, 5157 – 5166. https://doi.org/10.1175/2011JCLI4018.1
dc.identifier.citedreferenceBellenger, H., & Duvel, J. P. ( 2009 ). An analysis of tropical ocean diurnal warm layers. Journal of Climate, 22, 3629 – 3646. https://doi.org/10.1175/2008jcli2598.1
dc.identifier.citedreferenceBellenger, H., & Duvel, J. P. ( 2012 ). The event‐to‐event variability of the boreal winter MJO. Geophysical Research Letters, 39, L08701. https://doi.org/10.1029/2012GL051294
dc.identifier.citedreferenceBellenger, H., Katsumata, M., & Yoneyama, K. ( 2015 ). Turbulent mixing and its impact on lower tropospheric moisture over tropical ocean. Geophysical Research Letters, 42, 3030 – 3037. https://doi.org/10.1002/2015GL063868
dc.identifier.citedreferenceBellenger, H., Yoneyama, K., Katsumata, M., Nishizawa, T., Yasunaga, K., & Shirooka, R. ( 2015 ). Observation of moisture tendencies related to shallow convection. Journal of the Atmospheric Sciences, 72, 641 – 659. https://doi.org/10.1175/jas-d-14-0042.1
dc.identifier.citedreferenceBenedict, J. J., Maloney, E. D., Sobel, A. H., & Frierson, D. M. W. ( 2014 ). Gross moist stability and MJO simulation skill in three full‐physics GCMs. Journal of the Atmospheric Sciences, 71, 3327 – 3349. https://doi.org/10.1175/JAS-D-13-0240.1
dc.identifier.citedreferenceBenedict, J. J., Pritchard, M. S., & Collins, W. D. ( 2015 ). Sensitivity of MJO propagation to a robust positive Indian Ocean dipole event in the superparameterized CAM. Journal of Advances in Modeling Earth Systems, 7, 1901 – 1917. https://doi.org/10.1002/2015MS000530
dc.identifier.citedreferenceBenedict, J. J., & Randall, D. A. ( 2007 ). Observed characteristics of the MJO relative to maximum rainfall. Journal of the Atmospheric Sciences, 64, 2332 – 2354.
dc.identifier.citedreferenceBenedict, J. J., & Randall, D. A. ( 2009 ). Structure of the Madden‐Julian Oscillation in the superparameterized CAM. Journal of the Atmospheric Sciences, 66, 3277 – 3296.
dc.identifier.citedreferenceBenedict, J. J., & Randall, D. A. ( 2011 ). Impacts of idealized air‐sea coupling on Madden‐Julian Oscillation structure in the superparameterized CAM. Journal of the Atmospheric Sciences, 68, 1990 – 2008. https://doi.org/10.1175/JAS-D-11-04.1
dc.identifier.citedreferenceBernie, D. J., Woolnough, S. J., Slingo, J. M., & Guilyardi, E. ( 2005 ). Modeling diurnal and intraseasonal variability of the ocean mixed layer. Journal of Climate, 18, 1190 – 1202. https://doi.org/10.1175/Jcli3319.1
dc.identifier.citedreferenceBessafi, M., & Wheeler, M. C. ( 2006 ). Modulation of South Indian Ocean tropical cyclones by the Madden‐Julian oscillation and convectively coupled equatorial waves. Monthly Weather Review, 134, 638 – 656.
dc.identifier.citedreferenceBiello, J. A., & Majda, A. J. ( 2005 ). A new multiscale model for the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 62, 1694 – 1721.
dc.identifier.citedreferenceBirch, C. E., Webster, S., Peatman, S. C., Parker, D. J., Matthews, A. J., Li, Y., & Hassim, M. E. E. ( 2016 ). Scale interactions between the MJO and the western Maritime Continent. Journal of Climate, 29, 2471 – 2492. https://doi.org/10.1175/JCLI-D-15-0557.1
dc.identifier.citedreferenceBond, N. A., & Vecchi, G. A. ( 2003 ). The influence of the Madden‐Julian Oscillation on precipitation in Oregon and Washington*. Weather Forecasting, 18, 600 – 613. https://doi.org/10.1175/1520-0434
dc.identifier.citedreferenceBony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., & Webb, M. J. ( 2015 ). Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261. https://doi.org/10.1038/ngeo2398
dc.identifier.citedreferenceBranstator, G. ( 1985 ). Analysis of general circulation model sea‐surface temperature anomaly simulations using a linear model. Part I: Forced solutions. Journal of the Atmospheric Sciences, 42, 2225 – 2241. https://doi.org/10.1175/1520-0469(1985)042<2225:AOGCMS>2.0.CO;2
dc.identifier.citedreferenceBrenowitz, N. D., & Bretherton, C. S. ( 2018 ). Prognostic validation of a neural network unified physics parameterization. Geophysical Research Letters, 45, 6289 – 6298. https://doi.org/10.1029/2018GL078510
dc.identifier.citedreferenceBretherton, C. S., Peters, M. E., & Back, L. E. ( 2004 ). Relationships between water vapor path and precipitation over the tropical oceans. Journal of Climate, 17, 1517 – 1528.
dc.identifier.citedreferenceBui, H. X., & Maloney, E. D. ( 2018 ). Changes in Madden‐Julian Oscillation precipitation and wind variance under global warming. Geophysical Research Letters, 45, 7148 – 7155. https://doi.org/10.1029/2018GL078504
dc.identifier.citedreferenceBui, H. X., & Maloney, E. D. ( 2019a ). Mechanisms for global warming impacts on Madden‐Julian Oscillation precipitation amplitude. Journal of Climate, 32, 6961 – 6975. https://doi.org/10.1175/jcli-d-19-0051.1
dc.identifier.citedreferenceBui, H. X., & Maloney, E. D. ( 2019b ). Transient response of MJO precipitation and circulation to greenhouse gas forcing. Geophysical Research Letters, 46, 13,546 – 13,555. https://doi.org/10.1029/2019GL085328
dc.identifier.citedreferenceBuizza, R., Milleer, M., & Palmer, T. N. ( 1999 ). Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 125, 2887 – 2908. https://doi.org/10.1002/qj.49712556006
dc.identifier.citedreferenceCaballero, R., & Huber, M. ( 2010 ). Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophysical Research Letters, 37, L11701. https://doi.org/10.1029/2010GL043468
dc.identifier.citedreferenceCarlson, H., & Caballero, R. ( 2016 ). Enhanced MJO and transition to superrotation in warm climates. Journal of Advances in Modeling Earth Systems, 8, 304 – 318. https://doi.org/10.1002/2015MS000615
dc.identifier.citedreferenceCassou, C. ( 2008 ). Intraseasonal interaction between the Madden‐Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523 – 527.
dc.identifier.citedreferenceChang, C. P. ( 1977 ). Viscous internal gravity‐waves and low‐frequency oscillations in the tropics. Journal of the Atmospheric Sciences, 34, 901 – 910.
dc.identifier.citedreferenceChang, C.‐P., & Lim, H. ( 1988 ). Kelvin wave‐CISK: A possible mechanism for the 30–50 day oscillations. Journal of the Atmospheric Sciences, 45, 1709 – 1720.
dc.identifier.citedreferenceChang, C.‐W. J., Tseng, W.‐L., Hsu, H.‐H., Keenlyside, N., & Tsuang, B.‐J. ( 2015 ). The Madden‐Julian Oscillation in a warmer world. Geophysical Research Letters, 42, 6034 – 6042. https://doi.org/10.1002/2015GL065095
dc.identifier.citedreferenceChao, W. C., & Chen, B. ( 2001 ). The role of surface friction in tropical intraseasonal oscillation. Monthly Weather Review, 129, 896 – 904. https://doi.org/10.1175/1520-0493(2001)129<0896:TROSFI>2.0.CO;2
dc.identifier.citedreferenceChen, B., & Mapes, B. E. ( 2018 ). Effects of a simple convective organization scheme in a two‐plume GCM. Journal of Advances in Modeling Earth Systems, 10, 867 – 880. https://doi.org/10.1002/2017MS001106
dc.identifier.citedreferenceChen, G., & Wang, B. ( 2017 ). Reexamination of the wave activity envelope convective scheme in theoretical modeling of MJO. Journal of Climate, 30, 1127 – 1138. https://doi.org/10.1175/JCLI-D-16-0325.1
dc.identifier.citedreferenceChen, G., & Wang, B. ( 2018a ). Does the MJO have a westward group velocity? Journal of Climate, 31, 2435 – 2443. https://doi.org/10.1175/JCLI-D-17-0446.1
dc.identifier.citedreferenceChen, G., & Wang, B. ( 2018b ). Effects of enhanced front Walker cell on the eastward propagation of the MJO. Journal of Climate, 31, 7719 – 7738. https://doi.org/10.1175/jcli-d-17-0383.1
dc.identifier.citedreferenceJones, C., & Carvalho, L. M. V. ( 2006 ). Changes in the activity of the Madden‐Julian Oscillation during 1958–2004. Journal of Climate, 19, 6353 – 6370. https://doi.org/10.1175/JCLI3972.1
dc.identifier.citedreferenceChen, S. S., & Houze, R. A. ( 1997 ). Diurnal variation and life‐cycle of deep convective systems over the Tropical Pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 123, 357 – 388. https://doi.org/10.1002/qj.49712353806
dc.identifier.citedreferenceChen, S. S., Kerns, B. W., Guy, N., Jorgensen, D. P., Delanoë, J., Viltard, N., Zappa, C. J., Judt, F., Lee, C.‐Y., & Savarin, A. ( 2016 ). Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bulletin of the American Meteorological Society, 97, 405 – 423. https://doi.org/10.1175/bams-d-13-00196.1
dc.identifier.citedreferenceChen, Y., & Del Genio, A. D. ( 2009 ). Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dynamics, 32, 355 – 369. https://doi.org/10.1007/s00382-008-0386-6
dc.identifier.citedreferenceChi, N.‐H., Lien, R.‐C., D’Asaro, E. A., & Ma, B. B. ( 2014 ). The surface mixed layer heat budget from mooring observations in the central Indian Ocean during Madden‐Julian Oscillation events. Journal of Geophysical Research: Oceans, 119, 4638 – 4652. https://doi.org/10.1002/2014JC010192
dc.identifier.citedreferenceChikira, M. ( 2014 ). Eastward‐propagating intraseasonal oscillation represented by Chikira‐Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. Journal of the Atmospheric Sciences, 71, 615 – 639. https://doi.org/10.1175/JAS-D-13-038.1
dc.identifier.citedreferenceChikira, M., & Sugiyama, M. ( 2010 ). A cumulus parameterization with state‐dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. Journal of the Atmospheric Sciences, 67, 2171 – 2193. https://doi.org/10.1175/2010jas3316.1
dc.identifier.citedreferenceCiesielski, P. E., Johnson, R. H., Jiang, X., Zhang, Y., & Xie, S. ( 2017 ). Relationships between radiation, clouds, and convection during DYNAMO. Journal of Geophysical Research: Atmospheres, 122, 2529 – 2548. https://doi.org/10.1002/2016JD025965
dc.identifier.citedreferenceCoats, S., & Karnauskas, K. B. ( 2017 ). Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophysical Research Letters, 44, 9928 – 9937. https://doi.org/10.1002/2017GL074622
dc.identifier.citedreferenceCollimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A., & Waliser, D. ( 2003 ). On the relationship between the QBO and tropical deep convection. Journal of Climate, 16, 2552 – 2568. https://doi.org/10.1175/1520-0442(2003)016<2552:otrbtq>2.0.co;2
dc.identifier.citedreferenceCrueger, T., Stevens, B., & Brokopf, R. ( 2013 ). The Madden‐Julian Oscillation in ECHAM6 and the introduction of an objective MJO metric. Journal of Climate, 26, 3241 – 3257. https://doi.org/10.1175/jcli-d-12-00413.1
dc.identifier.citedreferencede Szoeke, S. P. ( 2018 ). Variations of the moist static energy budget of the tropical Indian Ocean atmospheric boundary layer. Journal of the Atmospheric Sciences, 75, 1545 – 1551. https://doi.org/10.1175/jas-d-17-0345.1
dc.identifier.citedreferencede Szoeke, S. P., Edson, J. B., Marion, J. R., Fairall, C. W., & Bariteau, L. ( 2015 ). The MJO and air‐sea interaction in TOGA COARE and DYNAMO. Journal of Climate, 28, 597 – 622. https://doi.org/10.1175/jcli-d-14-00477.1
dc.identifier.citedreferencede Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., & Chandra, A. S. ( 2017 ). Cold pools and their influence on the tropical marine boundary layer. Journal of the Atmospheric Sciences, 74, 1149 – 1168. https://doi.org/10.1175/jas-d-16-0264.1
dc.identifier.citedreferenceDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge‐Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., & Vitart, F. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553 – 597. https://doi.org/10.1002/qj.828
dc.identifier.citedreferenceDeFlorio, M. J., Waliser, D. E., Guan, B., Ralph, F. M., & Vitart, F. ( 2019 ). Global evaluation of atmospheric river subseasonal prediction skill. Climate Dynamics, 52, 3039 – 3060. https://doi.org/10.1007/s00382-018-4309-x
dc.identifier.citedreferenceDel Genio, A. D. ( 2012 ). Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surveys in Geophysics, 33, 637 – 656. https://doi.org/10.1007/s10712-011-9148-9
dc.identifier.citedreferenceDel Genio, A. D., & Chen, Y. ( 2015 ). Cloud‐radiative driving of the Madden‐Julian oscillation as seen by the A‐Train. Journal of Geophysical Research: Atmospheres, 120, 5344 – 5356. https://doi.org/10.1002/2015JD023278
dc.identifier.citedreferenceDel Genio, A. D., Chen, Y., Kim, D., & Yao, M.‐S. ( 2012 ). The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. Journal of Climate, 25, 3755 – 3770. https://doi.org/10.1175/JCLI-D-11-00384.1
dc.identifier.citedreferenceDeMott, C. A., Benedict, J. J., Klingaman, N. P., Woolnough, S. J., & Randall, D. A. ( 2016 ). Diagnosing ocean feedbacks to the MJO: SST‐modulated surface fluxes and the moist static energy budget. Journal of Geophysical Research: Atmospheres, 121, 8350 – 8373. https://doi.org/10.1002/2016JD025098
dc.identifier.citedreferenceDeMott, C. A., Klingaman, N. P., Tseng, W.‐L., Burt, M. A., Gao, Y., & Randall, D. A. ( 2019 ). The convection connection: How ocean feedbacks affect tropical mean moisture and MJO propagation. Journal of Geophysical Research: Atmospheres, 124, 11,910 – 11,931. https://doi.org/10.1029/2019JD031015
dc.identifier.citedreferenceDeMott, C. A., Klingaman, N. P., & Woolnough, S. J. ( 2015 ). Atmosphere‐ocean coupled processes in the Madden‐Julian oscillation. Reviews of Geophysics, 53, 1099 – 1154. https://doi.org/10.1002/2014RG000478
dc.identifier.citedreferenceDeMott, C. A., Stan, C., Randall, D. A., & Branson, M. D. ( 2014 ). Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. Journal of Climate, 27, 4970 – 4995. https://doi.org/10.1175/JCLI-D-13-00760.1
dc.identifier.citedreferenceDeMott, C. A., Wolding, B. O., Maloney, E. D., & Randall, D. A. ( 2018 ). Atmospheric mechanisms for MJO decay over the Maritime Continent. Journal of Geophysical Research: Atmospheres, 123, 5188 – 5204. https://doi.org/10.1029/2017JD026979
dc.identifier.citedreferenceDeng, L., & Wu, X. ( 2010 ). Effects of convective processes on GCM simulations of the Madden‐Julian Oscillation. Journal of Climate, 23, 352 – 377. https://doi.org/10.1175/2009jcli3114.1
dc.identifier.citedreferenceDeng, L., & Wu, X. ( 2011 ). Physical mechanisms for the maintenance of GCM‐simulated Madden‐Julian Oscillation over the Indian Ocean and Pacific. Journal of Climate, 24, 2469 – 2482. https://doi.org/10.1175/2010JCLI3759.1
dc.identifier.citedreferenceDeng, Q., Khouider, B., & Majda, A. J. ( 2015 ). The MJO in a coarse‐resolution GCM with a stochastic multicloud parameterization. Journal of the Atmospheric Sciences, 72, 55 – 74. https://doi.org/10.1175/jas-d-14-0120.1
dc.identifier.citedreferenceDeng, Q., Khouider, B., Majda, A. J., & Ajayamohan, R. S. ( 2016 ). Effect of stratiform heating on the planetary‐scale organization of tropical convection. Journal of the Atmospheric Sciences, 73, 371 – 392. https://doi.org/10.1175/jas-d-15-0178.1
dc.identifier.citedreferenceDensmore, C. R., Sanabia, E. R., & Barrett, B. S. ( 2019 ). QBO influence on MJO amplitude over the Maritime Continent: Physical mechanisms and seasonality. Monthly Weather Review, 147, 389 – 406. https://doi.org/10.1175/mwr-d-18-0158.1
dc.identifier.citedreferenceDePasquale, A., Schumacher, C., & Rapp, A. ( 2014 ). Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. Journal of Geophysical Research: Atmospheres, 119, 6347 – 6367. https://doi.org/10.1002/2013JD021031
dc.identifier.citedreferenceDerbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J.‐Y., Piriou, J.‐M., Redelsperger, J.‐L., & Soares, P. M. M. ( 2004 ). Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130, 3055 – 3079.
dc.identifier.citedreferenceDeser, C., & Phillips, A. S. ( 2009 ). Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. Journal of Climate, 22, 396 – 413. https://doi.org/10.1175/2008jcli2453.1
dc.identifier.citedreferenceDeWitt, L. H., Coffman, D. J., Schulz, K. J., Alan Brewer, W., Bates, T. S., & Quinn, P. K. ( 2013 ). Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Madden‐Julian Oscillation. Journal of Geophysical Research: Atmospheres, 118, 5736 – 5749. https://doi.org/10.1002/jgrd.50419
dc.identifier.citedreferenceDias, J., Leroux, S., Tulich, S. N., & Kiladis, G. N. ( 2013 ). How systematic is organized tropical convection within the MJO? Geophysical Research Letters, 40, 1420 – 1425. https://doi.org/10.1002/grl.50308
dc.identifier.citedreferenceDias, J., Sakaeda, N., Kiladis, G. N., & Kikuchi, K. ( 2017 ). Influences of the MJO on the space‐time organization of tropical convection. Journal of Geophysical Research: Atmospheres, 122, 8012 – 8032. https://doi.org/10.1002/2017JD026526
dc.identifier.citedreferenceDing, R. Q., Li, J. P., & Seo, K. H. ( 2010 ). Predictability of the Madden‐Julian Oscillation estimated using observational data. Monthly Weather Review, 138, 1004 – 1013. https://doi.org/10.1175/2009mwr3082.1
dc.identifier.citedreferenceDonald, A., Meinke, H., Power, B., de H. N. Maia, A., Wheeler, M. C., White, N., Stone, R. C., & Ribbe, J. ( 2006 ). Near‐global impact of the Madden‐Julian Oscillation on rainfall. Geophysical Research Letters, 33, L09704. https://doi.org/10.1029/2005GL025155
dc.identifier.citedreferenceDrushka, K., Asher, W. E., Ward, B., & Walesby, K. ( 2016 ). Understanding the formation and evolution of rain‐formed fresh lenses at the ocean surface. Journal of Geophysical Research: Oceans, 121, 2673 – 2689. https://doi.org/10.1002/2015JC011527
dc.identifier.citedreferenceDrushka, K., Sprintall, J., Gille, S. T., & Wijffels, S. ( 2012 ). In situ observations of Madden‐Julian Oscillation mixed layer dynamics in the Indian and western Pacific Oceans. Journal of Climate, 25, 2306 – 2328. https://doi.org/10.1175/jcli-d-11-00203.1
dc.identifier.citedreferenceDubey, S., Krishnamurti, T. N., & Kumar, V. ( 2018 ). On scale interactions between the MJO and synoptic scale. Quarterly Journal of the Royal Meteorological Society, 144, 2727 – 2747. https://doi.org/10.1002/qj.3400
dc.identifier.citedreferenceEmanuel, K. ( 2019 ). Inferences from simple models of slow, convectively coupled processes. Journal of the Atmospheric Sciences, 76, 195 – 208. https://doi.org/10.1175/JAS-D-18-0090.1
dc.identifier.citedreferenceEmanuel, K. A. ( 1987 ). An air‐sea interaction‐model of intraseasonal oscillations in the tropics. Journal of the Atmospheric Sciences, 44, 2324 – 2340.
dc.identifier.citedreferenceEmanuel, K. A. ( 1991 ). A scheme for representing cumulus convection in large‐scale models. Journal of the Atmospheric Sciences, 48, 2313 – 2329. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
dc.identifier.citedreferenceEmanuel, K. A. ( 1995 ). The behavior of a simple hurricane model using a convective scheme based on subcloud‐layer entropy equilibrium. Journal of the Atmospheric Sciences, 52, 3960 – 3968. https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2
dc.identifier.citedreferenceFauchereau, N., Pohl, B., & Lorrey, A. ( 2016 ). Extra‐tropical impacts of the Madden‐Julian Oscillation over New Zealand from a weather regime perspective. Journal of Climate, 29, 2161 – 2175. https://doi.org/10.1175/JCLI-D-15-0152.1
dc.identifier.citedreferenceFeng, J., Li, T., & Zhu, W. ( 2015 ). Propagating and nonpropagating MJO events over Maritime Continent. Journal of Climate, 28, 8430 – 8449. https://doi.org/10.1175/JCLI-D-15-0085.1
dc.identifier.citedreferenceFeng, J., Liu, P., Chen, W., & Wang, X. ( 2015 ). Contrasting Madden‐Julian Oscillation activity during various stages of EP and CP El Niños. Atmospheric Science Letters, 16, 32 – 37. https://doi.org/10.1002/asl2.516
dc.identifier.citedreferenceFeng, P.‐N., & Lin, H. ( 2019 ). Modulation of the MJO‐related teleconnections by the QBO. Journal of Geophysical Research: Atmospheres, 124, 12,022 – 12,033. https://doi.org/10.1029/2019JD030878
dc.identifier.citedreferenceFerranti, L., Palmer, T. N., Molteni, F., & Klinker, E. ( 1990 ). Tropical‐extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47, 2177 – 2199.
dc.identifier.citedreferenceFlatau, M., & Kim, Y.‐J. ( 2013 ). Interaction between the MJO and polar circulations. Journal of Climate, 26, 3562 – 3574. https://doi.org/10.1175/jcli-d-11-00508.1
dc.identifier.citedreferenceFranzke, C., Lee, S., & Feldstein, S. ( 2004 ). Is the North Atlantic Oscillation a breaking wave. Journal of the Atmospheric Sciences, 61, 145 – 160. https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2
dc.identifier.citedreferenceFrederiksen, J. S. ( 1982 ). A unified three‐dimensional instability theory of the onset of blocking and cyclogenesis. Journal of the Atmospheric Sciences, 39, 969 – 982. https://doi.org/10.1175/1520-0469(1982)039<0969:AUTDIT>2.0.CO;2
dc.identifier.citedreferenceFrederiksen, J. S. ( 1983 ). A unified three‐dimensional instability theory of the onset of blocking and cyclogenesis. II. Teleconnection patterns. Journal of the Atmospheric Sciences, 40, 2593 – 2609. https://doi.org/10.1175/1520-0469(1983)040<2593:AUTDIT>2.0.CO;2
dc.identifier.citedreferenceFrederiksen, J. S. ( 2002 ). Genesis of intraseasonal oscillations and equatorial waves. Journal of the Atmospheric Sciences, 59, 2761 – 2781. https://doi.org/10.1175/1520-0469(2002)059<2761:GOIOAE>2.0.CO;2
dc.identifier.citedreferenceFrederiksen, J. S., & Frederiksen, C. S. ( 1993 ). Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: Linear theory. Journal of the Atmospheric Sciences, 50, 1349 – 1372.
dc.identifier.citedreferenceFrederiksen, J. S., & Frederiksen, C. S. ( 1997 ). Mechanism of the formation of intraseasonal oscillations and Australian monsoon disturbances: The roles of convection, barotropic and baroclinic instability. Contributions to Atmospheric Physics, 70, 39 – 56.
dc.identifier.citedreferenceFrederiksen, J. S., & Lin, H. ( 2013 ). Tropical‐extratropical interactions of intraseasonal oscillations. Journal of the Atmospheric Sciences, 70, 3180 – 3197. https://doi.org/10.1175/JAS-D-12-0302.1
dc.identifier.citedreferenceFu, M., & Tziperman, E. ( 2019 ). Essential ingredients to the dynamics of westerly wind bursts. Journal of Climate, 32, 5549 – 5565. https://doi.org/10.1175/JCLI-D-18-0584.1
dc.identifier.citedreferenceFu, X., Wang, B., Lee, J.‐Y., Wang, W., & Gao, L. ( 2011 ). Sensitivity of dynamical intraseasonal prediction skills to different initial conditions*. Monthly Weather Review, 139, 2572 – 2592. https://doi.org/10.1175/2011MWR3584.1
dc.identifier.citedreferenceFu, X., Wang, W., Lee, J.‐Y., Wang, B., Kikuchi, K., Xu, J., Li, J., & Weaver, S. ( 2015 ). Distinctive roles of air‐sea coupling on different MJO events: A new perspective revealed from the DYNAMO/CINDY field campaign. Monthly Weather Review, 143, 794 – 812. https://doi.org/10.1175/mwr-d-14-00221.1
dc.identifier.citedreferenceFuchs, Z., & Raymond, D. J. ( 2005 ). Large‐scale modes in a rotating atmosphere with radiative‐convective instability and WISHE. Journal of the Atmospheric Sciences, 62, 4084 – 4094. https://doi.org/10.1175/JAS3582.1
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2007 ). A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus A: Dynamic Meteorology and Oceanography, 59, 344 – 354. https://doi.org/10.1111/j.1600-0870.2007.00230.x
dc.identifier.citedreferenceFuchs, Ž., & Raymond, D. J. ( 2017 ). A simple model of intraseasonal oscillations. Journal of Advances in Modeling Earth Systems, 9, 1195 – 1211. https://doi.org/10.1002/2017MS000963
dc.identifier.citedreferenceGarfinkel, C. I., Benedict, J. J., & Maloney, E. D. ( 2014 ). Impact of the MJO on the boreal winter extratropical circulation. Geophysical Research Letters, 41, 6055 – 6062. https://doi.org/10.1002/2014GL061094
dc.identifier.citedreferenceGarfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C., & Lee, S. ( 2012 ). Observed connection between stratospheric sudden warmings and the Madden‐Julian Oscillation. Geophysical Research Letters, 39, L18807. https://doi.org/10.1029/2012GL053144
dc.identifier.citedreferenceGarfinkel, C. I., & Schwartz, C. ( 2017 ). MJO‐related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophysical Research Letters, 44, 10,054 – 10,062. https://doi.org/10.1002/2017GL074470
dc.identifier.citedreferenceGensini, V. A., Gold, D., Allen, J. T., & Barrett, B. S. ( 2019 ). Extended U.S. Tornado outbreak during late May 2019: A forecast of opportunity. Geophysical Research Letters, 46, 10,150 – 10,158. https://doi.org/10.1029/2019GL084470
dc.identifier.citedreferenceGentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. ( 2018 ). Could machine learning break the convection parameterization deadlock? Geophysical Research Letters, 45, 5742 – 5751. https://doi.org/10.1029/2018GL078202
dc.identifier.citedreferenceGonzalez, A. O., & Jiang, X. ( 2017 ). Winter mean lower‐tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden‐Julian Oscillation. Geophysical Research Letters, 44, 2588 – 2596. https://doi.org/10.1002/2016GL072430
dc.identifier.citedreferenceGonzalez, A. O., & Jiang, X. ( 2019 ). Distinct propagation characteristics of intraseasonal variability over the tropical West Pacific. Journal of Geophysical Research: Atmospheres, 124, 5332 – 5351. https://doi.org/10.1029/2018JD029884
dc.identifier.citedreferenceGoswami, B. B., Khouider, B., Phani, R., Mukhopadhyay, P., & Majda, A. ( 2017a ). Improving synoptic and intraseasonal variability in CFSv2 via stochastic representation of organized convection. Geophysical Research Letters, 44, 1104 – 1113. https://doi.org/10.1002/2016GL071542
dc.identifier.citedreferenceGoswami, B. B., Khouider, B., Phani, R., Mukhopadhyay, P., & Majda, A. J. ( 2017b ). Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP Climate Forecast System (CFSv2). Journal of Advances in Modeling Earth Systems, 9, 1721 – 1739. https://doi.org/10.1002/2017MS001014
dc.identifier.citedreferenceGottschalck, J., Roundy, P. E., Schreck, C. J. III, Vintzileos, A., & Zhang, C. ( 2013 ). Large‐scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Monthly Weather Review, 141, 4173 – 4196. https://doi.org/10.1175/MWR-D-13-00022.1
dc.identifier.citedreferenceGottschalck, J., Wheeler, M., Weickmann, K., Vitart, F., Savage, N., Lin, H., Hendon, H., Waliser, D., Sperber, K., Nakagawa, M., Prestrelo, C., Flatau, M., & Higgins, W. ( 2010 ). A framework for assessing operational Madden‐Julian Oscillation forecasts: A CLIVAR MJO Working Group Project. Bulletin of the American Meteorological Society, 91, 1247 – 1258. https://doi.org/10.1175/2010BAMS2816.1
dc.identifier.citedreferenceGrabowski, W. W. ( 2001 ). Coupling cloud processes with the large‐scale dynamics using the Cloud‐Resolving Convection Parameterization (CRCP). Journal of the Atmospheric Sciences, 58, 978 – 997. https://doi.org/10.1175/1520-0469(2001)058<0978:Ccpwtl>2.0.Co;2
dc.identifier.citedreferenceGrabowski, W. W., & Moncrieff, M. W. ( 2004 ). Moisture‐convection feedback in the tropics. Quarterly Journal of the Royal Meteorological Society, 130, 3081 – 3104. https://doi.org/10.1256/qj.03.135
dc.identifier.citedreferenceGray, W. M., Sheaffer, J. D., & Knaff, J. A. ( 1992 ). Influence of the stratospheric QBO on ENSO variability. Journal of the Meteorological Society of Japan. Series II, 70, 975 – 995. https://doi.org/10.2151/jmsj1965.70.5_975
dc.identifier.citedreferenceGreatbatch, R. J. ( 2000 ). The North Atlantic Oscillation. Stochastic Environmental Research and Risk Assessment, 14, 213 – 242. https://doi.org/10.1007/s004770000047
dc.identifier.citedreferenceGreen, B. W., Sun, S., Bleck, R., Benjamin, S. G., & Grell, G. A. ( 2017 ). Evaluation of MJO predictive skill in multiphysics and multimodel global ensembles. Monthly Weather Review, 145, 2555 – 2574. https://doi.org/10.1175/mwr-d-16-0419.1
dc.identifier.citedreferenceGuan, B., Waliser, D. E., Molotch, N. P., Fetzer, E. J., & Neiman, P. J. ( 2012 ). Does the Madden‐Julian Oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Monthly Weather Review, 140, 325 – 342. https://doi.org/10.1175/MWR-D-11-00087.1
dc.identifier.citedreferenceGuo, Y., Jiang, X., & Waliser, D. E. ( 2014 ). Modulation of the convectively coupled Kelvin waves over South America and the tropical Atlantic Ocean in association with the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 71, 1371 – 1388. https://doi.org/10.1175/JAS-D-13-0215.1
dc.identifier.citedreferenceGuo, Y., Waliser, D. E., & Jiang, X. ( 2015 ). A systematic relationship between the representations of convectively coupled equatorial wave activity and the Madden‐Julian Oscillation in climate model simulations. Journal of Climate, 28, 1881 – 1904. https://doi.org/10.1175/JCLI-D-14-00485.1
dc.identifier.citedreferenceGushchina, D., & Dewitte, B. ( 2012 ). Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Monthly Weather Review, 140, 3669 – 3681. https://doi.org/10.1175/mwr-d-11-00267.1
dc.identifier.citedreferenceGuy, N., & Jorgensen, D. P. ( 2014 ). Kinematic and precipitation characteristics of convective systems observed by airborne Doppler radar during the life cycle of a Madden‐Julian Oscillation in the Indian Ocean. Monthly Weather Review, 142, 1385 – 1402. https://doi.org/10.1175/mwr-d-13-00252.1
dc.identifier.citedreferenceHaertel, P. ( 2018 ). Sensitivity of the Madden Julian Oscillation to ocean warming in a Lagrangian atmospheric model. Climate, 6, 45.
dc.identifier.citedreferenceHaertel, P. T., & Kiladis, G. N. ( 2004 ). Dynamics of 2‐day equatorial waves. Journal of the Atmospheric Sciences, 61, 2707 – 2721.
dc.identifier.citedreferenceHagos, S., Feng, Z., Burleyson, C. D., Lim, K.‐S. S., Long, C. N., Wu, D., & Thompson, G. ( 2014 ). Evaluation of convection‐permitting model simulations of cloud populations associated with the Madden‐Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. Journal of Geophysical Research: Atmospheres, 119, 12,052 – 12,068. https://doi.org/10.1002/2014JD022143
dc.identifier.citedreferenceHagos, S. M., Zhang, C., Feng, Z., Burleyson, C. D., De Mott, C., Kerns, B., Benedict, J. J., & Martini, M. N. ( 2016 ). The impact of the diurnal cycle on the propagation of Madden‐Julian Oscillation convection across the Maritime Continent. Journal of Advances in Modeling Earth Systems, 8, 1552 – 1564. https://doi.org/10.1002/2016MS000725
dc.identifier.citedreferenceHall, N. M. J., Thibaut, S., & Marchesiello, P. ( 2017 ). Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model. Climate Dynamics, 48, 2541 – 2555. https://doi.org/10.1007/s00382-016-3221-5
dc.identifier.citedreferenceHamada, A., & Takayabu, Y. N. ( 2016 ). Improvements in detection of light precipitation with the Global Precipitation Measurement Dual‐Frequency Precipitation Radar (GPM DPR). Journal of Atmospheric and Oceanic Technology, 33, 653 – 667. https://doi.org/10.1175/jtech-d-15-0097.1
dc.identifier.citedreferenceHan, W. ( 2005 ). Origins and dynamics of the 90‐day and 30–60‐day variations in the equatorial Indian Ocean. Journal of Physical Oceanography, 35, 708 – 728. https://doi.org/10.1175/jpo2725.1
dc.identifier.citedreferenceHan, Y., & Khouider, B. ( 2010 ). Convectively coupled waves in a sheared environment. Journal of the Atmospheric Sciences, 67, 2913 – 2942. https://doi.org/10.1175/2010JAS3335.1
dc.identifier.citedreferenceHannah, W. M., & Maloney, E. D. ( 2011 ). The role of moisture‐convection feedbacks in simulating the Madden‐Julian Oscillation. Journal of Climate, 24, 2754 – 2770. https://doi.org/10.1175/2011jcli3803.1
dc.identifier.citedreferenceHannah, W. M., & Maloney, E. D. ( 2014 ). The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. Journal of Advances in Modeling Earth Systems, 6, 420 – 440. https://doi.org/10.1002/2013MS000272
dc.identifier.citedreferenceHannah, W. M., Maloney, E. D., & Pritchard, M. S. ( 2015 ). Consequences of systematic model drift in DYNAMO MJO hindcasts with SP‐CAM and CAM5. Journal of Advances in Modeling Earth Systems, 7, 1051 – 1074. https://doi.org/10.1002/2014MS000423
dc.identifier.citedreferenceHartmann, D. L., Holton, J. R., & Fu, Q. ( 2001 ). The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophysical Research Letters, 28, 1969 – 1972. https://doi.org/10.1029/2000GL012833
dc.identifier.citedreferenceHayashi, M., & Itoh, H. ( 2017 ). A new mechanism of the slow eastward propagation of unstable disturbances with convection in the tropics: Implications for the MJO. Journal of the Atmospheric Sciences, 74, 3749 – 3769. https://doi.org/10.1175/JAS-D-16-0300.1
dc.identifier.citedreferenceHayes, S. P., Mangum, L. J., Picaut, J., Sumi, A., & Takeuchi, K. ( 1991 ). TOGA‐TAO: A moored array for real‐time measurements in the tropical Pacific Ocean. Bulletin of the American Meteorological Society, 72, 339 – 347. https://doi.org/10.1175/1520-0477(1991)072<0339:Ttamaf>2.0.Co;2
dc.identifier.citedreferenceHeld, I. M., & Soden, B. J. ( 2006 ). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686 – 5699. https://doi.org/10.1175/JCLI3990.1
dc.identifier.citedreferenceHenderson, D. S., L’Ecuyer, T., Stephens, G., Partain, P., & Sekiguchi, M. ( 2013 ). A multisensor perspective on the radiative impacts of clouds and aerosols. Journal of Applied Meteorology and Climatology, 52, 853 – 871. https://doi.org/10.1175/JAMC-D-12-025.1
dc.identifier.citedreferenceHenderson, S. A., Maloney, E. D., & Barnes, E. A. ( 2016 ). The influence of the Madden‐Julian Oscillation on Northern Hemisphere winter blocking. Journal of Climate, 29, 4597 – 4616. https://doi.org/10.1175/jcli-d-15-0502.1
dc.identifier.citedreferenceHenderson, S. A., Maloney, E. D., & Son, S.‐W. ( 2017 ). Madden‐Julian Oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. Journal of Climate, 30, 4567 – 4587. https://doi.org/10.1175/jcli-d-16-0789.1
dc.identifier.citedreferenceHendon, H. H. ( 2000 ). Impact of air‐sea coupling on the Madden‐Julian Oscillation in a general circulation model. Journal of the Atmospheric Sciences, 57, 3939 – 3952. https://doi.org/10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2
dc.identifier.citedreferenceHendon, H. H., & Abhik, S. ( 2018 ). Differences in vertical structure of the Madden‐Julian Oscillation associated with the quasi‐biennial oscillation. Geophysical Research Letters, 45, 4419 – 4428. https://doi.org/10.1029/2018gl077207
dc.identifier.citedreferenceHendon, H. H., & Glick, J. ( 1997 ). Intraseasonal air‐sea interaction in the tropical Indian and Pacific Oceans. Journal of Climate, 10, 647 – 661. https://doi.org/10.1175/1520-0442(1997)010<0647:IASIIT>2.0.CO;2
dc.identifier.citedreferenceHendon, H. H., & Liebmann, B. ( 1990 ). The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. Journal of the Atmospheric Sciences, 47, 2909 – 2924.
dc.identifier.citedreferenceHendon, H. H., & Liebmann, B. ( 1994 ). Organization of convection within the Madden‐Julian Oscillation. Journal of Geophysical Research, 99, 8073 – 8083.
dc.identifier.citedreferenceHendon, H. H., & Salby, M. L. ( 1994 ). The life cycle of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 51, 2225 – 2237.
dc.identifier.citedreferenceHendon, H. H., Wheeler, M. C., & Zhang, C. ( 2007 ). Seasonal dependence of the MJO‐ENSO relationship. Journal of Climate, 20, 531 – 543. https://doi.org/10.1175/jcli4003.1
dc.identifier.citedreferenceHendon, H. H., Zhang, C., & Glick, J. D. ( 1999 ). Interannual variation of the Madden‐Julian Oscillation during austral summer. Journal of Climate, 12, 2538 – 2550. https://doi.org/10.1175/1520-0442(1999)012<2538:Ivotmj>2.0.Co;2
dc.identifier.citedreferenceHiggins, R. W., Schemm, J. K. E., Shi, W., & Leetmaa, A. ( 2000 ). Extreme precipitation events in the western United States related to tropical forcing. Journal of Climate, 13, 793 – 820.
dc.identifier.citedreferenceHiggins, R. W., & Shi, W. ( 2001 ). Intercomparison of the principal modes of interannual and intraseasonal variability of the North American Monsoon System. Journal of Climate, 14, 403 – 417.
dc.identifier.citedreferenceHirata, F. E., Webster, P. J., & Toma, V. E. ( 2013 ). Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophysical Research Letters, 40, 3337 – 3341. https://doi.org/10.1002/grl.50632
dc.identifier.citedreferenceHolloway, C. E., & Neelin, J. D. ( 2007 ). The convective cold top and quasi equilibrium. Journal of the Atmospheric Sciences, 64, 1467 – 1487. https://doi.org/10.1175/jas3907.1
dc.identifier.citedreferenceHolloway, C. E., Woolnough, S. J., & Lister, G. M. S. ( 2013 ). The effects of explicit versus parameterized convection on the MJO in a large‐domain high‐resolution tropical case study. Part I: Characterization of large‐scale organization and propagation. Journal of the Atmospheric Sciences, 70, 1342 – 1369. https://doi.org/10.1175/jas-d-12-0227.1
dc.identifier.citedreferenceHong, C.‐C., Hsu, H.‐H., Tseng, W.‐L., Lee, M.‐Y., Chow, C.‐H., & Jiang, L.‐C. ( 2017 ). Extratropical forcing triggered the 2015 Madden‐Julian Oscillation‐El Niño event. Scientific Reports, 7, 46692. https://doi.org/10.1038/srep46692
dc.identifier.citedreferenceHong, X., Reynolds, C. A., Doyle, J. D., May, P., & O’Neill, L. ( 2017 ). Assessment of upper‐ocean variability and the Madden‐Julian Oscillation in extended‐range air‐ocean coupled mesoscale simulations. Dynamics of Atmospheres and Oceans, 78, 89 – 105. https://doi.org/10.1016/j.dynatmoce.2017.03.002
dc.identifier.citedreferenceHood, L. L. ( 2017 ). QBO/solar modulation of the boreal winter Madden‐Julian oscillation: A prediction for the coming solar minimum. Geophysical Research Letters, 44, 3849 – 3857. https://doi.org/10.1002/2017GL072832
dc.identifier.citedreferenceHorel, J. D., & Wallace, J. M. ( 1981 ). Planetary‐scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813 – 829. https://doi.org/10.1175/1520-0493(1981)109<0813:Psapaw>2.0.Co;2
dc.identifier.citedreferenceHoskins, B. J., & Ambrizzi, T. ( 1993 ). Rossby wave propagation on a realistic longitudinally varying flow. Journal of the Atmospheric Sciences, 50, 1661 – 1671. https://doi.org/10.1175/1520-0469(1993)050<1661:Rwpoar>2.0.Co;2
dc.identifier.citedreferenceHoskins, B. J., & Yang, G.‐Y. ( 2000 ). The equatorial response to higher‐latitude forcing. Journal of the Atmospheric Sciences, 57, 1197 – 1213. https://doi.org/10.1175/1520-0469(2000)057<1197:Terthl>2.0.Co;2
dc.identifier.citedreferenceHouze, R. A., Chen, S. S., Kingsmill, D. E., Serra, Y., & Yuter, S. E. ( 2000 ). Convection over the Pacific warm pool in relation to the atmospheric Kelvin‐Rossby wave. Journal of the Atmospheric Sciences, 57, 3058 – 3089.
dc.identifier.citedreferenceHsu, H.‐H. ( 1996 ). Global view of the intraseasonal oscillation during northern winter. Journal of Climate, 9, 2386 – 2406. https://doi.org/10.1175/1520-0442(1996)009<2386:Gvotio>2.0.Co;2
dc.identifier.citedreferenceHsu, H.‐H., & Lee, M.‐Y. ( 2005 ). Topographic effects on the eastward propagation and initiation of the Madden‐Julian Oscillation. Journal of Climate, 18, 795 – 809. https://doi.org/10.1175/JCLI-3292.1
dc.identifier.citedreferenceHsu, J.‐Y., Hendon, H., Feng, M., & Zhou, X. ( 2019 ). Magnitude and phase of diurnal SST variations in the ACCESS‐S1 model during the suppressed phase of the MJOs. Journal of Geophysical Research: Oceans, 124, 9553 – 9571. https://doi.org/10.1029/2019JC015458
dc.identifier.citedreferenceHsu, P. C., & Li, T. ( 2012 ). Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden‐Julian Oscillation. Journal of Climate, 25, 4914 – 4931. https://doi.org/10.1175/Jcli-D-11-00310.1
dc.identifier.citedreferenceHu, Q., & Randall, D. A. ( 1995 ). Low‐frequency oscillations in radiative convective systems.2. An idealized model. Journal of the Atmospheric Sciences, 52, 478 – 490.
dc.identifier.citedreferenceHuffman, G., Stocker, E., Bolvin, D. T., Nelkin, E. J., & Tan, J. ( 2019 ). GPM IMERG final precipitation L3 1 day 0.1 degree × 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/GPM/IMERGDF/DAY/06.
dc.identifier.citedreferenceHuffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., & Wolff, D. B. ( 2007 ). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi‐global, multiyear, combined‐sensor precipitation estimates at fine cales. Journal of Hydrometeorology, 8, 38 – 55.
dc.identifier.citedreferenceHung, C.‐S., & Sui, C.‐H. ( 2018 ). A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. Journal of Climate, 31, 4095 – 4115. https://doi.org/10.1175/jcli-d-17-0139.1
dc.identifier.citedreferenceHung, M.‐P., Lin, J.‐L., Wang, W., Kim, D., Shinoda, T., & Weaver, S. J. ( 2013 ). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. Journal of Climate, 26, 6185 – 6214. https://doi.org/10.1175/JCLI-D-12-00541.1
dc.identifier.citedreferenceHurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. ( 2013 ). An overview of the North Atlantic Oscillation. In J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck (Eds.), The North AtlanticOscillation: Climatic significance and environmental impact (pp. 1 – 35 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceICTP ( 2006 ). Workshop on the organization and maintenance of tropical convection and the Madden‐Julian Oscillation. International Centre for Theoretical Physics, Tieste, Italy.
dc.identifier.citedreferenceJohnson, R. H., Ciesielski, P. E., Ruppert, J. H., & Katsumata, M. ( 2015 ). Sounding‐based thermodynamic budgets for DYNAMO. Journal of the Atmospheric Sciences, 72, 598 – 622. https://doi.org/10.1175/JAS-D-14-0202.1
dc.identifier.citedreferenceIllingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez‐Blázquez, A., Wandinger, U., Wehr, T., & Zadelhoff, G.‐J. V. ( 2015 ). The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bulletin of the American Meteorological Society, 96, 1311 – 1332. https://doi.org/10.1175/bams-d-12-00227.1
dc.identifier.citedreferenceInness, P. M., & Slingo, J. M. ( 2006 ). The interaction of the Madden‐Julian Oscillation with the Maritime Continent in a GCM. Quarterly Journal of the Royal Meteorological Society, 132, 1645 – 1667.
dc.identifier.citedreferenceInoue, K., & Back, L. ( 2015a ). Column‐integrated moist static energy budget analysis on various time scales during TOGA COARE. Journal of the Atmospheric Sciences, 72, 1856 – 1871. https://doi.org/10.1175/JAS-D-14-0249.1
dc.identifier.citedreferenceInoue, K., & Back, L. E. ( 2015b ). Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. Journal of the Atmospheric Sciences, 72, 4148 – 4166. https://doi.org/10.1175/JAS-D-15-0092.1
dc.identifier.citedreferenceJaniga, M. A., Schreck, C. J. III, Ridout, J. A., Flatau, M., Barton, N. P., Metzger, E. J., & Reynolds, C. A. ( 2018 ). Subseasonal forecasts of convectively coupled equatorial waves and the MJO: Activity and predictive skill. Monthly Weather Review, 146, 2337 – 2360. https://doi.org/10.1175/mwr-d-17-0261.1
dc.identifier.citedreferenceJeong, J.‐H., Ho, C.‐H., Kim, B.‐M., & Kwon, W.‐T. ( 2005 ). Influence of the Madden‐Julian Oscillation on wintertime surface air temperature and cold surges in east Asia. Journal of Geophysical Research, 110, D11104. https://doi.org/10.1029/2004JD005408
dc.identifier.citedreferenceJiang, X. ( 2017 ). Key processes for the eastward propagation of the Madden‐Julian Oscillation based on multimodel simulations. Journal of Geophysical Research: Atmospheres, 122, 755 – 770. https://doi.org/10.1002/2016JD025955
dc.identifier.citedreferenceJiang, X., Adames, Á. F., Zhao, M., Waliser, D., & Maloney, E. ( 2018 ). A unified moisture mode framework for seasonality of the Madden‐Julian Oscillation. Journal of Climate, 31, 4215 – 4224. https://doi.org/10.1175/jcli-d-17-0671.1
dc.identifier.citedreferenceJiang, X., Kim, D., & Maloney, E. ( 2020 ). Progress and status of MJO simulation in climate models and process‐oriented diagnostics, Chapter 25. In C. P. Chang, K. J. Ha, R. H. Johnson, D. Kim, G. N. Lau, & B. Wang (Eds.), The multiscale global monsoon system, World Scientific Series on Asia‐Pacific Weather and Climate (Vol. 11 ). Singapore: World Scientific.
dc.identifier.citedreferenceJiang, X., Li, T., & Wang, B. ( 2004 ). Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. Journal of Climate, 17, 1022 – 1039.
dc.identifier.citedreferenceJiang, X., Maloney, E., & Su, H. ( 2020 ). Large‐scale controls of propagation of the Madden‐Julian Oscillation. Climate and Atmospheric Science, 3 ( 1 ), 29. https://doi.org/10.1038/s41612-020-00134-x
dc.identifier.citedreferenceJiang, X., Su, H., & Waliser, D. E. ( 2019 ). A damping effect of the Maritime Continent for the Madden‐Julian Oscillation. Journal of Geophysical Research: Atmospheres, 124, 13693 – 13713. https://doi.org/10.1029/2019JD031503
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Olson, W. S., Tao, W.‐K., L’Ecuyer, T. S., Li, J.‐L., Tian, B., Yung, Y. L., Tompkins, A. M., Lang, S. E., & Grecu, M. ( 2009 ). Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses, and forecasts: A case study during 1998/99 winter. Journal of Climate, 22, 6001 – 6020. https://doi.org/10.1175/2009JCLI3048.1
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Olson, W. S., Tao, W.‐K., L’Ecuyer, T. S., Li, K.‐F., Yung, Y. L., Shige, S., Lang, S., & Takayabu, Y. N. ( 2011 ). Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Monthly Weather Review, 139, 3208 – 3223. https://doi.org/10.1175/2011mwr3636.1
dc.identifier.citedreferenceJiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P., Woolnough, S. J., Guan, B., Bellon, G., Crueger, T., DeMott, C., Hannay, C., Lin, H., Hu, W., Kim, D., Lappen, C.‐L., Lu, M.‐M., Ma, H.‐Y., Miyakawa, T., Ridout, J. A., Schubert, S. D., Scinocca, J., Seo, K.‐H., Shindo, E., Song, X., Stan, C., Tseng, W.‐L., Wang, W., Wu, T., Wu, X., Wyser, K., Zhang, G. J., & Zhu, H. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120, 4718 – 4748. https://doi.org/10.1002/2014JD022375
dc.identifier.citedreferenceJiang, X., Xiang, B., Zhao, M., Li, T., Lin, S.‐J., Wang, Z., & Chen, J.‐H. ( 2018 ). Intraseasonal tropical cyclogenesis prediction in a global coupled model system. Journal of Climate, 31, 6209 – 6227. https://doi.org/10.1175/JCLI-D-17-0454.1
dc.identifier.citedreferenceJiang, X., Zhao, M., Maloney, E. D., & Waliser, D. E. ( 2016 ). Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden‐Julian Oscillation. Geophysical Research Letters, 43, 10,412 – 10,419. https://doi.org/10.1002/2016GL070898
dc.identifier.citedreferenceJiang, X., Zhao, M., & Waliser, D. E. ( 2012 ). Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. Journal of Climate, 25, 6524 – 6538. https://doi.org/10.1175/jcli-d-11-00531.1
dc.identifier.citedreferenceJohnson, R. H., & Ciesielski, P. E. ( 2013 ). Structure and properties of Madden‐Julian Oscillations deduced from DYNAMO sounding arrays. Journal of the Atmospheric Sciences, 70, 3157 – 3179. https://doi.org/10.1175/JAS-D-13-065.1
dc.identifier.citedreferenceJones, C., & Carvalho, L. M. V. ( 2011 ). Will global warming modify the activity of the Madden‐Julian Oscillation? Quarterly Journal of the Royal Meteorological Society, 137, 544 – 552. https://doi.org/10.1002/qj.765
dc.identifier.citedreferenceJones, C., & Carvalho, L. M. V. ( 2012 ). Spatial‐intensity variations in extreme precipitation in the contiguous United States and the Madden‐Julian Oscillation. Journal of Climate, 25, 4898 – 4913. https://doi.org/10.1175/jcli-d-11-00278.1
dc.identifier.citedreferenceJones, C., Carvalho, L. M. V., Wayne Higgins, R., Waliser, D. E., & Schemm, J. K. E. ( 2004 ). Climatology of tropical intraseasonal convective anomalies: 1979–2002. Journal of Climate, 17, 523 – 539. https://doi.org/10.1175/1520-0442(2004)017<0523:COTICA>2.0.CO;2
dc.identifier.citedreferenceJones, C., Waliser, D. E., Lau, K. M., & Stern, W. ( 2004 ). Global occurrences of extreme precipitation and the Madden‐Julian oscillation: Observations and predictability. Journal of Climate, 17, 4575 – 4589.
dc.identifier.citedreferenceJudt, F., & Chen, S. S. ( 2014 ). An explosive convective cloud system and its environmental conditions in MJO initiation observed during DYNAMO. Journal of Geophysical Research: Atmospheres, 119, 2781 – 2795. https://doi.org/10.1002/2013JD021048
dc.identifier.citedreferenceJung, J.‐H. ( 2016 ). Simulation of orographic effects with a Quasi‐3‐D Multiscale Modeling Framework: Basic algorithm and preliminary results. Journal of Advances in Modeling Earth Systems, 8, 1657 – 1673. https://doi.org/10.1002/2016MS000783
dc.identifier.citedreferenceJung, J.‐H., & Arakawa, A. ( 2014 ). Modeling the moist‐convective atmosphere with a Quasi‐3‐D Multiscale Modeling Framework (Q3D MMF). Journal of Advances in Modeling Earth Systems, 6, 185 – 205. https://doi.org/10.1002/2013MS000295
dc.identifier.citedreferenceKacimi, A., & Khouider, B. ( 2018 ). The transient response to an equatorial heat source and its convergence to steady state: Implications for MJO theory. Climate Dynamics, 50, 3315 – 3330. https://doi.org/10.1007/s00382-017-3807-6
dc.identifier.citedreferenceKalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., & Joseph, D. ( 1996 ). The NCEP/NCAR 40‐year reanalysis project. Bulletin of the American Meteorological Society, 77, 437 – 471.
dc.identifier.citedreferenceKang, W., & Tziperman, E. ( 2017 ). More frequent sudden stratospheric warming events due to enhanced MJO forcing expected in a warmer climate. Journal of Climate, 30, 8727 – 8743. https://doi.org/10.1175/jcli-d-17-0044.1
dc.identifier.citedreferenceKang, W., & Tziperman, E. ( 2018a ). The role of zonal asymmetry in the enhancement and suppression of sudden stratospheric warming variability by the Madden‐Julian Oscillation. Journal of Climate, 31, 2399 – 2415. https://doi.org/10.1175/jcli-d-17-0489.1
dc.identifier.citedreferenceKang, W., & Tziperman, E. ( 2018b ). The MJO‐SSW teleconnection: Interaction between MJO‐forced waves and the midlatitude jet. Geophysical Research Letters, 45, 4400 – 4409. https://doi.org/10.1029/2018GL077937
dc.identifier.citedreferenceKapur, A., & Zhang, C. ( 2012 ). Multiplicative MJO forcing of ENSO. Journal of Climate, 25, 8132 – 8147. https://doi.org/10.1175/jcli-d-11-00609.1
dc.identifier.citedreferenceKemball‐Cook, S. R., & Weare, B. C. ( 2001 ). The onset of convection in the Madden‐Julian oscillation. Journal of Climate, 14, 780 – 793.
dc.identifier.citedreferenceKerns, B. W., & Chen, S. S. ( 2014 ). Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Monthly Weather Review, 142, 1326 – 1343. https://doi.org/10.1175/MWR-D-13-00159.1
dc.identifier.citedreferenceKerns, B. W., & Chen, S. S. ( 2016 ). Large‐scale precipitation tracking and the MJO over the Maritime Continent and Indo‐Pacific warm pool. Journal of Geophysical Research: Atmospheres, 121, 8755 – 8776. https://doi.org/10.1002/2015JD024661
dc.identifier.citedreferenceKessler, W. S., & Kleeman, R. ( 2000 ). Rectification of the Madden‐Julian Oscillation into the ENSO cycle. Journal of Climate, 13, 3560 – 3575.
dc.identifier.citedreferenceKhairoutdinov, M., Randall, D., & DeMott, C. ( 2005 ). Simulations of the atmospheric general circulation using a cloud‐resolving model as a superparameterization of physical processes. Journal of the Atmospheric Sciences, 62, 2136 – 2154.
dc.identifier.citedreferenceKhairoutdinov, M. F., & Emanuel, K. ( 2018 ). Intraseasonal variability in a cloud‐permitting near‐global equatorial aquaplanet model. Journal of the Atmospheric Sciences, 75, 4337 – 4355. https://doi.org/10.1175/jas-d-18-0152.1
dc.identifier.citedreferenceKhairoutdinov, M. F., & Randall, D. A. ( 2003 ). Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. Journal of the Atmospheric Sciences, 60, 607 – 625.
dc.identifier.citedreferenceKhouider, B., Han, Y., Majda, A. J., & Stechmann, S. N. ( 2012 ). Multiscale waves in an MJO background and convective momentum transport feedback. Journal of the Atmospheric Sciences, 69, 915 – 933. https://doi.org/10.1175/JAS-D-11-0152.1
dc.identifier.citedreferenceKhouider, B., & Majda, A. J. ( 2006 ). A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. Journal of the Atmospheric Sciences, 63, 1308 – 1323.
dc.identifier.citedreferenceKikuchi, K. ( 2014 ). An introduction to combined Fourier‐wavelet transform and its application to convectively coupled equatorial waves. Climate Dynamics, 43, 1339 – 1356. https://doi.org/10.1007/s00382-013-1949-8
dc.identifier.citedreferenceKikuchi, K., & Takayabu, Y. N. ( 2004 ). The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophysical Research Letters, 31, L10101. https://doi.org/10.1029/2004GL019601
dc.identifier.citedreferenceKikuchi, K., & Wang, B. ( 2008 ). Diurnal precipitation regimes in the global tropics. Journal of Climate, 21, 2680 – 2696. https://doi.org/10.1175/2007JCLI2051.1
dc.identifier.citedreferenceKiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., & Ventrice, M. J. ( 2014 ). A comparison of OLR and circulation‐based indices for tracking the MJO. Monthly Weather Review, 142, 1697 – 1715. https://doi.org/10.1175/mwr-d-13-00301.1
dc.identifier.citedreferenceKiladis, G. N., Straub, K. H., & Haertel, P. T. ( 2005 ). Zonal and vertical structure of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 62, 2790 – 2809.
dc.identifier.citedreferenceKiladis, G. N., & Weickmann, K. M. ( 1992 ). Extratropical forcing of tropical Pacific convection during northern winter. Monthly Weather Review, 120, 1924 – 1938.
dc.identifier.citedreferenceKiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E. ( 2009 ). Convectively coupled equatorial waves. Reviews of Geophysics, 47, RG2003. https://doi.org/10.1029/2008RG000266
dc.identifier.citedreferenceKim, D., Ahn, M.‐S., Kang, I.‐S., & Genio, A. D. D. ( 2015 ). Role of longwave cloud‐radiation feedback in the simulation of the Madden‐Julian Oscillation. Journal of Climate, 28, 6979 – 6994. https://doi.org/10.1175/JCLI-D-14-00767.1
dc.identifier.citedreferenceKim, D., & Kang, I.‐S. ( 2012 ). A bulk mass flux convection scheme for climate model: Description and moisture sensitivity. Climate Dynamics, 38, 411 – 429. https://doi.org/10.1007/s00382-010-0972-2
dc.identifier.citedreferenceKim, D., Kim, H., & Lee, M.‐I. ( 2017 ). Why does the MJO detour the Maritime Continent during austral summer? Geophysical Research Letters, 44, 2579 – 2587. https://doi.org/10.1002/2017GL072643
dc.identifier.citedreferenceKim, D., Kug, J.‐S., & Sobel, A. H. ( 2014 ). Propagating versus nonpropagating Madden‐Julian Oscillation events. Journal of Climate, 27, 111 – 125. https://doi.org/10.1175/JCLI-D-13-00084.1
dc.identifier.citedreferenceKim, D., & Maloney, E. ( 2017 ). Simulation of the Madden‐Julian Oscillation using general circulation models. In C.‐P. Chang, H.‐C. Kuo, N.‐C. Lau, R. H. Johnson, B. Wang, & M. C. Wheeler (Eds.), The global monsoon system (pp. 161 – 172 ). Singapore: World Scientific.
dc.identifier.citedreferenceKim, D., Maloney, E., & Zhang, C. ( 2020 ). Review: MJO propagation over the Maritime Continent. The multiscale global monsoon system. In C. P. Chang, et al. (Eds.), World scientific series on Asia‐Pacific weather and climate (Vol. 11, Ch. 21). Singapore: World Scientific.
dc.identifier.citedreferenceKim, D., Sobel, A. H., Del Genio, A. D., Chen, Y., Camargo, S. J., Yao, M.‐S., Kelley, M., & Nazarenko, L. ( 2012 ). The tropical subseasonal variability simulated in the NASA GISS general circulation model. Journal of Climate, 25, 4641 – 4659. https://doi.org/10.1175/JCLI-D-11-00447.1
dc.identifier.citedreferenceKim, D., Sobel, A. H., & Kang, I.‐S. ( 2011 ). A mechanism denial study on the Madden‐Julian Oscillation. Journal of Advances in Modeling Earth Systems, 3, M12007. https://doi.org/10.1029/2011MS000081
dc.identifier.citedreferenceKim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W., & Kang, I. S. ( 2011 ). A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. Journal of Climate, 24, 5506 – 5520. https://doi.org/10.1175/2011jcli4177.1
dc.identifier.citedreferenceKim, D., Sperber, K., Stern, W., Waliser, D., Kang, I. S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., Khairoutdinov, M., Lee, M. I., Neale, R., Suarez, M., Thayer‐Calder, K., & Zhang, G. ( 2009 ). Application of MJO simulation diagnostics to climate models. Journal of Climate, 22, 6413 – 6436. https://doi.org/10.1175/2009jcli3063.1
dc.identifier.citedreferenceKim, D., Xavier, P., Maloney, E., Wheeler, M., Waliser, D., Sperber, K., Hendon, H., Zhang, C., Neale, R., Hwang, Y.‐T., & Liu, H. ( 2014 ). Process‐oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. Journal of Climate, 27, 5379 – 5395. https://doi.org/10.1175/jcli-d-13-00497.1
dc.identifier.citedreferenceKim, H., Caron, J. M., Richter, J. H., & Simpson, I. R. ( 2020 ). The lack of QBO‐MJO connection in CMIP6 models. Geophysical Research Letters, 47, e2020GL087295. https://doi.org/10.1029/2020GL087295
dc.identifier.citedreferenceKim, H., Janiga, M. A., & Pegion, K. ( 2019 ). MJO propagation processes and mean biases in the SubX and S2S reforecasts. Journal of Geophysical Research: Atmospheres, 124, 9314 – 9331. https://doi.org/10.1029/2019JD031139
dc.identifier.citedreferenceKim, H., Richter, J. H., & Martin, Z. ( 2020 ). Insignificant QBO‐MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. Journal of Geophysical Research: Atmospheres, 124, 12,655 – 12,666. https://doi.org/10.1029/2019JD031416
dc.identifier.citedreferenceKim, H., Vitart, F., & Waliser, D. E. ( 2018 ). Prediction of the Madden‐Julian Oscillation: A review. Journal of Climate, 31, 9425 – 9443. https://doi.org/10.1175/JCLI-D-18-0210.1
dc.identifier.citedreferenceKim, H.‐M. ( 2017 ). The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. Journal of Geophysical Research: Atmospheres, 122, 7772 – 7784. https://doi.org/10.1002/2017JD027005
dc.identifier.citedreferenceKim, H.‐M., Kim, D., Vitart, F., Toma, V. E., Kug, J.‐S., & Webster, P. J. ( 2016 ). MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. Journal of Climate, 29, 3973 – 3988. https://doi.org/10.1175/JCLI-D-15-0862.1
dc.identifier.citedreferenceKim, H.‐M., Webster, P. J., Toma, V. E., & Kim, D. ( 2014 ). Predictability and prediction skill of the MJO in two operational forecasting systems. Journal of Climate, 27, 5364 – 5378. https://doi.org/10.1175/JCLI-D-13-00480.1
dc.identifier.citedreferenceKim, J., & Son, S.‐W. ( 2012 ). Tropical cold‐point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. Journal of Climate, 25, 5343 – 5360. https://doi.org/10.1175/jcli-d-11-00554.1
dc.identifier.citedreferenceKiranmayi, L., & Maloney, E. D. ( 2011 ). Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research, 116, D21117. https://doi.org/10.1029/2011JD016031
dc.identifier.citedreferenceKirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni, I., Doblas‐Reyes, F.J., Fiore, A.M., Kimoto, M., Meehl, G.A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J., Vecchi, G. and Wan, H. J. ( 2013 ). Near‐term climate change: Projections and predictability. In T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 11, pp. 953 – 1028 ). Cambridge, UK, and New York, NY: Cambridge University Press.
dc.identifier.citedreferenceKlingaman, N. P., & Demott, C. A. ( 2020 ). Mean state biases and interannual variability affect perceived sensitivities of the Madden‐Julian Oscillation to air‐sea coupling. Journal of Advances in Modeling Earth Systems, 12, e2019MS001799. https://doi.org/10.1029/2019MS001799
dc.identifier.citedreferenceKlingaman, N. P., Jiang, X., Xavier, P. K., Petch, J., Waliser, D., & Woolnough, S. J. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian oscillation: Synthesis and summary. Journal of Geophysical Research: Atmospheres, 120, 4671 – 4689. https://doi.org/10.1002/2015JD023196
dc.identifier.citedreferenceKlingaman, N. P., & Woolnough, S. J. ( 2014 ). The role of air‐sea coupling in the simulation of the Madden‐Julian oscillation in the Hadley Centre model. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.2295
dc.identifier.citedreferenceKlingaman, N. P., Woolnough, S. J., Jiang, X., Waliser, D., Xavier, P. K., Petch, J., Caian, M., Hannay, C., Kim, D., Ma, H.‐Y., Merryfield, W. J., Miyakawa, T., Pritchard, M., Ridout, J. A., Roehrig, R., Shindo, E., Vitart, F., Wang, H., Cavanaugh, N. R., Mapes, B. E., Shelly, A., & Zhang, G. J. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. Journal of Geophysical Research: Atmospheres, 120, 4690 – 4717. https://doi.org/10.1002/2014JD022374
dc.identifier.citedreferenceKlotzbach, P., Abhik, S., Hendon, H. H., Bell, M., Lucas, C., Marshall, A. G., & Oliver, E. C. J. ( 2019 ). On the emerging relationship between the stratospheric Quasi‐Biennial oscillation and the Madden‐Julian oscillation. Scientific Reports, 9, 2981. https://doi.org/10.1038/s41598-019-40034-6
dc.identifier.citedreferenceKlotzbach, P. J. ( 2010 ). On the Madden‐Julian Oscillation‐Atlantic hurricane relationship. Journal of Climate, 23, 282 – 293. https://doi.org/10.1175/2009JCLI2978.1
dc.identifier.citedreferenceKnutson, T. R., & Manabe, S. ( 1995 ). Time‐mean response over the tropical Pacific to increased CO 2 in a coupled ocean‐atmosphere model. Journal of Climate, 8, 2181 – 2199. https://doi.org/10.1175/1520-0442(1995)008<2181:Tmrott>2.0.Co;2
dc.identifier.citedreferenceKodama, Y.‐M., Tokuda, M., & Murata, F. ( 2006 ). Convective activity over the Indonesian Maritime Continent during CPEA‐I as evaluated by lightning activity and Q1 and Q2 profiles. Journal of the Meteorological Society of Japan. Ser. II, 84A, 133 – 149. https://doi.org/10.2151/jmsj.84A.133
dc.identifier.citedreferenceKrishnamurti, T. N., Oosterhof, D. K., & Mehta, A. V. ( 1988 ). Air‐sea interaction on the time scale of 30 to 50 days. Journal of the Atmospheric Sciences, 45, 1304 – 1322. https://doi.org/10.1175/1520-0469(1988)045<1304:Aiotts>2.0.Co;2
dc.identifier.citedreferenceKuang, Z. ( 2008 ). A moisture‐stratiform instability for convectively coupled waves. Journal of the Atmospheric Sciences, 65, 834 – 854. https://doi.org/10.1175/2007jas2444.1
dc.identifier.citedreferenceKubokawa, H., Satoh, M., Suzuki, J., & Fujiwara, M. ( 2016 ). Influence of topography on temperature variations in the tropical tropopause layer. Journal of Geophysical Research: Atmospheres, 121, 11,556 – 11,574. https://doi.org/10.1002/2016JD025569
dc.identifier.citedreferenceKubota, H., Yoneyama, K., Hamada, J.‐I., Wu, P., Sudaryanto, A., & Wahyono, I. B. ( 2015 ). Role of Maritime Continent convection during the preconditioning stage of the Madden‐Julian Oscillation observed in CINDY2011/DYNAMO. Journal of the Meteorological Society of Japan. Ser. II, 93A, 101 – 114. https://doi.org/10.2151/jmsj.2015-050
dc.identifier.citedreferenceKuo, Y.‐H., Neelin, J. D., Chen, C.‐C., Chen, W.‐T., Donner, L. J., Gettelman, A., Jiang, X., Kuo, K.‐T., Maloney, E., Mechoso, C. R., Ming, Y., Schiro, K. A., Seman, C. J., Wu, C.‐M., & Zhao, M. ( 2019 ). Convective transition statistics over tropical oceans for climate model diagnostics: GCM evaluation. Journal of the Atmospheric Sciences. https://doi.org/10.1175/jas-d-19-0132.1 null
dc.identifier.citedreferenceL’Heureux, M. L., & Higgins, R. W. ( 2008 ). Boreal winter links between the Madden‐Julian Oscillation and the Arctic Oscillation. Journal of Climate, 21, 3040 – 3050. https://doi.org/10.1175/2007jcli1955.1
dc.identifier.citedreferenceLau, K.‐M., & Chan, P. H. ( 1986 ). Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Monthly Weather Review, 114, 1354 – 1367.
dc.identifier.citedreferenceLau, K.‐M., & Peng, L. ( 1987 ). Origin of low‐frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. Journal of the Atmospheric Sciences, 44, 950 – 972.
dc.identifier.citedreferenceLau, K.‐M., & Phillips, T. J. ( 1986 ). Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. Journal of the Atmospheric Sciences, 43, 1164 – 1181. https://doi.org/10.1175/1520-0469(1986)043<1164:Cfofgh>2.0.Co;2
dc.identifier.citedreferenceLau, W. K.‐M., & Waliser, D. E. ( 2012 ). Intraseasonal variability in the atmosphere‐ocean climate system ( Second ed. p. 613 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceL’Ecuyer, T. S., & McGarragh, G. ( 2010 ). A 10‐year climatology of tropical radiative heating and its vertical structure from TRMM observations. Journal of Climate, 23, 519 – 541. https://doi.org/10.1175/2009jcli3018.1
dc.identifier.citedreferenceLee, C.‐Y., Camargo, S. J., Vitart, F., Sobel, A. H., & Tippett, M. K. ( 2018 ). Sub‐seasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Weather Forecasting, 33. https://doi.org/10.1175/waf-d-17-0165.1
dc.identifier.citedreferenceLee, H.‐J., & Seo, K.‐H. ( 2019 ). Impact of the Madden‐Julian oscillation on Antarctic sea ice and its dynamical mechanism. Scientific Reports, 9, 10761. https://doi.org/10.1038/s41598-019-47150-3
dc.identifier.citedreferenceLee, J. C. K., & Klingaman, N. P. ( 2018 ). The effect of the quasi‐biennial oscillation on the Madden‐Julian oscillation in the Met Office Unified Model Global Ocean Mixed Layer configuration. Atmospheric Science Letters, 19, e816. https://doi.org/10.1002/asl.816
dc.identifier.citedreferenceLee, J.‐E., Lintner, B. R., Neelin, J. D., Jiang, X., Gentine, P., Boyce, C. K., Fisher, J. B., Perron, J. T., Kubar, T. L., Lee, J., & Worden, J. ( 2012 ). Reduction of tropical land region precipitation variability via transpiration. Geophysical Research Letters, 39, L19704. https://doi.org/10.1029/2012GL053417
dc.identifier.citedreferenceLee, M. I., Kang, I. S., Kim, J. K., & Mapes, B. E. ( 2001 ). Influence of cloud‐radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. Journal of Geophysical Research, 106, 14,219 – 14,233.
dc.identifier.citedreferenceLee, M. I., Kang, I. S., & Mapes, B. E. ( 2003 ). Impacts of cumulus convection parameterization on aqua‐planet AGCM simulations of tropical intraseasonal variability. Journal of the Meteorological Society of Japan, 81, 963 – 992.
dc.identifier.citedreferenceLee, S., Gong, T., Johnson, N., Feldstein, S. B., & Pollard, D. ( 2011 ). On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. Journal of Climate, 24, 4350 – 4367. https://doi.org/10.1175/2011jcli4003.1
dc.identifier.citedreferenceLee, S.‐H., & Seo, K.‐H. ( 2011 ). A multi‐scale analysis of the interdecadal change in the Madden‐Julian Oscillation. Atmosphere, 21.
dc.identifier.citedreferenceLeutbecher, M., Lock, S.‐J., Ollinaho, P., Lang, S. T. K., Balsamo, G., Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart, S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N., & Weisheimer, A. ( 2017 ). Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 143, 2315 – 2339. https://doi.org/10.1002/qj.3094
dc.identifier.citedreferenceLi, K.‐F., Tian, B., Waliser, D. E., & Yung, Y. L. ( 2010 ). Tropical mid‐tropospheric CO 2 variability driven by the Madden‐Julian oscillation. Proceedings of the National Academy of Sciences, 107, 19,171 – 19,175. https://doi.org/10.1073/pnas.1008222107
dc.identifier.citedreferenceLi, Y., & Carbone, R. E. ( 2012 ). Excitation of rainfall over the tropical western Pacific. Journal of the Atmospheric Sciences, 69, 2983 – 2994. https://doi.org/10.1175/jas-d-11-0245.1
dc.identifier.citedreferenceLi, Y., Han, W., Shinoda, T., Wang, C., Lien, R.‐C., Moum, J. N., & Wang, J.‐W. ( 2013 ). Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden‐Julian Oscillations. Journal of Geophysical Research: Oceans, 118, 4945 – 4964. https://doi.org/10.1002/jgrc.20395
dc.identifier.citedreferenceLiebmann, B., & Hartmann, D. L. ( 1984 ). An observational study of tropical‐midlatitude interaction on intraseasonal time scales during winter. Journal of the Atmospheric Sciences, 41, 3333 – 3350.
dc.identifier.citedreferenceLiebmann, B., Hendon, H. H., & Glick, J. D. ( 1994 ). The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden‐Julian Oscillation. Journal of the Meteorological Society of Japan, 72, 401 – 412.
dc.identifier.citedreferenceLiebmann, B., Hendon, H. H., & Glick, J. D. ( 1997 ). On the generation of two‐day convective disturbances across the western equatorial Pacific. Journal of the Meteorological Society of Japan, 75, 939 – 946.
dc.identifier.citedreferenceLiess, S., & Geller, M. A. ( 2012 ). On the relationship between QBO and distribution of tropical deep convection. Journal of Geophysical Research, 117, D03108. https://doi.org/10.1029/2011JD016317
dc.identifier.citedreferenceLim, Y., Son, S.‐W., & Kim, D. ( 2018 ). MJO prediction skill of the subseasonal‐to‐seasonal prediction models. Journal of Climate, 31, 4075 – 4094. https://doi.org/10.1175/JCLI-D-17-0545.1
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 2000 ). Modulation of eastern North Pacific hurricanes by the Madden‐Julian Oscillation. Journal of Climate, 13, 1451 – 1460.
dc.identifier.citedreferenceLim, Y., Son, S.‐W., Marshall, A. G., Hendon, H. H., & Seo, K.‐H. ( 2019 ). Influence of the QBO on MJO prediction skill in the subseasonal‐to‐seasonal prediction models. Climate Dynamics, 53, 1681 – 1695. https://doi.org/10.1007/s00382-019-04719-y
dc.identifier.citedreferenceLimpasuvan, V., & Hartmann, D. L. ( 1999 ). Eddies and the annular modes of climate variability. Geophysical Research Letters, 26, 3133 – 3136. https://doi.org/10.1029/1999GL010478
dc.identifier.citedreferenceLin, H. ( 2018 ). Predicting the dominant patterns of subseasonal variability of wintertime surface air temperature in extratropical Northern Hemisphere. Geophysical Research Letters, 45, 4381 – 4389. https://doi.org/10.1029/2018GL077509
dc.identifier.citedreferenceLin, H. ( 2020 ). Subseasonal forecast skill over the northern polar region in boreal winter. Journal of Climate, 33, 1935 – 1951. https://doi.org/10.1175/jcli-d-19-0408.1
dc.identifier.citedreferenceLin, H., & Brunet, G. ( 2009 ). The influence of the Madden‐Julian Oscillation on Canadian wintertime surface air temperature. Monthly Weather Review, 137, 2250 – 2262. https://doi.org/10.1175/2009mwr2831.1
dc.identifier.citedreferenceLin, H., & Brunet, G. ( 2011 ). Impact of the North Atlantic Oscillation on the forecast skill of the Madden‐Julian Oscillation. Geophysical Research Letters, 38, L02802. https://doi.org/10.1029/2010GL046131
dc.identifier.citedreferenceLin, H., & Brunet, G. ( 2018 ). Extratropical response to the MJO: Nonlinearity and sensitivity to the initial state. Journal of the Atmospheric Sciences, 75, 219 – 234. https://doi.org/10.1175/jas-d-17-0189.1
dc.identifier.citedreferenceLin, H., Brunet, G., & Derome, J. ( 2007 ). Intraseasonal variability in a dry atmospheric model. Journal of the Atmospheric Sciences, 64, 2422 – 2441. https://doi.org/10.1175/JAS3955.1
dc.identifier.citedreferenceLin, H., Brunet, G., & Derome, J. ( 2009 ). An observed connection between the North Atlantic Oscillation and the Madden‐Julian Oscillation. Journal of Climate, 22, 364 – 380. https://doi.org/10.1175/2008jcli2515.1
dc.identifier.citedreferenceLin, H., Brunet, G., & Mo, R. ( 2010 ). Impact of the Madden‐Julian Oscillation on wintertime precipitation in Canada. Monthly Weather Review, 138, 3822 – 3839. https://doi.org/10.1175/2010MWR3363.1
dc.identifier.citedreferenceLin, H., Brunet, G., & Yu, B. ( 2015 ). Interannual variability of the Madden‐Julian Oscillation and its impact on the North Atlantic Oscillation in the boreal winter. Geophysical Research Letters, 42, 5571 – 5576. https://doi.org/10.1002/2015GL064547
dc.identifier.citedreferenceLin, H., Frederiksen, J. S., Straus, D. M., & Stan, C. ( 2019 ). Tropical‐extratropical interactions and teleconnections. Chapter 7. In A. W. Robertson & F. Vitart (Eds.), Sub‐seasonal to seasonal prediction: The gap between weather and climate forecasting (pp. 143 – 164 ). Amsterdam, The Netherlands: Elsevier.
dc.identifier.citedreferenceLin, H., Mo, R., Vitart, F., & Stan, C. ( 2019 ). Eastern Canada flooding 2017 and its subseasonal predictions. Atmosphere‐Ocean, 57, 195 – 207. https://doi.org/10.1080/07055900.2018.1547679
dc.identifier.citedreferenceLin, J., Mapes, B., Zhang, M., & Newman, M. ( 2004 ). Stratiform precipitation, vertical heating profiles, and the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 61, 296 – 309.
dc.identifier.citedreferenceLin, J.‐L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Del Genio, A., Donner, L. J., Emori, S., Gueremy, J.‐F., Hourdin, F., Rasch, P. J., Roeckner, E., & Scinocca, J. F. ( 2006 ). Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. Journal of Climate, 19, 2665 – 2690.
dc.identifier.citedreferenceLin, J.‐L., Lee, M.‐I., Kim, D., Kang, I.‐S., & Frierson, D. M. W. ( 2008 ). The impacts of convective parameterization and moisture triggering on AGCM‐simulated convectively coupled equatorial waves. Journal of Climate, 21, 883 – 909. https://doi.org/10.1175/2007jcli1790.1
dc.identifier.citedreferenceLin, J. L., & Mapes, B. E. ( 2004 ). Radiation budget of the tropical intraseasonal oscillation. Journal of the Atmospheric Sciences, 61, 2050 – 2062.
dc.identifier.citedreferenceLin, J. W.‐B., & Neelin, J. D. ( 2003 ). Toward stochastic deep convective parameterization in general circulation models. Geophysical Research Letters, 30 ( 4 ), 1162. https://doi.org/10.1029/2002GL016203
dc.identifier.citedreferenceLin, X., & Johnson, R. H. ( 1996 ). Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. Journal of the Atmospheric Sciences, 53, 695 – 715.
dc.identifier.citedreferenceLing, J., Li, C., & Jia, X. ( 2009 ). Impacts of cumulus momentum transport on MJO simulation. Advances in Atmospheric Sciences, 26, 864 – 876. https://doi.org/10.1007/s00376-009-8016-8
dc.identifier.citedreferenceLing, J., & Zhang, C. ( 2011 ). Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. Journal of Climate, 24, 825 – 842. https://doi.org/10.1175/2010jcli3826.1
dc.identifier.citedreferenceLing, J., Zhang, C., Joyce, R., Xie, P. P., & Chen, G. ( 2019 ). Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the maritime continent. Geophysical Research Letters, 46, 3001 – 3011. https://doi.org/10.1029/2019GL081962
dc.identifier.citedreferenceLiu, C., Tian, B., Li, K.‐F., Manney, G. L., Livesey, N. J., Yung, Y. L., & Waliser, D. E. ( 2014 ). Northern Hemisphere mid‐winter vortex‐displacement and vortex‐split stratospheric sudden warmings: Influence of the Madden‐Julian Oscillation and Quasi‐Biennial Oscillation. Journal of Geophysical Research: Atmospheres, 119, 12,599 – 12,620. https://doi.org/10.1002/2014JD021876
dc.identifier.citedreferenceLiu, P., Li, T., Wang, B., Zhang, M., Luo, J.‐j., Masumoto, Y., Wang, X., & Roeckner, E. ( 2013 ). MJO change with A1B global warming estimated by the 40‐km ECHAM5. Climate Dynamics, 41, 1009 – 1023. https://doi.org/10.1007/s00382-012-1532-8
dc.identifier.citedreferenceLiu, P., Satoh, M., Wang, B., Fudeyasu, H., Nasuno, T., Li, T., Miura, H., Taniguchi, H., Masunaga, H., Fu, X., & Annamalai, H. ( 2009 ). An MJO simulated by the NICAM at 14‐ and 7‐km resolutions. Monthly Weather Review, 137, 3254 – 3268. https://doi.org/10.1175/2009mwr2965.1
dc.identifier.citedreferenceLiu, X., Wu, T., Yang, S., Li, T., Jie, W., Zhang, L., Wang, Z., Liang, X., Li, Q., Cheng, Y., Ren, H., Fang, Y., & Nie, S. ( 2017 ). MJO prediction using the sub‐seasonal to seasonal forecast model of Beijing Climate Center. Climate Dynamics, 48, 3283 – 3307. https://doi.org/10.1007/s00382-016-3264-7
dc.identifier.citedreferenceLong, C. N., McFarlane, S. A., Genio, A. D., Minnis, P., Ackerman, T. P., Mather, J., Comstock, J., Mace, G. G., Jensen, M., & Jakob, C. ( 2013 ). ARM research in the equatorial western Pacific: A decade and counting. Bulletin of the American Meteorological Society, 94, 695 – 708. https://doi.org/10.1175/BAMS-D-11-00137.1
dc.identifier.citedreferenceLopez, H., Kirtman, B. P., Tziperman, E., & Gebbie, G. ( 2013 ). Impact of interactive westerly wind bursts on CCSM3. Dynamics of Atmospheres and Oceans, 59, 24 – 51. https://doi.org/10.1016/j.dynatmoce.2012.11.001
dc.identifier.citedreferenceLorenz, D. J., & Hartmann, D. L. ( 2006 ). The effect of the MJO on the North American Monsoon. Journal of Climate, 19, 333 – 343.
dc.identifier.citedreferenceLove, B. S., Matthews, A. J., & Lister, G. M. S. ( 2011 ). The diurnal cycle of precipitation over the Maritime Continent in a high‐resolution atmospheric model. Quarterly Journal of the Royal Meteorological Society, 137, 934 – 947. https://doi.org/10.1002/qj.809
dc.identifier.citedreferenceLuo, Z. J., Liu, G. Y., & Stephens, G. L. ( 2010 ). Use of A‐Train data to estimate convective buoyancy and entrainment rate. Geophysical Research Letters, 37, L09804. https://doi.org/10.1029/2010GL042904
dc.identifier.citedreferenceMa, D., & Kuang, Z. ( 2016 ). A mechanism‐denial study on the Madden‐Julian Oscillation with reduced interference from mean state changes. Geophysical Research Letters, 43, 2989 – 2997. https://doi.org/10.1002/2016GL067702
dc.identifier.citedreferenceMa, D., & Kuang, Z. M. ( 2011 ). Modulation of radiative heating by the Madden‐Julian Oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophysical Research Letters, 38, L21813. https://doi.org/10.1029/2011GL049734
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1971 ). Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. Journal of the Atmospheric Sciences, 28, 702. &.
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1972 ). Description of global‐scale circulation cells in tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29, 1109.
dc.identifier.citedreferenceMadden, R. A., & Julian, P. R. ( 1994 ). Observations of the 40–50‐day tropical oscillation: A review. Monthly Weather Review, 122, 814 – 837.
dc.identifier.citedreferenceMajda, A. J., & Biello, J. A. ( 2004 ). A multiscale model for tropical intraseasonal oscillations. Proceedings of the National Academy of Sciences, 101, 4736 – 4741.
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2009 ). A simple dynamical model with features of convective momentum transport. Journal of the Atmospheric Sciences, 66, 373 – 392.
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2011 ). Nonlinear dynamics and regional variations in the MJO Skeleton. Journal of the Atmospheric Sciences, 68, 3053 – 3071. https://doi.org/10.1175/JAS-D-11-053.1
dc.identifier.citedreferenceMajda, A. J., & Stechmann, S. N. ( 2012 ). Multi‐scale theories for the MJO. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system (Ch. 17, pp. 549 – 568 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceMajda, A. J., & Yang, Q. ( 2016 ). A multiscale model for the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 73, 579 – 604. https://doi.org/10.1175/JAS-D-15-0158.1
dc.identifier.citedreferenceMaloney, E. D. ( 2009 ). The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. Journal of Climate, 22, 711 – 729.
dc.identifier.citedreferenceMaloney, E. D., Adames, Á. F., & Bui, H. X. ( 2019 ). Madden‐Julian oscillation changes under anthropogenic warming. Nature Climate Change, 9, 26 – 33. https://doi.org/10.1038/s41558-018-0331-6
dc.identifier.citedreferenceMaloney, E. D., & Dickinson, M. J. ( 2003 ). The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic‐scale disturbances. Journal of the Atmospheric Sciences, 60 ( 17 ), 2153 – 2168. https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2
dc.identifier.citedreferenceMaloney, E. D., Gettelman, A., Ming, Y., Neelin, J. D., Barrie, D., Mariotti, A., Chen, C. C., Coleman, D. R. B., Kuo, Y.‐H., Singh, B., Annamalai, H., Berg, A., Booth, J. F., Camargo, S. J., Dai, A., Gonzalez, A., Hafner, J., Jiang, X., Jing, X., Kim, D., Kumar, A., Moon, Y., Naud, C. M., Sobel, A. H., Suzuki, K., Wang, F., Wang, J., Wing, A. A., Xu, X., & Zhao, M. ( 2019 ). Process‐oriented evaluation of climate and weather forecasting models. Bulletin of the American Meteorological Society, 100, 1665 – 1686. https://doi.org/10.1175/BAMS-D-18-0042.1
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 1998 ). Frictional moisture convergence in a composite life cycle of the Madden‐Julian Oscillation. Journal of Climate, 11, 2387 – 2403.
dc.identifier.citedreferenceMaloney, E. D., & Hartmann, D. L. ( 2001 ). The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. Journal of Climate, 14, 2015 – 2034.
dc.identifier.citedreferenceMaloney, E. D., & Sobel, A. H. ( 2004 ). Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. Journal of Climate, 17, 4368 – 4386.
dc.identifier.citedreferenceMaloney, E. D., Sobel, A. H., & Hannah, W. M. ( 2010 ). Intraseasonal variability in an aquaplanet general circulation model. Journal of Advances in Modeling Earth Systems, 2, 5. https://doi.org/10.3894/james.2010.2.5
dc.identifier.citedreferenceMaloney, E. D., & Xie, S.‐P. ( 2013 ). Sensitivity of tropical intraseasonal variability to the pattern of climate warming. Journal of Advances in Modeling Earth Systems, 5, 32 – 47. https://doi.org/10.1029/2012MS000171
dc.identifier.citedreferenceMapes, B., & Neale, R. ( 2011a ). Parameterizing convective organization to escape the entrainment dilemma. Journal of Advances in Modeling Earth Systems, 3, M06004. https://doi.org/10.1029/2011MS000042
dc.identifier.citedreferenceMapes, B., Tulich, S., Lin, J., & Zuidema, P. ( 2006 ). The mesoscale convection life cycle: Building block or prototype for large‐scale tropical waves? Dynamics of Atmospheres and Oceans, 42, 3 – 29. https://doi.org/10.1016/J.Dynatmoce.2006.03.003
dc.identifier.citedreferenceMapes, B. E. ( 2000 ). Convective inhibition, subgrid‐scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57, 1515 – 1535.
dc.identifier.citedreferenceMapes, B. E., & Neale, R. B. ( 2011b ). Parameterizing convective organization. Journal of Advances in Modeling Earth Systems, 3, M06004. https://doi.org/10.1029/2011MS000042
dc.identifier.citedreferenceMarshall, A. G., Alves, O., & Hendon, H. H. ( 2008 ). An enhanced moisture convergence‐evaporation feedback mechanism for MJO air‐sea interaction. Journal of the Atmospheric Sciences, 65, 970 – 986. https://doi.org/10.1175/2007jas2313.1
dc.identifier.citedreferenceMarshall, A. G., Hendon, H. H., Son, S.‐W., & Lim, Y. ( 2017 ). Impact of the quasi‐biennial oscillation on predictability of the Madden‐Julian oscillation. Climate Dynamics, 1 – 13. https://doi.org/10.1007/s00382-016-3392-0
dc.identifier.citedreferenceMarshall, A. G., Hendon, H. H., & Wang, G. ( 2016 ). On the role of anomalous ocean surface temperatures for promoting the record Madden‐Julian Oscillation in March 2015. Geophysical Research Letters, 43, 472 – 481. https://doi.org/10.1002/2015GL066984
dc.identifier.citedreferenceMarshall, A. G., Hudson, D., Wheeler, M. C., Alves, O., Hendon, H. H., Pook, M. J., & Risbey, J. S. ( 2014 ). Intra‐seasonal drivers of extreme heat over Australia in observations and POAMA‐2. Climate Dynamics, 43, 1915 – 1937. https://doi.org/10.1007/s00382-013-2016-1
dc.identifier.citedreferenceMartin, Z., Wang, S., Nie, J., & Sobel, A. ( 2019 ). The impact of the QBO on MJO convection in cloud‐resolving simulations. Journal of the Atmospheric Sciences, 76, 669 – 688. https://doi.org/10.1175/jas-d-18-0179.1
dc.identifier.citedreferenceMasunaga, H., L’Ecuyer, T. S., & Kummerow, C. D. ( 2006 ). The Madden‐Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). Journal of the Atmospheric Sciences, 63, 2777 – 2794.
dc.identifier.citedreferenceMatsuno, T. ( 1966 ). Quasi‐geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan, 44, 25 – 42.
dc.identifier.citedreferenceMatthews, A. J., Baranowski, D. B., Heywood, K. J., Flatau, P. J., & Schmidtko, S. ( 2014 ). The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. Journal of Climate, 27, 9101 – 9122. https://doi.org/10.1175/jcli-d-14-00222.1
dc.identifier.citedreferenceMatthews, A. J., Hoskins, B. J., & Masutani, M. ( 2004 ). The global response to tropical heating in the Madden‐Julian oscillation during the northern winter. Quarterly Journal of the Royal Meteorological Society, 130, 1991 – 2011. https://doi.org/10.1256/qj.02.123
dc.identifier.citedreferenceMatthews, A. J., & Kiladis, G. N. ( 1999 ). The tropical‐extratropical interaction between high‐frequency transients and the Madden‐Julian Oscillation. Monthly Weather Review, 127, 661 – 677. https://doi.org/10.1175/1520-0493
dc.identifier.citedreferenceMcPhaden, M. J. ( 1999 ). Genesis and evolution of the 1997–98 El Niño. Science, 283, 950 – 954.
dc.identifier.citedreferenceMcPhaden, M. J. ( 2004 ). Evolution of the 2002/03 El Niño*. Bulletin of the American Meteorological Society, 85, 677 – 696. https://doi.org/10.1175/bams-85-5-677
dc.identifier.citedreferenceMechem, D. B., Chen, S. S., & Houze, R. A. Jr. ( 2006 ). Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quarterly Journal of the Royal Meteorological Society, 132, 709 – 736. https://doi.org/10.1256/qj.04.141
dc.identifier.citedreferenceMiura, H., Satoh, M., Nasuno, T., Noda, A. T., & Oouchi, K. ( 2007 ). A Madden‐Julian Oscillation event realistically simulated by a global cloud‐resolving model. Science, 318, 1763 – 1765. https://doi.org/10.1126/Science.1148443
dc.identifier.citedreferenceMiyakawa, T., & Kikuchi, K. ( 2018 ). CINDY2011/DYNAMO Madden‐Julian oscillation successfully reproduced in global cloud/cloud‐system resolving simulations despite weak tropical wavelet power. Scientific Reports, 8, 11664. https://doi.org/10.1038/s41598-018-29931-4
dc.identifier.citedreferenceMiyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T., Yamada, Y., Kodama, C., Kimoto, M., & Yoneyama, K. ( 2014 ). Madden‐Julian Oscillation prediction skill of a new‐generation global model demonstrated using a supercomputer. Nature Communications, 5. https://doi.org/10.1038/ncomms4769
dc.identifier.citedreferenceMo, K. C., & Higgins, R. W. ( 1998 ). Tropical convection and precipitation regimes in the western United States. Journal of Climate, 11, 2404 – 2423.
dc.identifier.citedreferenceMo, K. C., Jones, C., & Nogues‐Paegle, J. ( 2012 ). Pan‐America. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system (pp. 111 – 145 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceMoncrieff, M. W. ( 1992 ). Organized convective systems: Archetypal dynamic‐models, mass and momentum flux theory, and parametrization. Quarterly Journal of the Royal Meteorological Society, 118, 819 – 850.
dc.identifier.citedreferenceMoncrieff, M. W. ( 2019 ). Toward a dynamical foundation for organized convection parameterization in GCMs. Geophysical Research Letters, 46, 14,103 – 14,108. https://doi.org/10.1029/2019GL085316
dc.identifier.citedreferenceMoncrieff, M. W., & Klinker, E. ( 1997 ). Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case‐study. Quarterly Journal of the Royal Meteorological Society, 123, 805 – 827. https://doi.org/10.1002/qj.49712354002
dc.identifier.citedreferenceMoncrieff, M. W., Liu, C., & Bogenschutz, P. ( 2017 ). Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. Journal of Atmospheric Science, 74, 1363 – 1380. https://doi.org/10.1175/jas-d-16-0166.1
dc.identifier.citedreferenceMoncrieff, M. W., Waliser, D. E., Miller, M. J., Shapiro, M. A., Asrar, G. R., & Caughey, J. ( 2012 ). Multiscale convective organization and the YOTC virtual global field campaign. Bulletin of the American Meteorological Society, 93, 1171 – 1187. https://doi.org/10.1175/bams-d-11-00233.1
dc.identifier.citedreferenceMonier, E., Weare, B. C., & Gustafson, W. I. ( 2010 ). The Madden‐Julian oscillation wind‐convection coupling and the role of moisture processes in the MM5 model. Climate Dynamics, 35, 435 – 447. https://doi.org/10.1007/s00382-009-0626-4
dc.identifier.citedreferenceMori, M., & Watanabe, M. ( 2008 ). The growth and triggering mechanisms of the PNA: A MJO‐PNA coherence. Journal of the Meteorological Society of Japan. Ser. II, 86, 213 – 236. https://doi.org/10.2151/jmsj.86.213
dc.identifier.citedreferenceMori, S., Jun‐Ichi, H., Tauhid, Y. I., Yamanaka, M. D., Okamoto, N., Murata, F., Sakurai, N., Hashiguchi, H., & Sribimawati, T. ( 2004 ). Diurnal land‐sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Monthly Weather Review, 132, 2021 – 2039. https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2
dc.identifier.citedreferenceMorita, J., Takayabu, Y. N., Shige, S., & Kodama, Y. ( 2006 ). Analysis of rainfall characteristics of the Madden‐Julian oscillation using TRMM satellite data. Dynamics of Atmospheres and Oceans, 42, 107 – 126. https://doi.org/10.1016/j.dynatmoce.2006.02.002
dc.identifier.citedreferenceMoteki, Q., Katsumata, M., Yoneyama, K., Ando, K., & Hasegawa, T. ( 2018 ). Drastic thickening of the barrier layer off the western coast of Sumatra due to the Madden‐Julian oscillation passage during the pre‐years of the Maritime Continent campaign. Progress in Earth and Planetary Science, 5, 35. https://doi.org/10.1186/s40645-018-0190-9
dc.identifier.citedreferenceMoulin, A. J., Moum, J. N., & Shroyer, E. L. ( 2018 ). Evolution of turbulence in the diurnal warm layer. Journal of Physical Oceanography, 48, 383 – 396. https://doi.org/10.1175/jpo-d-17-0170.1
dc.identifier.citedreferenceMoum, J. N., de Szoeke, S. P., Smyth, W. D., Edson, J. B., DeWitt, H. L., Moulin, A. J., Thompson, E. J., Zappa, C. J., Rutledge, S. A., Johnson, R. H., & Fairall, C. W. ( 2014 ). Air‐sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-12-00225.1
dc.identifier.citedreferenceMoum, J. N., Pujiana, K., Lien, R.‐C., & Smyth, W. D. ( 2016 ). Ocean feedback to pulses of the Madden‐Julian Oscillation in the equatorial Indian Ocean. Nature Communications, 7, 13203. https://doi.org/10.1038/ncomms13203
dc.identifier.citedreferenceMundhenk, B. D., Barnes, E. A., Maloney, E. D., & Baggett, C. F. ( 2018 ). Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden‐Julian oscillation and quasi‐biennial oscillation. npj Climate and Atmospheric Science, 1, 20177. https://doi.org/10.1038/s41612-017-0008-2
dc.identifier.citedreferenceMuraleedharan, P. M., Prasanna Kumar, S., Kumar, K. M., Sijikumar, S., Sivakumar, K. U., & Mathew, T. ( 2015 ). Observational evidence of mixed Rossby gravity waves at the central equatorial Indian Ocean. Meteorology and Atmospheric Physics, 127, 407 – 417. https://doi.org/10.1007/s00703-015-0376-2
dc.identifier.citedreferenceNagura, M., & McPhaden, M. J. ( 2012 ). The dynamics of wind‐driven intraseasonal variability in the equatorial Indian Ocean. Journal of Geophysical Research, 117, C02001. https://doi.org/10.1029/2011JC007405
dc.identifier.citedreferenceNakazawa, T. ( 1988 ). Tropical super clusters within intraseasonal variations over the western Pacific. Journal of the Meteorological Society of Japan, 66, 823 – 839.
dc.identifier.citedreferenceNAS ( 2010 ). Assessment of intraseasonal to interannual climate prediction and predictability (p. 192 ). Washington, D.C. ISBN‐0‐309‐15184‐8: The National Academies Press.
dc.identifier.citedreferenceNASEM ( 2016 ). Next generation Earth system prediction: Strategies for subseasonal to seasonal forecasts (p. 290 ). Washington DC, ISBN‐978‐0‐309‐38880‐1: National Research Council, National Academy of Sciences.
dc.identifier.citedreferencePeatman, S. C., Matthews, A. J., & Stevens, D. P. ( 2015 ). Propagation of the Madden‐Julian Oscillation and scale interaction with the diurnal cycle in a high‐resolution GCM. Climate Dynamics, 45, 2901 – 2918. https://doi.org/10.1007/s00382-015-2513-5
dc.identifier.citedreferenceNasuno, T., Miura, H., Satoh, M., Noda, A. T., & Oouchi, K. ( 2009 ). Multi‐scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. Journal of the Meteorological Society of Japan. Series II, 87, 335 – 345. https://doi.org/10.2151/jmsj.87.335
dc.identifier.citedreferenceNaumann, G., & Vargas, W. M. ( 2010 ). Joint diagnostic of the surface air temperature in southern South America and the Madden‐Julian Oscillation. Weather Forecasting, 25, 1275 – 1280. https://doi.org/10.1175/2010waf2222418.1
dc.identifier.citedreferenceNeale, R., & Slingo, J. ( 2003 ). The Maritime Continent and its role in the global climate: A GCM study. Journal of Climate, 16, 834 – 848. https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2
dc.identifier.citedreferenceNeelin, J. D., & Held, I. M. ( 1987 ). Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115, 3 – 12.
dc.identifier.citedreferenceNeelin, J. D., Held, I. M., & Cook, K. H. ( 1987 ). Evaporation‐wind feedback and low‐frequency variability in the tropical atmosphere. Journal of the Atmospheric Sciences, 44, 2341 – 2348.
dc.identifier.citedreferenceNeelin, J. D., & Yu, J. Y. ( 1994 ). Modes of tropical variability under convective adjustment and the Madden‐Julian Oscillation.1. Analytical theory. Journal of the Atmospheric Sciences, 51, 1876 – 1894.
dc.identifier.citedreferenceNeena, J. M., Lee, J. Y., Waliser, D., Wang, B., & Jiang, X. ( 2014 ). Predictability of the Madden‐Julian Oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). Journal of Climate, 27, 4531 – 4543. https://doi.org/10.1175/JCLI-D-13-00624.1
dc.identifier.citedreferenceNesbitt, S. W., & Zipser, E. J. ( 2003 ). The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16, 1456 – 1475. https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2
dc.identifier.citedreferenceNie, J., & Sobel, A. H. ( 2015 ). Responses of tropical deep convection to the QBO: Cloud‐resolving simulations. Journal of the Atmospheric Sciences, 72, 3625 – 3638. https://doi.org/10.1175/JAS-D-15-0035.1
dc.identifier.citedreferenceNishimoto, E., & Yoden, S. ( 2017 ). Influence of the stratospheric quasi‐biennial oscillation on the Madden‐Julian Oscillation during austral summer. Journal of the Atmospheric Sciences, 74, 1105 – 1125. https://doi.org/10.1175/JAS-D-16-0205.1
dc.identifier.citedreferenceO’Gorman, P. A., & Dwyer, J. G. ( 2018 ). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, end extreme Events. Journal of Advances in Modeling Earth Systems, 10, 2548 – 2563. https://doi.org/10.1029/2018ms001351
dc.identifier.citedreferenceOh, J.‐H., Jiang, X., Waliser, D. E., Moncrieff, M. W., & Johnson, R. H. ( 2015 ). Convective momentum transport associated with the Madden‐Julian Oscillation based on a reanalysis dataset. Journal of Climate, 28, 5763 – 5782. https://doi.org/10.1175/JCLI-D-14-00570.1
dc.identifier.citedreferenceOh, J.‐H., Jiang, X., Waliser, D. E., Moncrieff, M. W., Johnson, R. H., & Ciesielski, P. ( 2015 ). A momentum budget analysis of westerly wind events associated with the Madden‐Julian Oscillation during DYNAMO. Journal of the Atmospheric Sciences, 72, 3780 – 3799. https://doi.org/10.1175/JAS-D-15-0044.1
dc.identifier.citedreferenceOh, J.‐H., Kim, B.‐M., Kim, K.‐Y., Song, H.‐J., & Lim, G.‐H. ( 2013 ). The impact of the diurnal cycle on the MJO over the Maritime Continent: a modeling study assimilating TRMM rain rate into global analysis. Climate Dynamics, 40, 893 – 911. https://doi.org/10.1007/s00382-012-1419-8
dc.identifier.citedreferenceOh, J. H., Kim, K. Y., & Lim, G. H. ( 2012 ). Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dynamics, 38, 1167 – 1180. https://doi.org/10.1007/s00382-011-1237-4
dc.identifier.citedreferenceOliver, E. C. J., & Thompson, K. R. ( 2012 ). A reconstruction of Madden‐Julian Oscillation variability from 1905 to 2008. Journal of Climate, 25, 1996 – 2019. https://doi.org/10.1175/jcli-d-11-00154.1
dc.identifier.citedreferencePalmer, T., Buizza, R., Doblas‐Reyes, F., Jung, T., Leutbecher, M., Shutts, G., Steinheimer, M., & Weisheimer, A. ( 2009 ). Stochastic parametrization and model uncertainty. Tech. Memo. 598, ECMWF, Reading, UK, edited.
dc.identifier.citedreferenceParishani, H., Pritchard, M. S., Bretherton, C. S., Wyant, M. C., & Khairoutdinov, M. ( 2017 ). Toward low‐cloud‐permitting cloud superparameterization with explicit boundary layer turbulence. Journal of Advances in Modeling Earth Systems, 9, 1542 – 1571. https://doi.org/10.1002/2017MS000968
dc.identifier.citedreferencePark, C. K., Straus, D. M., & Lau, K. M. ( 1990 ). An evaluation of the structure of tropical intraseasonal oscillations in 3 general‐circulation models. Journal of the Meteorological Society of Japan, 68, 403 – 417.
dc.identifier.citedreferencePark, S. ( 2014 ). A unified convection scheme (UNICON). Part I: Formulation. Journal of the Atmospheric Sciences, 71, 3902 – 3930. https://doi.org/10.1175/jas-d-13-0233.1
dc.identifier.citedreferencePark, T.‐W., Ho, C.‐H., Yang, S., & Jeong, J.‐H. ( 2010 ). Influences of Arctic Oscillation and Madden‐Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. Journal of Geophysical Research, 115, D23122. https://doi.org/10.1029/2010JD014794
dc.identifier.citedreferencePeatman, S. C., Matthews, A. J., & Stevens, D. P. ( 2014 ). Propagation of the Madden‐Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quarterly Journal of the Royal Meteorological Society, 140, 814 – 825. https://doi.org/10.1002/qj.2161
dc.identifier.citedreferencePegion, K., & Kirtman, B. P. ( 2008 ). The impact of air‐sea interactions on the simulation of tropical intraseasonal variability. Journal of Climate, 21, 6616 – 6635. https://doi.org/10.1175/2008jcli2180.1
dc.identifier.citedreferencePegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman, R., Bell, R., DelSole, T., Min, D., Zhu, Y., Li, W., Sinsky, E., Guan, H., Gottschalck, J., Metzger, E. J., Barton, N. P., Achuthavarier, D., Marshak, J., Koster, R. D., Lin, H., Gagnon, N., Bell, M., Tippett, M. K., Robertson, A. W., Sun, S., Benjamin, S. G., Green, B. W., Bleck, R., & Kim, H. ( 2019 ). The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bulletin of the American Meteorological Society, 100, 2043 – 2060. https://doi.org/10.1175/bams-d-18-0270.1
dc.identifier.citedreferencePei, S., Shinoda, T., Soloviev, A., & Lien, R.‐C. ( 2018 ). Upper ocean response to the atmospheric cold pools associated with the Madden‐Julian Oscillation. Geophysical Research Letters, 45, 5020 – 5029. https://doi.org/10.1029/2018GL077825
dc.identifier.citedreferencePetch, J., Waliser, D., Jiang, X., Xavier, P., & Woolnough, S. ( 2011 ). A global model inter‐comparison of the physical processes associated with the MJO, GEWEX News, August.
dc.identifier.citedreferencePeters, K., Crueger, T., Jakob, C., & Möbis, B. ( 2017 ). Improved MJO‐simulation in ECHAM6.3 by coupling a stochastic multicloud model to the convection scheme. Journal of Advances in Modeling Earth Systems, 9, 193 – 219. https://doi.org/10.1002/2016MS000809
dc.identifier.citedreferencePeters, O., & Neelin, J. D. ( 2006 ). Critical phenomena in atmospheric precipitation. Nature Physics, 2, 393 – 396.
dc.identifier.citedreferencePohl, B., & Matthews, A. J. ( 2007 ). Observed changes in the lifetime and amplitude of the Madden‐Julian Oscillation associated with interannual ENSO sea surface temperature anomalies. Journal of Climate, 20, 2659 – 2674. https://doi.org/10.1175/jcli4230.1
dc.identifier.citedreferencePowell, S. W., & Houze, R. A. ( 2013 ). The cloud population and onset of the Madden‐Julian Oscillation over the Indian Ocean during DYNAMO‐AMIE. Journal of Geophysical Research: Atmospheres, 118, 11,979 – 11,995. https://doi.org/10.1002/2013JD020421
dc.identifier.citedreferencePowell, S. W., & Houze, R. A. ( 2015 ). Effect of dry large‐scale vertical motions on initial MJO convective onset. Journal of Geophysical Research: Atmospheres, 120, 4783 – 4805. https://doi.org/10.1002/2014JD022961
dc.identifier.citedreferencePritchard, M. S., & Bretherton, C. S. ( 2014 ). Causal evidence that rotational moisture advection is critical to the superparameterized Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 71, 800 – 815. https://doi.org/10.1175/JAS-D-13-0119.1
dc.identifier.citedreferencePritchard, M. S., & Yang, D. ( 2016 ). Response of the superparameterized Madden‐Julian Oscillation to extreme climate and basic‐state variation challenges a moisture mode view. Journal of Climate, 29, 4995 – 5008. https://doi.org/10.1175/jcli-d-15-0790.1
dc.identifier.citedreferencePujiana, K., Moum, J. N., & Smyth, W. D. ( 2018 ). The role of turbulence in redistributing upper‐ocean heat, freshwater, and momentum in response to the MJO in the equatorial Indian Ocean. Journal of Physical Oceanography, 48, 197 – 220. https://doi.org/10.1175/jpo-d-17-0146.1
dc.identifier.citedreferencePujiana, K., Moum, J. N., Smyth, W. D., & Warner, S. J. ( 2015 ). Distinguishing ichthyogenic turbulence from geophysical turbulence. Journal of Geophysical Research: Oceans, 120, 3792 – 3804. https://doi.org/10.1002/2014JC010659
dc.identifier.citedreferencePuy, M., Vialard, J., Lengaigne, M., & Guilyardi, E. ( 2016 ). Modulation of equatorial Pacific westerly/easterly wind events by the Madden‐Julian oscillation and convectively‐coupled Rossby waves. Climate Dynamics, 46, 2155 – 2178. https://doi.org/10.1007/s00382-015-2695-x
dc.identifier.citedreferenceQian, J.‐H. ( 2008 ). Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of the Atmospheric Sciences, 65, 1428 – 1441. https://doi.org/10.1175/2007JAS2422.1
dc.identifier.citedreferenceRamage, C. S. ( 1968 ). role of a tropical “Maritime Continent” in the atmospheric circulation. Monthly Weather Review, 96, 365 – 370. https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2
dc.identifier.citedreferenceRandall, D., Khairoutdinov, M., Arakawa, A., & Grabowski, W. ( 2003 ). Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84, 1547 – 1564. https://doi.org/10.1175/BAMS-84-11-1547
dc.identifier.citedreferenceRao, S. A., & Yamagata, T. ( 2004 ). Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophysical Research Letters, 31, L19306. https://doi.org/10.1029/2004GL020842
dc.identifier.citedreferenceRashid, H. A., Hendon, H. H., Wheeler, M. C., & Alves, O. ( 2011 ). Prediction of the Madden‐Julian oscillation with the POAMA dynamical prediction system. Climate Dynamics, 36, 649 – 661. https://doi.org/10.1007/s00382-010-0754-x
dc.identifier.citedreferenceRasp, S., Pritchard, M. S., & Gentine, P. ( 2018 ). Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences, 115, 9684 – 9689. https://doi.org/10.1073/pnas.1810286115
dc.identifier.citedreferenceRauniyar, S. P., & Walsh, K. J. E. ( 2011 ). Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. Journal of Climate, 24, 325 – 348. https://doi.org/10.1175/2010JCLI3673.1
dc.identifier.citedreferenceRauniyar, S. P., & Walsh, K. J. E. ( 2013 ). Influence of ENSO on the diurnal cycle of rainfall over the Maritime Continent and Australia. Journal of Climate, 26, 1304 – 1321. https://doi.org/10.1175/jcli-d-12-00124.1
dc.identifier.citedreferenceRay, P., & Li, T. ( 2013 ). Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. Journal of the Atmospheric Sciences, 70, 876 – 893. https://doi.org/10.1175/jas-d-12-0153.1
dc.identifier.citedreferenceRay, P., & Zhang, C. ( 2010 ). A case study of the mechanics of extratropical influence on the initiation of the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 67, 515 – 528. https://doi.org/10.1175/2009jas3059.1
dc.identifier.citedreferenceRaymond, D. J. ( 1995 ). Regulation of moist convection over the West Pacific Warm Pool. Journal of the Atmospheric Sciences, 52, 3945 – 3959.
dc.identifier.citedreferenceRaymond, D. J. ( 2001 ). A new model of the Madden‐Julian oscillation. Journal of the Atmospheric Sciences, 58, 2807 – 2819.
dc.identifier.citedreferenceRaymond, D. J., & Fuchs, Ž. ( 2009 ). Moisture Modes and the Madden‐Julian Oscillation. Journal of Climate, 22, 3031 – 3046. https://doi.org/10.1175/2008jcli2739.1
dc.identifier.citedreferenceRaymond, D. J., Sessions, S., Sobel, A., & Fuchs, Z. ( 2009 ). The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1, 9. https://doi.org/10.3894/james.2009.1.9
dc.identifier.citedreferenceReed, R. J., Campbell, W. J., Rasmussen, L. A., & Rogers, D. G. ( 1961 ). Evidence of a downward‐propagating, annual wind reversal in the equatorial stratosphere. Journal of Geophysical Research, 66, 813 – 818. https://doi.org/10.1029/JZ066i003p00813
dc.identifier.citedreferenceRiley Dellaripa, E. M., & Maloney, E. ( 2015 ). Analysis of MJO wind‐flux feedbacks in the Indian Ocean using RAMA buoy observations. Journal of the Meteorological Society of Japan. https://doi.org/10.2151/jmsj.2015-021
dc.identifier.citedreferenceRiley, E. M., Mapes, B. E., & Tulich, S. N. ( 2011 ). Clouds associated with the Madden‐Julian Oscillation: A new perspective from CloudSat. Journal of the Atmospheric Sciences, 68, 3032 – 3051. https://doi.org/10.1175/JAS-D-11-030.1
dc.identifier.citedreferenceRostami, M., & Zeitlin, V. ( 2019 ). Eastward‐moving convection‐enhanced modons in shallow water in the equatorial tangent plane. Physics of Fluids, 31, 021701. https://doi.org/10.1063/1.5080415
dc.identifier.citedreferenceRoundy, P. E., MacRitchie, K., Asuma, J., & Melino, T. ( 2010 ). Modulation of the global atmospheric irculation by combined activity in the Madden‐Julian Oscillation and the El Niño‐Southern Oscillation during boreal winter. Journal of Climate, 23, 4045 – 4059. https://doi.org/10.1175/2010JCLI3446.1
dc.identifier.citedreferenceRowe, A. K., & Houze, R. A. ( 2015 ). Cloud organization and growth during the transition from suppressed to active MJO conditions. Journal of Geophysical Research: Atmospheres, 120, 10,324 – 10,350. https://doi.org/10.1002/2014JD022948
dc.identifier.citedreferenceRuppert, J. H., & Johnson, R. H. ( 2015 ). Diurnally modulated cumulus moistening in the pre‐onset stage of the Madden‐Julian Oscillation during DYNAMO. Journal of the Atmospheric Sciences. https://doi.org/10.1175/JAS-D-14-0218.1
dc.identifier.citedreferenceRushley, S. S., Kim, D., & Adames, Á. F. ( 2019 ). Changes in the MJO under greenhouse gas‐induced warming in CMIP5 models. Journal of Climate, 32, 803 – 821. https://doi.org/10.1175/jcli-d-18-0437.1
dc.identifier.citedreferenceRushley, S. S., Kim, D., Bretherton, C. S., & Ahn, M. S. ( 2018 ). Reexamining the nonlinear moisture‐precipitation relationship over the tropical oceans. Geophysical Research Letters, 45, 1133 – 1140. https://doi.org/10.1002/2017GL076296
dc.identifier.citedreferenceRydbeck, A. V., & Jensen, T. G. ( 2017 ). Oceanic impetus for convective onset of the Madden‐Julian Oscillation in the western Indian Ocean. Journal of Climate, 30, 4299 – 4316. https://doi.org/10.1175/jcli-d-16-0595.1
dc.identifier.citedreferenceSakaeda, N., Kiladis, G., & Dias, J. ( 2017 ). The diurnal cycle of tropical cloudiness and rainfall associated with the Madden‐Julian Oscillation. Journal of Climate, 30, 3999 – 4020. https://doi.org/10.1175/jcli-d-16-0788.1
dc.identifier.citedreferenceSalby, M. L., & Hendon, H. H. ( 1994 ). Intraseasonal behavior of clouds, temperature, and motion in the tropics. Journal of the Atmospheric Sciences, 51, 2207 – 2224.
dc.identifier.citedreferenceSalby, M. L., Hendon, H. H., & Garcia, R. R. ( 1994 ). Planetary‐scale circulations in the presence of climatological and wave‐induced heating. Journal of the Atmospheric Sciences, 51, 3365 – 3365.
dc.identifier.citedreferenceSardeshmukh, P. D., & Hoskins, B. J. ( 1988 ). The generation of global rotational flow by steady idealized tropical divergence. Journal of the Atmospheric Sciences, 45, 1228 – 1251. https://doi.org/10.1175/1520-0469(1988)045<1228:Tgogrf>2.0.Co;2
dc.identifier.citedreferenceSchneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schär, C., & Siebesma, A. P. ( 2017 ). Climate goals and computing the future of clouds. Nature Climate Change, 7, 3 – 5. https://doi.org/10.1038/nclimate3190
dc.identifier.citedreferenceSchubert, J. J., Stevens, B., & Crueger, T. ( 2013 ). Madden‐Julian oscillation as simulated by the MPI Earth System Model: Over the last and into the next millennium. Journal of Advances in Modeling Earth Systems, 5, 71 – 84. https://doi.org/10.1029/2012MS000180
dc.identifier.citedreferenceSchwartz, M. J., Waliser, D. E., Tian, B., Wu, D. L., Jiang, J. H., & Read, W. G. ( 2008 ). Characterization of MJO‐related upper tropospheric hydrological processes using MLS. Geophysical Research Letters, 35, L08812. https://doi.org/10.1029/2008GL033675
dc.identifier.citedreferenceSobel, A. H., Nilsson, J., & Polvani, L. M. ( 2001 ). The weak temperature gradient approximation and balanced tropical moisture waves. Journal of the Atmospheric Sciences, 58, 3650 – 3665.
dc.identifier.citedreferenceSeo, H., Subramanian, A. C., Miller, A. J., & Cavanaugh, N. R. ( 2014 ). Coupled impacts of the diurnal cycle of sea surface temperature on the Madden‐Julian Oscillation. Journal of Climate, 27, 8422 – 8443. https://doi.org/10.1175/jcli-d-14-00141.1
dc.identifier.citedreferenceSeo, K. H., & Kim, K. Y. ( 2003 ). Propagation and initiation mechanisms of the Madden‐Julian oscillation. Journal of Geophysical Research, 108 ( D13 ), 4384. https://doi.org/10.1029/2002JD002876
dc.identifier.citedreferenceSeo, K.‐H., & Lee, H.‐J. ( 2017 ). Mechanisms for a PNA‐like teleconnection pattern in response to the MJO. Journal of the Atmospheric Sciences, 74, 1767 – 1781. https://doi.org/10.1175/jas-d-16-0343.1
dc.identifier.citedreferenceSeo, K.‐H., Lee, H.‐J., & Frierson, D. M. W. ( 2016 ). Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. Journal of the Atmospheric Sciences, 73, 3557 – 3571. https://doi.org/10.1175/JAS-D-16-0036.1
dc.identifier.citedreferenceSeo, K. H., & Son, S. W. ( 2012 ). The global atmospheric circulation response to tropical diabatic heating associated with the Madden‐Julian Oscillation during northern winter. Journal of the Atmospheric Sciences, 69, 79 – 96. https://doi.org/10.1175/2011jas3686.1
dc.identifier.citedreferenceSeo, K.‐H., Wang, W., Gottschalck, J., Zhang, Q., Schemm, J.‐K. E., Higgins, W. R., & Kumar, A. ( 2009 ). Evaluation of MJO forecast skill from several statistical and dynamical forecast models. Journal of Climate, 22, 2372 – 2388. https://doi.org/10.1175/2008JCLI2421.1
dc.identifier.citedreferenceSeo, K. H., & Wang, W. Q. ( 2010 ). The Madden‐Julian Oscillation simulated in the NCEP climate forecast system model: The importance of stratiform heating. Journal of Climate, 23, 4770 – 4793. https://doi.org/10.1175/2010jcli2983.1
dc.identifier.citedreferenceShi, X., Kim, D., Adames‐Corraliza, Á. F., & Sukhatme, J. ( 2018 ). WISHE‐moisture mode in an aquaplanet simulation. Journal of Advances in Modeling Earth Systems, 10, 2393 – 2407. https://doi.org/10.1029/2018MS001441
dc.identifier.citedreferenceShinoda, T., Han, W., Zamudio, L., Lien, R.‐C., & Katsumata, M. ( 2017 ). Remote ocean response to the Madden‐Julian Oscillation during the DYNAMO field campaign: Impact on Somali Current System and the Seychelles‐Chagos Thermocline Ridge. Atmosphere, 8, 171.
dc.identifier.citedreferenceShinoda, T., Hendon, H. H., & Glick, J. ( 1998 ). Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. Journal of Climate, 11, 1685 – 1702. https://doi.org/10.1175/1520-0442(1998)011<1685:Ivosfa>2.0.Co;2
dc.identifier.citedreferenceShort, D. A., & Nakamura, K. ( 2000 ). TRMM radar observations of shallow precipitation over the tropical oceans. Journal of Climate, 13, 4107 – 4124.
dc.identifier.citedreferenceSimmons, A. J., Wallace, J. M., & Branstator, G. W. ( 1983 ). Barotropic wave propagation and instability, and atmospheric teleconnection patterns. Journal of the Atmospheric Sciences, 40, 1363 – 1392. https://doi.org/10.1175/1520-0469(1983)040<1363:Bwpaia>2.0.Co;2
dc.identifier.citedreferenceSkofronick‐Jackson, G., Kirschbaum, D., Petersen, W., Huffman, G., Kidd, C., Stocker, E., & Kakar, R. ( 2018 ). The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations. Quarterly Journal of the Royal Meteorological Society, 144, 27 – 48. https://doi.org/10.1002/qj.3313
dc.identifier.citedreferenceSlingo, J., Inness, P., Neale, R., Woolnough, S., & Yang, G. Y. ( 2003 ). Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Annals of Geophysics, 46, 139 – 155.
dc.identifier.citedreferenceSlingo, J. M., Rowell, D. P., Sperber, K. R., & Nortley, F. ( 1999 ). On the predictability of the interannual behaviour of the Madden‐Julian oscillation and its relationship with El Nin̄o. Quarterly Journal of the Royal Meteorological Society, 125, 583 – 609. https://doi.org/10.1002/qj.49712555411
dc.identifier.citedreferenceSlingo, J. M., Sperber, K. R., Boyle, J. S., Ceron, J. P., Dix, M., Dugas, B., Ebisuzaki, W., Fyfe, J., Gregory, D., Gueremy, J. F., Hack, J., Harzallah, A., Inness, P., Kitoh, A., Lau, W. K. M., McAvaney, B., Madden, R., Matthews, A., Palmer, T. N., Park, C. K., Randall, D., & Renno, N. ( 1996 ). Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dynamics, 12, 325 – 357.
dc.identifier.citedreferenceSobel, A., & Maloney, E. ( 2012 ). An idealized semi‐empirical framework for modeling the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 69, 1691 – 1705. https://doi.org/10.1175/jas-d-11-0118.1
dc.identifier.citedreferenceSobel, A., & Maloney, E. ( 2013 ). Moisture modes and the eastward propagation of the MJO. Journal of the Atmospheric Sciences, 70, 187 – 192. https://doi.org/10.1175/Jas-D-12-0189.1
dc.identifier.citedreferenceSobel, A., Wang, S., & Kim, D. ( 2014 ). Moist static energy budget of the MJO during DYNAMO. Journal of the Atmospheric Sciences, 71, 4276 – 4291. https://doi.org/10.1175/JAS-D-14-0052.1
dc.identifier.citedreferenceSobel, A. H., & Gildor, H. ( 2003 ). A simple time‐dependent model of SST hot spots. Journal of Climate, 16, 3978 – 3992.
dc.identifier.citedreferenceSobel, A. H., Maloney, E. D., Bellon, G., & Frierson, D. M. ( 2008 ). The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 1, 653 – 657. https://doi.org/10.1038/Ngeo312
dc.identifier.citedreferenceMo, K. C. ( 2000 ). Intraseasonal modulation of summer precipitation over North America. Monthly Weather Review, 128, 1490 – 1505.
dc.identifier.citedreferenceSon, S.‐W., Lim, Y., Yoo, C., Hendon, H. H., & Kim, J. ( 2016 ). Stratospheric control of the Madden‐Julian Oscillation. Journal of Climate, 30, 1909 – 1922. https://doi.org/10.1175/JCLI-D-16-0620.1
dc.identifier.citedreferenceSon, S.‐W., Lim, Y., Yoo, C., Hendon, H. H., & Kim, J. ( 2017 ). Stratospheric control of the Madden‐Julian Oscillation. Journal of Climate, 30, 1909 – 1922. https://doi.org/10.1175/jcli-d-16-0620.1
dc.identifier.citedreferenceSong, E.‐J., & Seo, K.‐H. ( 2016 ). Past‐ and present‐day Madden‐Julian Oscillation in CNRM‐CM5. Geophysical Research Letters, 43, 4042 – 4048. https://doi.org/10.1002/2016GL068771
dc.identifier.citedreferenceSperber, K., Slingo, J., & Inness, P. ( 2012 ). Modeling intraseasonal variability. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system (Ch. 11, pp. 399 – 431 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceSperber, K. R. ( 2003 ). Propagation and the vertical structure of the Madden‐Julian oscillation. Monthly Weather Review, 131, 3018 – 3037.
dc.identifier.citedreferenceSprintall, J., & Tomczak, M. ( 1992 ). Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research, 97, 7305 – 7316. https://doi.org/10.1029/92JC00407
dc.identifier.citedreferenceStan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher, C. ( 2017 ). Review of tropical‐extratropical teleconnections on intraseasonal time scales. Reviews of Geophysics, 55, 902 – 937. https://doi.org/10.1002/2016RG000538
dc.identifier.citedreferenceStephens, G. L., Webster, P. J., Johnson, R. H., Engelen, R., & L’Ecuyer, T. ( 2004 ). Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. Journal of Climate, 17, 2213 – 2224.
dc.identifier.citedreferenceStevens, B. ( 2002 ). Entrainment in stratocumulus‐topped mixed layers. Quarterly Journal of the Royal Meteorological Society, 128, 2663 – 2690. https://doi.org/10.1256/qj.01.202
dc.identifier.citedreferenceStolz, D. C., Rutledge, S. A., Xu, W., & Pierce, J. R. ( 2017 ). Interactions between the MJO, aerosols, and convection over the central Indian Ocean. Journal of the Atmospheric Sciences, 74, 353 – 374. https://doi.org/10.1175/jas-d-16-0054.1
dc.identifier.citedreferenceStraub, K. H. ( 2013 ). MJO initiation in the real‐time multivariate MJO index. Journal of Climate, 26, 1130 – 1151. https://doi.org/10.1175/JCLI-D-12-00074.1
dc.identifier.citedreferenceStraub, K. H., & Kiladis, G. N. ( 2003 ). The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. Journal of the Atmospheric Sciences, 60, 1655 – 1668.
dc.identifier.citedreferenceSubramanian, A., Jochum, M., Miller, A. J., Neale, R., Seo, H., Waliser, D., & Murtugudde, R. ( 2014 ). The MJO and global warming: A study in CCSM4. Climate Dynamics, 42, 2019 – 2031. https://doi.org/10.1007/s00382-013-1846-1
dc.identifier.citedreferenceSubramanian, A. C., & Palmer, T. N. ( 2017 ). Ensemble superparameterization versus stochastic parameterization: A comparison of model uncertainty representation in tropical weather prediction. Journal of Advances in Modeling Earth Systems, 9, 1231 – 1250. https://doi.org/10.1002/2016MS000857
dc.identifier.citedreferenceSui, C.‐H., & Lau, K.‐M. ( 1992 ). Multiscale phenomena in the tropical atmosphere over the western Pacific. Monthly Weather Review, 120, 407 – 430. https://doi.org/10.1175/1520-0493(1992)120<0407:Mpitta>2.0.Co;2
dc.identifier.citedreferenceSultan, B., Janicot, S., & Diedhiou, A. ( 2003 ). The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. Journal of Climate, 16, 3389 – 3406.
dc.identifier.citedreferenceTakahashi, C., Sato, N., Seiki, A., Yoneyama, K., & Shirooka, R. ( 2011 ). Projected future change of MJO and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC AR4 models. SOLA, 7, 201 – 204. https://doi.org/10.2151/sola.2011-051
dc.identifier.citedreferenceTakasuka, D., Satoh, M., & Yokoi, S. ( 2019 ). Observational evidence of mixed Rossby‐gravity waves as a driving force for the MJO convective initiation and propagation. Geophysical Research Letters, 46, 5546 – 5555. https://doi.org/10.1029/2019GL083108
dc.identifier.citedreferenceTakayabu, Y. N. ( 1994 ). Large‐scale cloud disturbances associated with equatorial waves.2. Westward‐propagating inertio‐gravity waves. Journal of the Meteorological Society of Japan, 72, 451 – 465.
dc.identifier.citedreferenceTakayabu, Y. N., Iguchi, T., Kachi, M., Shibata, A., & Kanzawa, H. ( 1999 ). Abrupt termination of the 1997–98 El Niño in response to a Madden‐Julian oscillation. Nature, 402, 279 – 282.
dc.identifier.citedreferenceTao, L., Zhao, J., & Li, T. ( 2015 ). Trend analysis of tropical intraseasonal oscillations in the summer and winter during 1982–2009. International Journal of Climatology, 35, 3969 – 3978. https://doi.org/10.1002/joc.4258
dc.identifier.citedreferenceTao, W.‐K., Smith, E. A., Adler, R. F., Haddad, Z. S., Hou, A. Y., Iguchi, T., Kakar, R., Krishnamurti, T. N., Kummerow, C. D., Lang, S., Meneghini, R., Nakamura, K., Nakazawa, T., Okamoto, K., Olson, W. S., Satoh, S., Shige, S., Simpson, J., Takayabu, Y., Tripoli, G. J., & Yang, S. ( 2006 ). Retrieval of latent heating from TRMM measurements. Bulletin of the American Meteorological Society, 87, 1555 – 1572.
dc.identifier.citedreferenceTung, W. W., & Yanai, M. ( 2002b ). Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. Journal of the Atmospheric Sciences, 59, 1857 – 1871.
dc.identifier.citedreferenceTao, W.‐K., Takayabu, Y. N., Lang, S., Shige, S., Olson, W., Hou, A., Skofronick‐Jackson, G., Jiang, X., Zhang, C., Lau, W., Krishnamurti, T., Waliser, D., Grecu, M., Ciesielski, P. E., Johnson, R. H., Houze, R., Kakar, R., Nakamura, K., Braun, S., Hagos, S., Oki, R., & Bhardwaj, A. ( 2016 ). TRMM latent heating retrieval: Applications and comparisons with field campaigns and large‐scale analyses. Meteorological Monographs, 56, 2.1 – 2.34. https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0013.1
dc.identifier.citedreferenceTeng, H. Y., & Wang, B. ( 2003 ). Interannual variations of the boreal summer intraseasonal oscillation in the Asian‐Pacific region. Journal of Climate, 16, 3572 – 3584.
dc.identifier.citedreferenceThayer‐Calder, K., & Randall, D. A. ( 2009 ). The role of convective moistening in the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 66, 3297 – 3312. https://doi.org/10.1175/2009jas3081.1
dc.identifier.citedreferenceThompson, D. W. J., & Wallace, J. M. ( 1998 ). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 1297 – 1300. https://doi.org/10.1029/98GL00950
dc.identifier.citedreferenceThompson, D. W. J., & Wallace, J. M. ( 2000 ). Annular modes in the extratropical circulation. Part I: Month‐to‐month variability. Journal of Climate, 13, 1000 – 1016.
dc.identifier.citedreferenceThompson, E. J., Rutledge, S. A., Dolan, B., & Thurai, M. ( 2015 ). Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and West Pacific Oceans. Journal of the Atmospheric Sciences, 72, 4091 – 4125. https://doi.org/10.1175/jas-d-14-0206.1
dc.identifier.citedreferenceThomson, J., & Girton, J. ( 2017 ). Sustained measurements of Southern Ocean air‐sea coupling from a wave glider autonomous surface vehicle. Oceanography, 30, 104 – 109. https://doi.org/10.5670/oceanog.2017.228
dc.identifier.citedreferenceThual, S., Majda, A. J., & Stechmann, S. N. ( 2014 ). A stochastic skeleton model for the MJO. Journal of the Atmospheric Sciences, 71, 697 – 715. https://doi.org/10.1175/JAS-D-13-0186.1
dc.identifier.citedreferenceTian, B., Ao, C. O., Waliser, D. E., Fetzer, E. J., Mannucci, A. J., & Teixeira, J. ( 2012 ). Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. Journal of Geophysical Research, 117, D15110. https://doi.org/10.1029/2012JD017715
dc.identifier.citedreferenceTian, B., Waliser, D. E., Fetzer, E. J., & Yung, Y. L. ( 2010 ). Vertical moist thermodynamic structure of the Madden‐Julian Oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF Interim Re‐Analysis. Monthly Weather Review, 138, 4576 – 4582. https://doi.org/10.1175/2010MWR3486.1
dc.identifier.citedreferenceTian, B., Waliser, D. E., Kahn, R. A., & Wong, S. ( 2011 ). Modulation of Atlantic aerosols by the Madden‐Julian Oscillation. Journal of Geophysical Research, 116, D15108. https://doi.org/10.1029/2010JD015201
dc.identifier.citedreferenceTian, B., Yung, Y. L., Waliser, D. E., Tyranowski, T., Kuai, L., Fetzer, E. J., & Irion, F. W. ( 2007 ). Intraseasonal variations of the tropical total ozone and their connection to the Madden‐Julian Oscillation. Geophysical Research Letters, 34, L08704. https://doi.org/10.1029/2007GL029451
dc.identifier.citedreferenceTian, B. J., Waliser, D. E., & Fetzer, E. J. ( 2006 ). Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophysical Research Letters, 33, L20704. https://doi.org/10.1029/2006GL027752
dc.identifier.citedreferenceTian, B. J., Waliser, D. E., Fetzer, E. J., Lambrigtsen, B. H., Yung, Y. L., & Wang, B. ( 2006 ). Vertical moist thermodynamic structure and spatial‐temporal evolution of the MJO in AIRS observations. Journal of the Atmospheric Sciences, 63, 2462 – 2485.
dc.identifier.citedreferenceTing, M., & Sardeshmukh, P. D. ( 1993 ). Factors determining the extratropical response to equatorial diabatic heating anomalies. Journal of the Atmospheric Sciences, 50, 907 – 918. https://doi.org/10.1175/1520-0469(1993)050<0907:Fdtert>2.0.Co;2
dc.identifier.citedreferenceTippett, M. K. ( 2018 ). Robustness of relations between the MJO and U.S. tornado occurrence. Monthly Weather Review, 146, 3873 – 3884. https://doi.org/10.1175/mwr-d-18-0207.1
dc.identifier.citedreferenceTokioka, T., Yamazaki, K., Kitoh, A., & Ose, T. ( 1988 ). The equatorial 30–60 day oscillation and the Arakawa‐Schubert penetrative cumulus parameterization. Journal of the Meteorological Society of Japan, 66, 883 – 901.
dc.identifier.citedreferenceToms, B. A., Barnes, E. A., Maloney, E. D., & van den Heever, S. C. ( 2020 ). The global teleconnection signature of the Madden‐Julian Oscillation and its modulation by the quasi‐biennial oscillation. Journal of Geophysical Research: Atmospheres, 125, e2020JD032653. https://doi.org/10.1029/2020JD032653
dc.identifier.citedreferenceTromeur, E., & Rossow, W. B. ( 2010 ). Interaction of tropical deep convection with the large‐scale circulation in the MJO. Journal of Climate, 23, 1837 – 1853. https://doi.org/10.1175/2009jcli3240.1
dc.identifier.citedreferenceTseng, K.‐C., Maloney, E., & Barnes, E. ( 2019 ). The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. Journal of Climate, 32, 531 – 548. https://doi.org/10.1175/jcli-d-18-0211.1
dc.identifier.citedreferenceTseng, W.‐L., Hsu, H.‐H., Keenlyside, N., Chang, C.‐W. J., Tsuang, B.‐J., Tu, C.‐Y., & Jiang, L.‐C. ( 2017 ). Effects of surface orography and land‐sea contrast on the Madden‐Julian Oscillation in the Maritime Continent: A numerical study using ECHAM5‐SIT. Journal of Climate, 30, 9725 – 9741. https://doi.org/10.1175/jcli-d-17-0051.1
dc.identifier.citedreferenceTung, W. W., & Yanai, M. ( 2002a ). Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. Journal of the Atmospheric Sciences, 59, 2535 – 2549.
dc.identifier.citedreferenceVecchi, G. A., & Bond, N. A. ( 2004 ). The Madden‐Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophysical Research Letters, 31, L04104. https://doi.org/10.1029/2003GL018645
dc.identifier.citedreferenceVirts, K. S., & Houze, R. A. ( 2015 ). Variation of lightning and convective rain fraction in mesoscale convective systems of the MJO. Journal of the Atmospheric Sciences, 72, 1932 – 1944. https://doi.org/10.1175/jas-d-14-0201.1
dc.identifier.citedreferenceVirts, K. S., & Wallace, J. M. ( 2010 ). Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. Journal of the Atmospheric Sciences, 67, 3097 – 3112. https://doi.org/10.1175/2010JAS3413.1
dc.identifier.citedreferenceVirts, K. S., & Wallace, J. M. ( 2014 ). Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. Journal of the Atmospheric Sciences, 71, 1143 – 1157. https://doi.org/10.1175/jas-d-13-0178.1
dc.identifier.citedreferenceVitart, F. ( 2017 ). Madden‐Julian Oscillation prediction and teleconnections in the S2S database. Quarterly Journal of the Royal Meteorological Society, 143, 2210 – 2220. https://doi.org/10.1002/qj.3079
dc.identifier.citedreferenceVitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H.‐S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D.‐J., Xiao, H., Zaripov, R., & Zhang, L. ( 2017 ). The Subseasonal to Seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society, 98, 163 – 173. https://doi.org/10.1175/bams-d-16-0017.1
dc.identifier.citedreferenceVitart, F., & Jung, T. ( 2010 ). Impact of the Northern Hemisphere extratropics on the skill in predicting the Madden Julian Oscillation. Geophysical Research Letters, 37, L23805. https://doi.org/10.1029/2010GL045465
dc.identifier.citedreferenceVitart, F., & Molteni, F. ( 2010 ). Simulation of the Madden‐Julian Oscillation and its teleconnections in the ECMWF forecast system. Quarterly Journal of the Royal Meteorological Society, 136, 842 – 855. https://doi.org/10.1002/Qj.623
dc.identifier.citedreferenceVitart, F., Robertson, A., Kumar, A., Hendon, H., Takaya, Y., Lin, H., Arribas, A., Lee, J.‐Y., Waliser, D., Kirtman, B., & Kinm, B. ( 2012 ). Subseasonal to seasonal prediction: Research implementation plan, WWRP/THORPEX‐WCRP report.
dc.identifier.citedreferenceVitart, F., Robertson, A., & S2S Steering Group ( 2015 ). Sub‐seasonal to seasonal prediction: Linking weather and climate. In G. Brunet, S. Jones, & P. M. Ruti (Eds.), WMO‐1156 Seamless prediction of the Earth system: From minutes to months (pp. 385 – 401 ). Geneva, Switzerland: World Meteorological Organization. [Available online at http://library.wmo.int/pmb_ged/wmo_1156_en.pdf.]
dc.identifier.citedreferenceVitart, F., & Robertson, A. W. ( 2018 ). The sub‐seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate and Atmospheric Science, 1, 3. https://doi.org/10.1038/s41612-018-0013-0
dc.identifier.citedreferenceVitart, F., Woolnough, S., Balmaseda, M. A., & Tompkins, A. M. ( 2007 ). Monthly forecast of the Madden‐Julian oscillation using a coupled GCM. Monthly Weather Review, 135, 2700 – 2715. https://doi.org/10.1175/Mwr3415.1
dc.identifier.citedreferenceWaliser, D., Sperber, K., Hendon, H., Kim, D., Wheeler, M., Weickmann, K., Zhang, C., Donner, L., Gottschalck, J., Higgins, W., Kang, I. S., Legler, D., Moncrieff, M., Vitart, F., Wang, B., Wang, W., Woolnough, S., Maloney, E., Schubert, S., Stern, W., & Oscillation, C. M.‐J. ( 2009 ). MJO simulation diagnostics. Journal of Climate, 22, 3006 – 3030. https://doi.org/10.1175/2008jcli2731.1
dc.identifier.citedreferenceWaliser, D. E. ( 2012 ). Predictability and forecasting. In W. K. M. Lau, & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere‐ocean climate system (Ch. 12, pp. 433 – 476 ). Heidelberg, Germany: Springer.
dc.identifier.citedreferenceWaliser, D. E., Moncrieff, M. W., Burridge, D., Fink, A. H., Gochis, D., Goswami, B. N., Guan, B., Harr, P., Heming, J., Hsu, H.‐H., Jakob, C., Janiga, M., Johnson, R., Jones, S., Knippertz, P., Marengo, J., Nguyen, H., Pope, M., Serra, Y., Thorncroft, C., Wheeler, M., Wood, R., & Yuter, S. ( 2012 ). The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bulletin of the American Meteorological Society, 93, 1189 – 1218. https://doi.org/10.1175/2011BAMS3095.1
dc.identifier.citedreferenceWaliser, D. E., Murtugudde, R., Strutton, P., & Li, J.‐L. ( 2005 ). Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden‐Julian Oscillation. Geophysical Research Letters, 32, L23602. https://doi.org/10.1029/2005GL024300
dc.identifier.citedreferenceWaliser, D. E., Stern, W., Schubert, S., & Lau, K. M. ( 2003 ). Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society, 129, 2897 – 2925. https://doi.org/10.1256/Qj.02.51
dc.identifier.citedreferenceWallace, J. M., & Gutzler, D. S. ( 1981 ). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109, 784 – 812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
dc.identifier.citedreferenceWang, B. ( 1988 ). Dynamics of tropical low‐frequency waves—An analysis of the moist Kelvin wave. Journal of the Atmospheric Sciences, 45, 2051 – 2065.
dc.identifier.citedreferenceWang, B. ( 2006 ). The Asian monsoon (pp. 787 ). New York, USA: Springer/Praxis Publishing Co.
dc.identifier.citedreferenceWang, B., Chen, G., & Liu, F. ( 2019 ). Diversity of the Madden‐Julian Oscillation. Science Advances, 5, eaax0220. https://doi.org/10.1126/sciadv.aax0220
dc.identifier.citedreferenceWang, B., & Lee, S.‐S. ( 2017 ). MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. Journal of Climate, 30, 7933 – 7952. https://doi.org/10.1175/jcli-d-16-0873.1
dc.identifier.citedreferenceWang, B., Lee, S.‐S., Waliser, D. E., Zhang, C., Sobel, A., Maloney, E., Li, T., Jiang, X., & Ha, K.‐J. ( 2018 ). Dynamics‐oriented diagnostics for the Madden‐Julian Oscillation. Journal of Climate, 31, 3117 – 3135. https://doi.org/10.1175/jcli-d-17-0332.1
dc.identifier.citedreferenceWang, B., & Li, T. M. ( 1994 ). Convective interaction with boundary‐layer dynamics in the development of a tropical intraseasonal system. Journal of the Atmospheric Sciences, 51, 1386 – 1400.
dc.identifier.citedreferenceWang, B., & Liu, F. ( 2011 ). A model for scale interaction in the Madden‐Julian Oscillation. Journal of the Atmospheric Sciences, 68, 2524 – 2536. https://doi.org/10.1175/2011jas3660.1
dc.identifier.citedreferenceWang, B., Liu, F., & Chen, G. ( 2016 ). A trio‐interaction theory for Madden‐Julian oscillation. Geoscience Letters, 3, 34. https://doi.org/10.1186/s40562-016-0066-z
dc.identifier.citedreferenceWang, B., & Rui, H. ( 1990 ). Dynamics of the coupled moist Kelvin‐Rossby wave on an equatorial beta‐plane. Journal of the Atmospheric Sciences, 47, 397 – 413.
dc.identifier.citedreferenceWang, B., & Xie, X. S. ( 1998 ). Coupled modes of the warm pool climate system. Part 1: The role of air‐sea interaction in maintaining Madden‐Julian oscillation. Journal of Climate, 11, 2116 – 2135.
dc.identifier.citedreferenceWang, D., Yano, J.‐I., & Lin, Y. ( 2019 ). Madden‐Julian Oscillations seen in the upper‐troposphere vorticity field: Interactions with Rossby wave trains. Journal of the Atmospheric Sciences, 76, 1785 – 1807. https://doi.org/10.1175/JAS-D-18-0172.1
dc.identifier.citedreferenceWang, J., Kim, H.‐M., Chang, E. K. M., & Son, S.‐W. ( 2018 ). Modulation of the MJO and North Pacific storm track relationship by the QBO. Journal of Geophysical Research: Atmospheres, 123, 3976 – 3992. https://doi.org/10.1029/2017JD027977
dc.identifier.citedreferenceWang, L., Li, T., Chen, L., Behera, S. K., & Nasuno, T. ( 2018 ). Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Climate Dynamics, 51, 687 – 700. https://doi.org/10.1007/s00382-017-3949-6
dc.identifier.citedreferenceWang, L., Li, T., Maloney, E., & Wang, B. ( 2017 ). Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. Journal of Climate, 30, 3743 – 3769. https://doi.org/10.1175/jcli-d-16-0765.1
dc.identifier.citedreferenceWang, S., Sobel, A. H., Fridlind, A., Feng, Z., Comstock, J. M., Minnis, P., & Nordeen, M. L. ( 2015 ). Simulations of cloud‐radiation interaction using large‐scale forcing derived from the CINDY/DYNAMO northern sounding array. Journal of Advances in Modeling Earth Systems, 7, 1472 – 1498. https://doi.org/10.1002/2015MS000461
dc.identifier.citedreferenceWang, S., Sobel, A. H., Tippett, M. K., & Vitart, F. ( 2019 ). Prediction and predictability of tropical intraseasonal convection: seasonal dependence and the Maritime Continent prediction barrier. Climate Dynamics, 52, 6015 – 6031. https://doi.org/10.1007/s00382-018-4492-9
dc.identifier.citedreferenceWang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K., & Vitart, F. ( 2019 ). Impact of the QBO on prediction and predictability of the MJO convection. Journal of Geophysical Research: Atmospheres, 124, 11,766 – 11,782. https://doi.org/10.1029/2019jd030575
dc.identifier.citedreferenceWang, W., Hung, M.‐P., Weaver, S., Kumar, A., & Fu, X. ( 2014 ). MJO prediction in the NCEP Climate Forecast System version 2. Climate Dynamics, 1 – 12. https://doi.org/10.1007/s00382-013-1806-9
dc.identifier.citedreferenceWang, W. Q., & Schlesinger, M. E. ( 1999 ). The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11‐layer atmospheric GCM. Journal of Climate, 12, 1423 – 1457.
dc.identifier.citedreferenceWang, Y., Zhang, G. J., & Craig, G. C. ( 2016 ). Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophysical Research Letters, 43, 6612 – 6619. https://doi.org/10.1002/2016GL069818
dc.identifier.citedreferenceWang, Z., Li, W., Peng, M. S., Jiang, X., McTaggart‐Cowan, R., & Davis, C. A. ( 2018 ). Predictive skill and predictability of North Atlantic tropical cyclogenesis in different synoptic flow regimes. Journal of the Atmospheric Sciences, 75, 361 – 378. https://doi.org/10.1175/jas-d-17-0094.1
dc.identifier.citedreferenceWeber, N. J., & Mass, C. F. ( 2017 ). Evaluating CFSv2 subseasonal forecast skill with an emphasis on tropical convection. Monthly Weather Review, 145, 3795 – 3815. https://doi.org/10.1175/MWR-D-17-0109.1
dc.identifier.citedreferenceWeber, N. J., & Mass, C. F. ( 2019 ). Subseasonal weather prediction in a global convection‐permitting model. Bulletin of the American Meteorological Society, 100, 1079 – 1089. https://doi.org/10.1175/bams-d-18-0210.1
dc.identifier.citedreferenceWebster, P. J., & Holton, J. R. ( 1982 ). Cross‐equatorial response to middle‐latitude forcing in a zonally varying basic state. Journal of the Atmospheric Sciences, 39, 722 – 733. https://doi.org/10.1175/1520-0469(1982)039<0722:Certml>2.0.Co;2
dc.identifier.citedreferenceWebster, P. J., & Lukas, R. ( 1992 ). TOGA COARE: The Coupled Ocean‐Atmosphere Response Experiment. Bulletin of the American Meteorological Society, 73, 1377 – 1416.
dc.identifier.citedreferenceWebster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M., & Yasunari, T. ( 1998 ). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103, 14451 – 14510.
dc.identifier.citedreferenceWeisheimer, A., Corti, S., Palmer, T., & Vitart, F. ( 2014 ). Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130290. https://doi.org/10.1098/rsta.2013.0290
dc.identifier.citedreferenceWheeler, M., & Kiladis, G. N. ( 1999 ). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber‐frequency domain. Journal of the Atmospheric Sciences, 56, 374 – 399.
dc.identifier.citedreferenceWheeler, M., & Maloney, E. ( 2013 ). Madden‐Julian Oscillation (MJO) Task Force: A joint effort of the climate and weather communities. CLIVAR Exchanges, 18 ( 1 ).
dc.identifier.citedreferenceWheeler, M. C., & Hendon, H. H. ( 2004 ). An all‐season real‐time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917 – 1932.
dc.identifier.citedreferenceWheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., & Donald, A. ( 2009 ). Impacts of the Madden‐Julian Oscillation on Australian rainfall and circulation. Journal of Climate, 22, 1482 – 1498. https://doi.org/10.1175/2008jcli2595.1
dc.identifier.citedreferenceWhelan, J., & Frederiksen, J. S. ( 2017 ). Dynamics of the perfect storms: La Niña and Australia’s extreme rainfall and floods of 1974 and 2011. Climate Dynamics, 48, 3935 – 3948. https://doi.org/10.1007/s00382-016-3312-3
dc.identifier.citedreferenceWilson, E. A., Gordon, A. L., & Kim, D. ( 2013 ). Observations of the Madden Julian Oscillation during Indian Ocean Dipole events. Journal of Geophysical Research: Atmospheres, 118, 2588 – 2599. https://doi.org/10.1002/jgrd.50241
dc.identifier.citedreferenceWolding, B. O., & Maloney, E. D. ( 2015 ). Objective diagnostics and the Madden‐Julian Oscillation. Part II: Application to moist static energy and moisture budgets. Journal of Climate, 28, 7786 – 7808. https://doi.org/10.1175/jcli-d-14-00689.1
dc.identifier.citedreferenceWolding, B. O., Maloney, E. D., Henderson, S., & Branson, M. ( 2017 ). Climate change and the Madden‐Julian oscillation: A vertically resolved weak temperature gradient analysis. Journal of Advances in Modeling Earth Systems, 9, 307 – 331. https://doi.org/10.1002/2016MS000843
dc.identifier.citedreferenceWoolnough, S. J., Slingo, J. M., & Hoskins, B. J. ( 2000 ). The relationship between convection and sea surface temperature on intraseasonal timescales. Journal of Climate, 13, 2086 – 2104.
dc.identifier.citedreferenceWoolnough, S. J., Vitart, F., & Balmaseda, M. A. ( 2007 ). The role of the ocean in the Madden‐Julian Oscillation: Implications for MJO prediction. Quarterly Journal of the Royal Meteorological Society, 133, 117 – 128. https://doi.org/10.1002/qj.4
dc.identifier.citedreferenceWu, C.‐H., & Hsu, H.‐H. ( 2009 ). Topographic influence on the MJO in the Maritime Continent. Journal of Climate, 22, 5433 – 5448. https://doi.org/10.1175/2009JCLI2825.1
dc.identifier.citedreferenceWu, P., Ardiansyah, D., Yokoi, S., Mori, S., Syamsudin, F., & Yoneyama, K. ( 2017 ). Why torrential rain occurs on the western coast of Sumatra Island at the leading edge of the MJO westerly wind bursts. SOLA, 13, 36 – 40. https://doi.org/10.2151/sola.2017-007
dc.identifier.citedreferenceWu, P., Mori, S., & Syamsudin, F. ( 2018 ). Land‐sea surface air temperature contrast on the western coast of Sumatra Island during an active phase of the Madden‐Julian Oscillation. Progress in Earth and Planetary Science, 5, 4. https://doi.org/10.1186/s40645-017-0160-7
dc.identifier.citedreferenceXavier, P. K., Petch, J. C., Klingaman, N. P., Woolnough, S. J., Jiang, X., Waliser, D. E., Caian, M., Cole, J., Hagos, S. M., Hannay, C., Kim, D., Miyakawa, T., Pritchard, M. S., Roehrig, R., Shindo, E., Vitart, F., & Wang, H. ( 2015 ). Vertical structure and physical processes of the Madden‐Julian Oscillation: Biases and uncertainties at short range. Journal of Geophysical Research: Atmospheres, 120, 4749 – 4763. https://doi.org/10.1002/2014JD022718
dc.identifier.citedreferenceXiang, B., Lin, S.‐J., Zhao, M., Zhang, S., Vecchi, G., Li, T., Jiang, X., Harris, L., & Chen, J.‐H. ( 2015 ). Beyond weather time‐scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Monthly Weather Review, 143, 524 – 535. https://doi.org/10.1175/MWR-D-14-00227.1
dc.identifier.citedreferenceXiang, B., Sun, Q., Chen, J.‐H., Johnson, N. C., & Jiang, X. ( 2020 ). Subseasonal prediction of land cold extremes in boreal wintertime. Journal of Geophysical Research: Atmospheres, 125, e2020JD032670. https://doi.org/10.1029/2020JD032670
dc.identifier.citedreferenceXiang, B., Zhao, M., Jiang, X., Lin, S.‐J., Li, T., Fu, X., & Vecchi, G. ( 2015 ). 3–4 week MJO prediction skill in a GFDL coupled model. Journal of Climate. https://doi.org/10.1175/JCLI-D-15-0102.1
dc.identifier.citedreferenceXie, S.‐P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. ( 2010 ). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23, 966 – 986. https://doi.org/10.1175/2009jcli3329.1
dc.identifier.citedreferenceXu, W., & Rutledge, S. A. ( 2014 ). Convective characteristics of the Madden‐Julian Oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. Journal of the Atmospheric Sciences, 71, 2859 – 2877. https://doi.org/10.1175/JAS-D-13-0372.1
dc.identifier.citedreferenceXu, W., & Rutledge, S. A. ( 2015 ). Morphology, intensity, and rainfall production of MJO convection: Observations from DYNAMO shipborne radar and TRMM. Journal of the Atmospheric Sciences, 72, 623 – 640. https://doi.org/10.1175/jas-d-14-0130.1
dc.identifier.citedreferenceXu, W., & Rutledge, S. A. ( 2016 ). Time scales of shallow‐to‐deep convective transition associated with the onset of Madden‐Julian Oscillations. Geophysical Research Letters, 43, 2880 – 2888. https://doi.org/10.1002/2016GL068269
dc.identifier.citedreferenceXu, W., Rutledge, S. A., Schumacher, C., & Katsumata, M. ( 2015 ). Evolution, properties, and spatial variability of MJO Convection near and off the Equator during DYNAMO. Journal of the Atmospheric Sciences, 72, 4126 – 4147. https://doi.org/10.1175/jas-d-15-0032.1
dc.identifier.citedreferenceYadav, P., & Straus, D. M. ( 2017 ). Circulation response to fast and slow MJO episodes. Monthly Weather Review, 145, 1577 – 1596. https://doi.org/10.1175/mwr-d-16-0352.1
dc.identifier.citedreferenceYanai, M., & Lu, M.‐M. ( 1983 ). Equatorially trapped waves at the 200 mb level and their association with meridional convergence of wave energy flux. Journal of the Atmospheric Sciences, 40, 2785 – 2803. https://doi.org/10.1175/1520-0469(1983)040<2785:Etwatm>2.0.Co;2
dc.identifier.citedreferenceYang, D., Adames‐Corraliza, Á. F., Khouider, B., Wang, B., & Zhang, C. ( 2020 ). A review of MJO theories. Chap. 19 in The Multiscale Global Monsoon System. In C. P. Chang, K. J. Ha, R. H. Johnson, D. Kim, G. N. Lau, & B. Wang (Eds.), World scientific series on Asia‐Pacific weather and climate (Vol. 11, Ch. 19). Singapore: World Scientific.
dc.identifier.citedreferenceYang, D., & Ingersoll, A. P. ( 2013 ). Triggered convection, gravity waves, and the MJO: A shallow‐water model. Journal of the Atmospheric Sciences, 70, 2476 – 2486. https://doi.org/10.1175/JAS-D-12-0255.1
dc.identifier.citedreferenceYang, D., & Ingersoll, A. P. ( 2014 ). A theory of the MJO horizontal scale. Geophysical Research Letters, 41, 1059 – 1064. https://doi.org/10.1002/2013GL058542
dc.identifier.citedreferenceYang, G.‐Y., & Slingo, J. ( 2001 ). The diurnal cycle in the tropics. Monthly Weather Review, 129, 784 – 801. https://doi.org/10.1175/1520-0493(2001)129<0784:Tdcitt>2.0.Co;2
dc.identifier.citedreferenceYang, Q., Fu, Q., & Hu, Y. ( 2010 ). Radiative impacts of clouds in the tropical tropopause layer. Journal of Geophysical Research, 115, D00H12. https://doi.org/10.1029/2009JD012393
dc.identifier.citedreferenceYang, Q., Majda, A. J., & Moncrieff, M. W. ( 2019 ). Upscale impact of mesoscale convective systems and its parameterization in an idealized GCM for an MJO analog above the equator. Journal of the Atmospheric Sciences, 76, 865 – 892. https://doi.org/10.1175/jas-d-18-0260.1
dc.identifier.citedreferenceYano, J.‐I., & Tribbia, J. J. ( 2017 ). Tropical atmospheric Madden‐Julian Oscillation: A strongly nonlinear free solitary Rossby wave? Journal of the Atmospheric Sciences, 74, 3473 – 3489. https://doi.org/10.1175/JAS-D-16-0319.1
dc.identifier.citedreferenceYasunaga, K., & Mapes, B. ( 2012 ). Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space‐time filtering. Journal of the Atmospheric Sciences, 69, 17 – 34. https://doi.org/10.1175/jas-d-11-034.1
dc.identifier.citedreferenceYokoi, S., Katsumata, M., & Yoneyama, K. ( 2014 ). Variability in surface meteorology and air‐sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO. Journal of Geophysical Research: Atmospheres, 119, 2064 – 2078. https://doi.org/10.1002/2013JD020621
dc.identifier.citedreferenceYokoi, S., Mori, S., Katsumata, M., Geng, B., Yasunaga, K., Syamsudin Nurhayati, F., & Yoneyama, K. ( 2017 ). Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: Offshore preconditioning by gravity waves. Monthly Weather Review, 145, 3745 – 3761. https://doi.org/10.1175/mwr-d-16-0468.1
dc.identifier.citedreferenceYokoi, S., Mori, S., Syamsudin, F., Haryoko, U., & Geng, B. ( 2019 ). Environmental conditions for nighttime offshore migration of precipitation area as revealed by in situ observation off Sumatra Island. Monthly Weather Review, 147, 3391 – 3407. https://doi.org/10.1175/mwr-d-18-0412.1
dc.identifier.citedreferenceYokoi, S., & Sobel, A. H. ( 2015 ). Intraseasonal variability and seasonal march of the moist static energy budget over the eastern Maritime Continent during CINDY2011/DYNAMO. Journal of the Meteorological Society of Japan. Series II, 93A, 81 – 100. https://doi.org/10.2151/jmsj.2015-041
dc.identifier.citedreferenceYoneyama, K., & Zhang, C. ( 2020 ). Years of the Maritime Continent. Geophysical Research Letters, 47, e2020GL087182. https://doi.org/10.1029/2020GL087182
dc.identifier.citedreferenceYoneyama, K., Zhang, C., & Long, C. N. ( 2013 ). Tracking pulses of the Madden‐Julian Oscillation. Bulletin of the American Meteorological Society, 94, 1871 – 1891. https://doi.org/10.1175/BAMS-D-12-00157.1
dc.identifier.citedreferenceYoo, C., Feldstein, S., & Lee, S. ( 2011 ). The impact of the Madden‐Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophysical Research Letters, 38, L24804. https://doi.org/10.1029/2011GL049881
dc.identifier.citedreferenceYoo, C., Lee, S., & Feldstein, S. B. ( 2012 ). Mechanisms of Arctic surface air temperature change in response to the Madden‐Julian Oscillation. Journal of Climate, 25, 5777 – 5790. https://doi.org/10.1175/JCLI-D-11-00566.1
dc.identifier.citedreferenceYoo, C., & Son, S.‐W. ( 2016 ). Modulation of the boreal wintertime Madden‐Julian oscillation by the stratospheric quasi‐biennial oscillation. Geophysical Research Letters, 43, 1392 – 1398. https://doi.org/10.1002/2016GL067762
dc.identifier.citedreferenceYu, J. Y., & Neelin, J. D. ( 1994 ). Modes of tropical variability under convective adjustment and the Madden‐Julian Oscillation.2. Numerical results. Journal of the Atmospheric Sciences, 51, 1895 – 1914.
dc.identifier.citedreferenceYuan, J., & Houze, R. A. ( 2010 ). Global variability of mesoscale convective system anvil structure from A‐Train satellite data. Journal of Climate, 23, 5864 – 5888. https://doi.org/10.1175/2010jcli3671.1
dc.identifier.citedreferenceYuan, J., & Houze, R. A. ( 2012 ). Deep convective systems observed by A‐Train in the tropical Indo‐Pacific region affected by the MJO. Journal of the Atmospheric Sciences, 70, 465 – 486. https://doi.org/10.1175/jas-d-12-057.1
dc.identifier.citedreferenceZadra, A., Williams, K., Frassoni, A., Rixen, M., Adames, Á. F., Berner, J., Bouyssel, F., Casati, B., Christensen, H., Ek, M. B., Flato, G., Huang, Y., Judt, F., Lin, H., Maloney, E., Merryfield, W., Niekerk, A. V., Rackow, T., Saito, K., Wedi, N., & Yadav, P. ( 2018 ). Systematic errors in weather and climate models: Nature, origins, and ways forward. Bulletin of the American Meteorological Society, 99, ES67 – ES70. https://doi.org/10.1175/bams-d-17-0287.1
dc.identifier.citedreferenceZeng, Z., Ho, S.‐P., Sokolovskiy, S., & Kuo, Y.‐H. ( 2012 ). Structural evolution of the Madden‐Julian Oscillation from COSMIC radio occultation data. Journal of Geophysical Research, 117, D22108. https://doi.org/10.1029/2012JD017685
dc.identifier.citedreferenceZermeño‐Díaz, D. M., Zhang, C., Kollias, P., & Kalesse, H. ( 2015 ). The role of shallow cloud moistening in MJO and non‐MJO convective events over the ARM Manus site. Journal of the Atmospheric Sciences, 72, 4797 – 4820. https://doi.org/10.1175/jas-d-14-0322.1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.