Show simple item record

Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O‐arabinosyltransferase mutants

dc.contributor.authorBeuder, Steven
dc.contributor.authorDorchak, Alexandria
dc.contributor.authorBhide, Ashwini
dc.contributor.authorMoeller, Svenning Rune
dc.contributor.authorPetersen, Bent L.
dc.contributor.authorMacAlister, Cora A.
dc.date.accessioned2020-09-02T15:01:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T15:01:01Z
dc.date.issued2020-08
dc.identifier.citationBeuder, Steven; Dorchak, Alexandria; Bhide, Ashwini; Moeller, Svenning Rune; Petersen, Bent L.; MacAlister, Cora A. (2020). "Exocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O‐arabinosyltransferase mutants." The Plant Journal 103(4): 1399-1419.
dc.identifier.issn0960-7412
dc.identifier.issn1365-313X
dc.identifier.urihttps://hdl.handle.net/2027.42/156472
dc.publisherWiley Periodicals, Inc.
dc.publisherMIMB, Humana Press
dc.subject.othersecretion
dc.subject.otherpollen tube
dc.subject.othercell wall
dc.subject.otherglycoprotein
dc.subject.othertip growth
dc.subject.otherexocyst
dc.subject.otherArabidopsis thaliana
dc.titleExocyst mutants suppress pollen tube growth and cell wall structural defects of hydroxyproline O‐arabinosyltransferase mutants
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/1/tpj14808-sup-0003-FigS3.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/9/tpj14808.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/8/tpj14808-sup-0001-FigS1.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/7/tpj14808-sup-0004-FigS4.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/6/tpj14808-sup-0005-FigS5.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/5/tpj14808-sup-0007-FigS7.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/4/tpj14808-sup-0006-FigS6.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/3/tpj14808-sup-0002-FigS2.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156472/2/tpj14808_am.pdfen_US
dc.identifier.doi10.1111/tpj.14808
dc.identifier.sourceThe Plant Journal
dc.identifier.citedreferenceShimada, T.L., Shimada, T. and Hara‐Nishimura, I. ( 2010 ) A rapid and non‐destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519 – 528.
dc.identifier.citedreferenceSekereš, J., Pejchar, P., Šantrůček, J., Vukašinović, N., Žárský, V. and Potocký, M. ( 2017 ) Analysis of Exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol. 173, 1659 – 1675.
dc.identifier.citedreferenceShaner, N.C., Lambert, G.G., Chammas, A. et al. ( 2013 ) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods, 10, 407 – 409.
dc.identifier.citedreferenceShowalter, A.M., Keppler, B., Lichtenberg, J., Gu, D. and Welch, L.R. ( 2010 ) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline‐rich glycoproteins. Plant Physiol. 153, 485 – 513.
dc.identifier.citedreferenceShowalter, A.M. and Basu, D. ( 2016 ) Extensin and arabinogalactan‐protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 7, 814.
dc.identifier.citedreferenceSinclair, R., Rosquete, M.R. and Drakakaki, G. ( 2018 ) Post‐Golgi trafficking and transport of cell wall components. Front. Plant Sci. 9, 1784.
dc.identifier.citedreferenceSmallwood, M., Martin, H. and Knox, J.P. ( 1995 ) An epitope of rice threonine‐ and hydroxyproline‐rich glycoprotein is common to cell wall and hydrophobic plasma‐membrane glycoproteins. Planta, 196, 510 – 22.
dc.identifier.citedreferenceSmallwood, M., Beven, A., Donovan, N., Neill, S.J., Peart, J., Roberts, K. and Knox, J.P. ( 1994 ) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J. 5, 237 – 246.
dc.identifier.citedreferenceStafstrom, J. and Staehelin, L.A. ( 1986a ) Cross‐linking patterns in salt‐extractable extensin from Carrot cell walls. Plant Physiol. 81, 234 – 241.
dc.identifier.citedreferenceStafstrom, J.P. and Staehelin, L.A. ( 1986b ) The role of carbohydrate in maintaining extensin in an extended conformation. Plant Physiol. 81, 242 – 246.
dc.identifier.citedreferenceSynek, L., Schlager, N., Eliáš, M., Quentin, M., Hauser, M.T. and Žárský, V. ( 2006 ) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48, 54 – 72.
dc.identifier.citedreferenceSynek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M. and Žárský, V. ( 2017 ) EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174, 223 – 240.
dc.identifier.citedreferenceTan, L., Varnai, P., Lamport, D.T.A., Yuan, C., Xu, J., Qiu, F. and Kieliszewski, M.J. ( 2010 ) Plant O‐Hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains. J. Biol. Chem. 285, 24575 – 24583.
dc.identifier.citedreferenceTang, H., Wang, S., Wang, J., Song, M., Xu, M., Zhang, M., Shen, Y., Hou, J. and Bao, X. ( 2016 ) N‐hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae. Scientific Reports, 6, 25654.
dc.identifier.citedreferenceVan der Woude, W.J., Morré, D.J. and Bracker, C.E. ( 1971 ) Isolation and characterization of secretory vesicles in germinated pollen of Lilium longiflorum. J. Cell Sci. 8, 331 – 351.
dc.identifier.citedreferencevan Holst, G.J. and Varner, J.E. ( 1984 ) Reinforced polyproline II conformation in a hydroxyproline‐rich cell wall glycoprotein from carrot root. Plant Physiol. 74, 247 – 251.
dc.identifier.citedreferenceVelasquez, S.M., Marzol, E., Borassi, C. et al. ( 2015 ) Low sugar is not always good: impact of specific O‐glycan defects on tip growth in Arabidopsis. Plant Physiol. 168, 808 – 813.
dc.identifier.citedreferenceVelasquez, S.M., Ricardi, M.M., Dorosz, J.G. et al. ( 2011 ) O‐glycosylated cell wall proteins are essential in root hair growth. Science, 332, 1401 – 1403.
dc.identifier.citedreferenceVerhertbruggen, Y., Marcus, S.E., Haeger, A., Ordaz‐Ortiz, J.J. and Knox, J.P. ( 2009 ) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohyd. Res. 344, 1858 – 1862.
dc.identifier.citedreferenceWang, X., Wang, K., Yin, G. et al. ( 2018 ) Pollen‐expressed leucine‐rich repeat extensins are essential for pollen germination and growth. Plant Physiol. 176, 1993 – 2006.
dc.identifier.citedreferenceWolf, S., Mouille, G. and Pelloux, J. ( 2009 ) Homogalacturonan methyl‐esterification and plant development. Mol. Plant, 2 ( 5 ), 851 – 60.
dc.identifier.citedreferenceWoody, S.T., Austin‐Phillips, S., Amasino, R.M. and Krysan, P.J. ( 2007 ) The WiscDsLox T‐DNA collection: an Arabidopsis community resource generated by using an improved high‐throughput T‐DNA sequencing pipeline. J. Plant Res. 120, 157 – 165.
dc.identifier.citedreferenceXiang, Y., Zhang, X., Nix, D.B., Katoh, T., Aoki, K., Tiemeyer, M. and Wang, Y. ( 2012 ) Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat. Commun. 4, 1659.
dc.identifier.citedreferenceXu, C., Liberatore, K.L., MacAlister, C.A. et al. ( 2015 ) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47, 784 – 792.
dc.identifier.citedreferenceYang, Z., Bennett, E.P., Jørgensen, B., Drew, D.P., Arigi, E., Mandel, U., Ulvskov, P., Levery, S.B., Clausen, H. and Petersen, B.L. ( 2012 ) Toward stable genetic engineering of human O‐glycosylation in plants. Plant Physiol. 160, 450 – 463.
dc.identifier.citedreferenceYe, J., Zheng, Y., Yan, A., Chen, N., Wang, Z., Huang, S. and Yang, Z. ( 2009 ) Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell, 21, 3868 – 3884.
dc.identifier.citedreferenceYoro, E., Nishida, H., Ogawa‐Ohnishi, M., Yoshida, C., Suzaki, T., Matsubayashi, Y. and Kawaguchi, M. ( 2019 ) PLENTY, a hydroxyproline O‐arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. J. Exp. Bot. 70, 507 – 517.
dc.identifier.citedreferenceZhu, X., Li, S., Pan, S., Xin, X. and Gua, Y. ( 2018 ) CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc. Natl. Acad. Sci. USA, 115, E3578 – E3587.
dc.identifier.citedreferenceAdams, E. and Frank, L. ( 1980 ) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem. 49, 1005 – 1061.
dc.identifier.citedreferenceAlonso, J.M., Stepanova, A.N., Leisse, T.J. et al. ( 2003 ) Genome‐wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653 – 657.
dc.identifier.citedreferenceBate, N. and Twell, D. ( 1998 ) Functional architecture of a late pollen promoter: pollen‐specific transcription is developmentally regulated by multiple stage‐specific and co‐dependent activator elements. Plant Mol. Biol. 37, 859 – 869.
dc.identifier.citedreferenceBeuder, S. and MacAlister, C.A. ( 2020 ) Isolation and cloning of suppressor mutants with improved pollen fertility (2020). In: Pollen and Pollen Tube Biology: Methods and Protocols ( Geitmann, A., ed). MIMB, Humana Press.
dc.identifier.citedreferenceBloch, D., Pleskot, R., Pejchar, P., Potocký, M., Trpkošová, P., Cwiklik, L., Vukašinović, N., Sternberg, H., Yalovsky, S. and Žárský, V. ( 2016 ) Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol. 172, 980 – 1002.
dc.identifier.citedreferenceBorassi, C., Sede, A.R., Mecchia, M.A., Salter, J.D.S., Marzol, E., Muschietti, J.P. and Estevez, J.M. ( 2016 ) An update on cell surface proteins containing extensin‐motifs. J. Exp. Bot. 67, 477 – 487.
dc.identifier.citedreferenceBosch, M. and Hepler, P.K. ( 2005 ) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell, 17, 3219 – 3226.
dc.identifier.citedreferenceBove, J., Vaillancourt, B., Kroeger, J., Hepler, P.K., Wiseman, P.W. and Geitmann, A. ( 2008 ) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol. 147, 1646 – 1658.
dc.identifier.citedreferenceBrownleader, M.D. and Dey, P.M. ( 1993 ) Purification of extensin from cell walls of tomato (hybrid of Lycopersicon esculentum and L. peruvianum) cells in suspension culture. Planta, 191, 457 – 469.
dc.identifier.citedreferenceCampanoni, P. and Blatt, M.R. ( 2007 ) Membrane trafficking and polar growth in root hairs and pollen tubes. J. Exp. Bot. 58, 65 – 74.
dc.identifier.citedreferenceCannon, M.C., Terneus, K., Hall, Q., Tan, L., Wang, Y., Wegenhart, B.L., Chen, L., Lamport, D.T.A., Chen, Y. and Kieliszewski, M.J. ( 2008 ) Self‐assembly of the plant cell wall requires an extensin scaffold. Proc. Natl. Acad. Sci. USA, 105, 2226 – 2231.
dc.identifier.citedreferenceChang, M. and Huang, S. ( 2017 ) Rapid isolation of total protein from Arabidopsis pollen. Bio‐Protocol, 7 ( 8 ), e2227. https://doi.org/10.21769/BioProtoc.2227
dc.identifier.citedreferenceChebli, Y., Kaneda, M., Zerzour, R. and Geitmann, A. ( 2012 ) The cell wall of the Arabidopsis pollen tube –spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160, 1940 – 1955.
dc.identifier.citedreferenceChen, Y., Dong, W., Tan, L., Held, M.A. and Kieliszewski, M.J. ( 2015 ) Arabinosylation plays a crucial role in extensin cross‐linking in vitro. Biochem. Insights, 8, 1 – 13.
dc.identifier.citedreferenceCheung, A.Y., Niroomand, S., Zou, Y. and Wu, H.‐M. ( 2010 ) A transmembrane formin nucleates subapical actin assembly and controls tip‐focused growth in pollen tubes. Proc. Natl. Acad. Sci. USA, 107, 16390 – 16395.
dc.identifier.citedreferenceCheung, A.Y. and Wu, H. ( 2004 ) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell, 16, 257 – 269.
dc.identifier.citedreferenceChong, Y.T., Gidda, S.K., Sanford, C., Parkinson, J., Mullen, R.T. and Goring, D.R. ( 2009 ) Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 185, 401 – 419.
dc.identifier.citedreferenceChoudhary, P., Saha, P., Ray, T., Tang, Y., Yang, D. and Cannon, M.C. ( 2015 ) EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis. Front. Plant Sci. 6, 553.
dc.identifier.citedreferenceCole, R.A., Synek, L., Zarsky, V. and Fowler, J.E. ( 2005 ) SEC8, a subunit of the putative Arabidopsis Exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 138, 2005 – 2018.
dc.identifier.citedreferenceCole, R.A., McInally, S.A. and Fowler, J.E. ( 2014 ) Developmentally distinct activities of the exocyst enable rapid cell elongation and determine meristem size during primary root growth in Arabidopsis. BMC Plant Biol. 14, 386.
dc.identifier.citedreferenceCosgrove, D.J. ( 2005 ) Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850 – 861.
dc.identifier.citedreferenceDardelle, F., Lehner, A., Ramdani, Y., Bardor, M., Lerouge, P., Driouich, A. and Mollet, J.C. ( 2010 ) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol. 153, 1563 – 1576.
dc.identifier.citedreferenceEgelund, J., Obel, N., Ulvskov, P., Geshi, N., Pauly, M., Bacic, A. and Petersen, B.L. ( 2007 ) Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Mol. Biol. 64, 439 – 451.
dc.identifier.citedreferenceEverdeen, D.S., Kiefer, S., Willard, J.J., Muldoon, E.P., Dey, P.M., Li, X.B. and Lamport, D.T. ( 1988 ) Enzymic cross‐linkage of monomeric Extensin precursors in vitro. Plant Physiol. 87, 616 – 621.
dc.identifier.citedreferenceFabrice, T.N., Vogler, H., Draeger, C., Munglani, G., Gupta, S., Herger, A.G., Knox, P., Grossniklaus, U. and Ringli, C. ( 2018 ) LRX proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiol. 176, 1981 – 1992.
dc.identifier.citedreferenceFry, S.C. ( 1988 ) The Growing Plant Cell Wall: Chemical and Metabolic Analysis. UK: Longman Scientific & Technical.
dc.identifier.citedreferenceGille, S., Hansel, U., Ziemann, M. and Pauly, M. ( 2009 ) Identification of plant cell wall mutants by means of a forward chemical genetic approach using hydrolases. Proc. Natl. Acad. Sci. USA, 106, 14699 – 14704.
dc.identifier.citedreferenceGrobei, M.A., Qeli, E., Brunner, E., Rehrauer, H., Zhang, R., Roschitzki, B., Basler, K., Ahrens, C.H. and Grossniklaus, U. ( 2009 ) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 19, 1786 – 1800.
dc.identifier.citedreferenceHála, M., Cole, R., Synek, L. et al. ( 2008 ) Exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell, 20, 1330 – 1345.
dc.identifier.citedreferenceHarsay, E. and Bretscher, A. ( 1995 ) Parallel secretory pathways to the cell surface in yeast. J. Cell Biol. 131, 297 – 310.
dc.identifier.citedreferenceHe, B., Xi, F., Zhang, X., Zhang, J. and Guo, W. ( 2007a ) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 26, 4053 – 4065.
dc.identifier.citedreferenceHe, B., Xi, F., Zhang, J., TerBush, D., Zhang, X. and Guo, W. ( 2007b ) Exo70p mediates the secretion of specific exocytic vesicles at early stages of the cell cycle for polarized cell growth. J. Cell Biol. 176, 771 – 777.
dc.identifier.citedreferenceHeld, M.A., Tan, L., Kamyab, A., Hare, M., Shpak, E. and Kieliszewski, M.J. ( 2004 ) Di‐isodityrosine is the intermolecular cross‐link of isodityrosine‐rich extensin analogs cross‐linked in vitro. J. Biol. Chem. 279, 55474 – 55482.
dc.identifier.citedreferenceHepler, P.K., Rounds, C.M. and Winship, L.J. ( 2013 ) Control of cell wall extensibility during pollen tube growth. Mol. Plant, 6, 998 – 1017.
dc.identifier.citedreferenceHill, A.E., Shachar‐Hill, B., Skepper, J.N., Powerll, A. and Shachar‐Hill, Y. ( 2012 ) An osmotic model of the growing pollen tube. PLoS ONE, 7, e36585.
dc.identifier.citedreferenceHruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W. and Zimmermann, P. ( 2008 ) Genevestigator v3: a reference expression database for the meta‐analysis of transcriptomes. Adv. Bioinform. 2008, 420747.
dc.identifier.citedreferenceImin, N., Patel, N., Corcilius, L., Payne, R.J. and Djordjevic, M.A. ( 2018 ) CLE peptide tri‐arabinosylation and peptide domain sequence composition are essential for SUNN‐dependent autoregulation of nodulation in Medicago truncatula. New Phytol. 218, 73 – 80.
dc.identifier.citedreferenceJohnson, K.L., Cassin, A.M., Lonsdale, A., Bacic, A., Doblin, M.S. and Schultz, C.J. ( 2017 ) Pipeline to identify hydroxyproline‐rich glycoproteins. Plant Physiol. 174, 886 – 903.
dc.identifier.citedreferenceKalmbach, L., Hématy, K., De Bellis, D., Barberon, M., Fujita, S., Ursache, R., Daraspe, J. and Geldner, N. ( 2017 ) Transient cell‐specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat. Plants, 3, 17058.
dc.identifier.citedreferenceKanaoka, M.M. and Higashiyama, T. ( 2015 ) Peptide signaling in pollen tube guidance. Curr. Opin. Plant Biol. 28, 127 – 136.
dc.identifier.citedreferenceKassaw, T., Nowak, S., Schnabel, E. and Frugoli, J. ( 2017 ) ROOT DETERMINED NODULATION1 is required for M. truncatula CLE12, but not CLE13, peptide signaling through the SUNN receptor kinase. Plant Physiol. 174, 2445 – 2456.
dc.identifier.citedreferenceKieliszewski, M.J. and Shpak, E. ( 2001 ) Synthetic genes for the elucidation of glycosylation codes for arabinogalactan‐proteins and other hydroxyproline‐rich glycoproteins. Cell. Mol. Life Sci. 58, 1386 – 1398.
dc.identifier.citedreferenceKlepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D. and Penin, A.A. ( 2016 ) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA‐seq profiling. Plant J. 88, 1058 – 1070.
dc.identifier.citedreferenceKulich, I., Cole, R., Drdová, E., Cvrčková, F., Soukup, A., Fowler, J. and Žárský, V. ( 2010 ) Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 188, 615 – 625.
dc.identifier.citedreferenceLamport, D.T.A. and Miller, D.H. ( 1971 ) Hydroxyproline Arabinosides in the Plant Kingdom. Plant Physiol. 48, 454 – 456.
dc.identifier.citedreferenceLamport, D.T.A. ( 1967 ) Hydroxyproline‐O‐glycosidic linkage of the plant cell wall glycoprotein extensin. Nature, 216, 1322 – 1324.
dc.identifier.citedreferenceLeucci, M.R., Sansebastiano, P.D., Gigante, M., Dalessandro, G. and Piro, G. ( 2007 ) Secretion marker proteins and cell‐wall polysaccharides move through different secretory pathways. Planta, 225, 1001 – 1017.
dc.identifier.citedreferenceLi, Y., Tan, X., Wang, M., Li, B., Zhao, Y., Wu, C. and Rui, Q. ( 2017 ) Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci Rep. 7, 40279.
dc.identifier.citedreferenceLi, S., Chen, M., Yu, D., Ren, S., Sun, S., Liu, L., Ketelaar, T., Emons, A.M. and Liu, C.M. ( 2013 ) EXO70A1‐mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell, 25, 1774 – 1786.
dc.identifier.citedreferenceLi, S., van Os, G.M., Ren, S., Yu, D., Ketelaar, T., Emons, A.M. and Liu, C.M. ( 2010 ) Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type‐specific exocytosis. Plant Physiol. 154, 1819 – 1830.
dc.identifier.citedreferenceLiu, J., Zuo, X., Yue, P. and Guo, W. ( 2007 ) Phosphatidylinositol 4,5‐bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell, 18, 4483 – 4492.
dc.identifier.citedreferenceMacAlister, C.A., Ortiz‐Ramírez, C., Becker, J.D., Feijó, J.A. and Lippman, Z.B. ( 2016 ) Hydroxyproline O‐arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens. Plant J. 85, 193 – 208.
dc.identifier.citedreferenceMarković, V., Cvrčková, F., Potocký, M., Pejchar, P., Kollárová, E., Kulich, I., Synek, L. and Žárský, V. ( 2019 ) EXO70A2 is critical for the exocyst complex function in Arabidopsis pollen. bioRxiv. https://doi.org/10.1101/831875
dc.identifier.citedreferenceMcKenna, S.T., Kunkel, J.G., Bosch, M., Rounds, C.M., Vidali, L., Winship, L.J. and Hepler, P.K. ( 2009 ) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell, 21, 3026 – 3040.
dc.identifier.citedreferenceMecchia, M.A., Santos‐Fernandez, G., Duss, N.N. et al. ( 2017 ) RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science, 358 ( 6370 ), 1600 – 1603.
dc.identifier.citedreferenceMicheli, F. ( 2001 ) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 6, 414 – 419.
dc.identifier.citedreferenceMei, K. and Guo, W. ( 2018 ) The exocyst complex. Curr. Biol. 28, R922 – R925.
dc.identifier.citedreferenceMøller, S.R., Yi, X., Velásquez, S.M. et al. ( 2017 ) Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase. ExAD. Scientific Reports, 7, 45341.
dc.identifier.citedreferenceOgawa‐Ohnishi, M., Matsushita, W. and Matsubayashi, Y. ( 2013 ) Identification of three hydroxyproline O‐arabinosyltransferases in Arabidopsis thaliana. Nat. Chem. Biol. 9, 726 – 730.
dc.identifier.citedreferenceOhyama, K., Shinohara, H., Ogawa‐Ohnishi, M. and Matsubayashi, Y. ( 2009 ) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat. Chem. Biol. 5, 578 – 580.
dc.identifier.citedreferencePeterson, R., Sloven, J.P. and Chen, C. ( 2010 ) A simplified method for differential staining of aborted and non‐aborted pollen grains. Int. J. Plant Biol. 1, e13.
dc.identifier.citedreferenceQi, X., Behrens, B.X., West, P.R. and Mort, A.J. ( 1995 ) Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension cultures. Evidence for a covalent cross‐link between extensin and pectin. Plant Physiol. 108, 1691 – 1701.
dc.identifier.citedreferenceRodriguez‐Enriquez, M.J., Mehdi, S., Dickinson, H.G. and Grant‐Downton, R.T. ( 2013 ) A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytol.. 197, 668 – 679.
dc.identifier.citedreferenceRounds, C.M., Lubeck, E., Hepler, P.K. and Winship, L.J. ( 2011 ) Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. Plant Physiol. 157, 175 – 187.
dc.identifier.citedreferenceSafavian, D., Zayed, Y., Indriolo, E., Chapman, L., Ahmed, A. and Goring, D. ( 2015 ) RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol. 169, 2526 – 2538.
dc.identifier.citedreferenceSamuel, M.A., Chong, Y.T., Haasen, K.E., Aldea‐Brydges, M.G., Stone, S.L. and Goring, D.R. ( 2009 ) Cellular pathways regulating responses to compatible and self‐incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the Exocyst complex. Plant Cell, 21, 2655 – 2671.
dc.identifier.citedreferenceSchlupmann, H., Bacic, A. and Read, S.M. ( 1994 ) Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiol. 105 ( 2 ), 659 – 670.
dc.identifier.citedreferenceSchnabel, E.L., Kassaw, T.K., Smith, L.S., Marsh, J.F., Oldroyd, G.E., Long, S.R. and Frugoli, J.A. ( 2011 ) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol. 157, 328 – 340.
dc.identifier.citedreferenceSede, A.R., Borassi, C., Wengier, D.L., Mecchia, M.A., Estevez, J.M. and Muschietti, J.P. ( 2018 ) Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Letters, 592, 233 – 243.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.