Show simple item record

Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar

dc.contributor.authorHolder, R. M.
dc.contributor.authorYakymchuk, C.
dc.contributor.authorViete, D. R.
dc.date.accessioned2020-09-02T15:01:32Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T15:01:32Z
dc.date.issued2020-08
dc.identifier.citationHolder, R. M.; Yakymchuk, C.; Viete, D. R. (2020). "Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar." Geochemistry, Geophysics, Geosystems 21(8): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/156481
dc.description.abstractAccessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≤0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, geologists need to be able to measure the ages of metamorphism and magmatism: When did it happen? How long did it last? How does it relate to other rocks around the world? A common approach to addressing these questions is using U‐Pb dating of the minerals zircon, monazite, and apatite. The elements these minerals incorporate are indicative of how hot and how deep in the Earth they were when they grew. In this study we explore how geologists can use the concentrations of the element Europium (Eu) in these minerals to provide new insights into the geological meaning of U‐Pb dates, leading to more robust interpretations of Earth’s plate tectonic history.Key PointsEu anomalies in suprasolidus rocks record any process that changes the relative availability of Eu2+ and Eu3+, not just feldspar growthDisequilibrium is required for feldspar growth to strongly influence accessory mineral Eu anomaliesComparing accessory mineral Eu anomalies and Sr concentrations leads to more robust interpretation than evaluating Eu anomalies alone
dc.publisherMineralogical Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpetrochronology
dc.subject.otherapatite
dc.subject.otherU‐Pb
dc.subject.otherzircon
dc.subject.othermonazite
dc.subject.otherEu anomaly
dc.titleAccessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/1/ggge22268_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/3/ggge22268.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/2/ggge22268-sup-0001-2020GC009052-Text_SI-S01.pdfen_US
dc.identifier.doi10.1029/2020GC009052
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceSawyer, E. W. ( 1987 ). The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. Journal of Petrology, 28 ( 3 ), 445 – 473. https://doi.org/10.1093/petrology/28.3.445
dc.identifier.citedreferenceRubatto, D. ( 2017 ). Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 261 – 295. https://doi.org/10.2138/rmg.2017.83.10
dc.identifier.citedreferenceRubatto, D., Chakraborty, S., & Dasgupta, S. ( 2013 ). Timescales of crustal melting in the higher Himalayan crystallines (Sikkim, Eastern Himalaya) inferred from trace element‐constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165 ( 2 ), 349 – 372. https://doi.org/10.1007/s00410-012-0812-y
dc.identifier.citedreferenceRubatto, D., & Hermann, J. ( 2007 ). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241 ( 1–2 ), 38 – 61. https://doi.org/10.1016/j.chemgeo.2007.01.027
dc.identifier.citedreferenceRubatto, D., Hermann, J., & Buick, I. S. ( 2006 ). Temperature and bulk composition control on the growth of monazite and zircon during low‐pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47 ( 10 ), 1973 – 1996. https://doi.org/10.1093/petrology/egl033
dc.identifier.citedreferenceGratz, R., & Heinrich, W. ( 1997 ). Monazite‐xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4‐YPO4. American Mineralogist, 82 ( 7–8 ), 772 – 780. https://doi.org/10.2138/am-1997-7-816
dc.identifier.citedreferenceSeydoux‐Guillaume, A.‐M., Wirth, R., Heinrich, W., & Montel, J.‐M. ( 2002 ). Experimental determination of thorium partitioning between monazite and xenotime using analytical electron microscopy and X‐ray diffraction Rietveld analysis. European Journal of Mineralogy, 14 ( 5 ), 869 – 878. https://doi.org/10.1127/0935-1221/2002/0014-0869
dc.identifier.citedreferenceShannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystallographica, A32, 751 – 767.
dc.identifier.citedreferenceShrestha, S., Larson, K. P., Duesterhoeft, E., Soret, M., & Cottle, J. M. ( 2019 ). Thermodynamic modelling of phosphate minerals and its implications for the development of P‐T‐t histories: A case study in garnet ‐ monazite bearing metapelites. Lithos, 334‐335, 141 – 160. https://doi.org/10.1016/j.lithos.2019.03.021
dc.identifier.citedreferenceSpear, F. S. ( 2010 ). Monazite–allanite phase relations in metapelites. Chemical Geology, 279 ( 1–2 ), 55 – 62. https://doi.org/10.1016/j.chemgeo.2010.10.004
dc.identifier.citedreferenceSpear, F. S., & Pyle, J. M. ( 2010 ). Theoretical modeling of monazite growth in a low‐Ca metapelite. Chemical Geology, 273 ( 1–2 ), 111 – 119. https://doi.org/10.1016/j.chemgeo.2010.02.016
dc.identifier.citedreferenceSpear, F. S. ( 1993 ). Metamorphic phase equilibria and pressure‐temperature‐time paths. Monograph/Mineralogical Society of America. Washington, D.C.: Mineralogical Society of America.
dc.identifier.citedreferenceStepanov, A. S., Hermann, J., Rubatto, D., & Rapp, R. P. ( 2012 ). Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300‐301, 200 – 220. https://doi.org/10.1016/j.chemgeo.2012.01.007
dc.identifier.citedreferenceSun, C., Graff, M., & Liang, Y. ( 2017 ). Trace element partitioning between plagioclase and silicate melt: The importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochimica et Cosmochimica Acta, 206, 273 – 295. https://doi.org/10.1016/j.gca.2017.03.003
dc.identifier.citedreferenceTaylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., & Kelly, N. M. ( 2015 ). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high‐T crustal processes. Journal of Metamorphic Geology, 33 ( 3 ), 231 – 248. https://doi.org/10.1111/jmg.12118
dc.identifier.citedreferenceThomas, J. B., Watson, E. B., Spear, F. S., & Wark, D. A. ( 2015 ). TitaniQ recrystallized: Experimental confirmation of the original Ti‐in‐quartz calibrations. Contributions to Mineralogy and Petrology, 169 ( 3 ), 27. https://doi.org/10.1007/s00410-015-1120-0
dc.identifier.citedreferenceTomkins, H. S., Powell, R., & Ellis, D. J. ( 2007 ). The pressure dependence of the zirconium‐in‐rutile thermometer. Journal of Metamorphic Geology, 25 ( 6 ), 703 – 713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
dc.identifier.citedreferenceWark, D. A., & Watson, E. B. ( 2006 ). TitaniQ: A titanium‐in‐quartz geothermometer. Contributions to Mineralogy and Petrology, 152 ( 6 ), 743 – 754. https://doi.org/10.1007/s00410-006-0132-1
dc.identifier.citedreferenceWarren, C. J., Greenwood, L. V., Argles, T. W., Roberts, N. M. W., Parrish, R. R., & Harris, N. B. W. ( 2019 ). Garnet‐monazite rare earth element relationships in sub‐solidus Metapelites: A case study from Bhutan. Geological Society Special Publication, 478 ( 1 ), 145 – 166. https://doi.org/10.1144/SP478.1
dc.identifier.citedreferenceWatson, E. B., & Green, T. H. ( 1981 ). Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters, 56 ( C ), 405 – 421. https://doi.org/10.1016/0012-821X(81)90144-8
dc.identifier.citedreferenceYakymchuk, C. ( 2017 ). Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274‐275, 412 – 426. https://doi.org/10.1016/j.lithos.2017.01.009
dc.identifier.citedreferenceYakymchuk, C., & Brown, M. ( 2014 ). Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171 ( 4 ), 465 – 479. https://doi.org/10.1144/jgs2013-115
dc.identifier.citedreferenceYakymchuk, C., Clark, C., & White, R. W. ( 2017 ). Phase relations, reactions sequences and petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 13 – 53. https://doi.org/10.2138/rmg.2017.83.2
dc.identifier.citedreferenceYakymchuk, C., Rehm, A., Liao, Z., & Cottle, J. M. ( 2019 ). Petrochronology of oxidized granulites from southern Peru. Journal of Metamorphic Geology, 37 ( 6 ), 839 – 862. https://doi.org/10.1111/jmg.12501
dc.identifier.citedreferenceZack, T., & Kooijman, E. ( 2017 ). Petrology and geochronology of rutile. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 443 – 467. https://doi.org/10.2138/rmg.2017.83.14
dc.identifier.citedreferenceAgue, J. J. ( 1991 ). Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology, 19 ( 8 ), 855 – 858. https://doi.org/10.1130/0091-7613(1991)019<0855:EFMMTA>2.3.CO;2
dc.identifier.citedreferenceBea, F., & Montero, P. ( 1999 ). Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite formation of Ivrea‐Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63 ( 7‐8 ), 1133 – 1153. https://doi.org/10.1016/S0016-7037
dc.identifier.citedreferenceBea, F., Pereira, M. D., & Stroh, A. ( 1994 ). Mineral/leucosome trace‐element partitioning in a peraluminous migmatite (a laser ablation‐ICP‐MS study). Chemical Geology, 117 ( 1‐4 ), 291 – 312. https://doi.org/10.1016/0009-2541(94)90133-3
dc.identifier.citedreferenceBoger, S. D., White, R. W., & Schulte, B. ( 2012 ). The importance of iron speciation (Fe +2 /Fe +3 ) in determining mineral assemblages: An example from the high‐grade aluminous metapelites of southeastern Madagascar. Journal of Metamorphic Geology, 30 ( 9 ), 997 – 1018. https://doi.org/10.1111/jmg.12001
dc.identifier.citedreferenceBrown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., & Siddoway, C. S. ( 2016 ). From source to sink: Petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite‐granite complex, West Antarctica. Journal of Petrology, 57 ( 7 ), 1241 – 1278. https://doi.org/10.1093/petrology/egw039
dc.identifier.citedreferenceBucholz, C. E., & Kelemen, P. B. ( 2019 ). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174 ( 10 ), 1, 79 – 27. https://doi.org/10.1007/s00410-019-1609-z
dc.identifier.citedreferenceBuick, I. S., Hermann, J., Williams, I. S., Gibson, R. L., & Rubatto, D. ( 2006 ). A SHRIMP U–Pb and LA‐ICP‐MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the central zone of the Limpopo Belt, South Africa. Lithos, 88 ( 1–4 ), 150 – 172. https://doi.org/10.1016/j.lithos.2005.09.001
dc.identifier.citedreferenceBurnham, A. D., Berry, A. J., Halse, H. R., Schofield, P. F., Cibin, G., & Mosselmans, J. F. W. ( 2015 ). The oxidation state of europium in silicate melts as a function of oxygen fugacity, composition and temperature. Chemical Geology, 411, 248 – 259. https://doi.org/10.1016/j.chemgeo.2015.07.002
dc.identifier.citedreferenceCherniak, D. J. ( 2003 ). REE diffusion in feldspar. Chemical Geology, 193 ( 1–2 ), 25 – 41. https://doi.org/10.1016/S0009-2541(02)00246-2
dc.identifier.citedreferenceCherniak, D. J., & Watson, E. B. ( 1992 ). A study of strontium diffusion in K‐feldspar, Na‐K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth and Planetary Science Letters, 113 ( 3 ), 411 – 425. https://doi.org/10.1016/0012-821X (92)90142‐I
dc.identifier.citedreferenceCherniak, D. J., & Watson, E. B. ( 1994 ). A study of strontium diffusion in plagioclase using Rutherford backscattering spectroscopy. Geochimica et Cosmochimica Acta, 58 ( 23 ), 5179 – 5190. https://doi.org/10.1016/0016-7037(94)90303-4
dc.identifier.citedreferenceCioffi, C. R., Campos Neto, M. C., Möller, A., & Rocha, B. C. ( 2019 ). Titanite petrochronology of the southern Brasília Orogen basement: Effects of retrograde net‐transfer reactions on titanite trace element compositions. Lithos, 344‐345, 393 – 408. https://doi.org/10.1016/j.lithos.2019.06.035
dc.identifier.citedreferenceCondie, K. C. ( 1993 ). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104 ( 1–4 ), 1 – 37. https://doi.org/10.1016/0009-2541(93)90140-E
dc.identifier.citedreferenceConnolly, J. A. D., & Cesare, B. ( 1993 ). C‐O‐H‐S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology, 11 ( 3 ), 379 – 388. https://doi.org/10.1111/j.1525-1314.1993.tb00155.x
dc.identifier.citedreferenceDiener, J. F. A., & Powell, R. ( 2010 ). Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology, 28 ( 6 ), 599 – 613. https://doi.org/10.1111/j.1525-1314.2010.00880.x
dc.identifier.citedreferenceEngi, M. ( 2017 ). Petrochronology based on REE‐minerals: Monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 365 – 418. https://doi.org/10.2138/rmg.2017.83.12
dc.identifier.citedreferenceEngi, M., Lanari, P., & Kohn, M. J. ( 2017 ). Significant ages—An introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 1 – 12. https://doi.org/10.2138/rmg.2017.83.1
dc.identifier.citedreferenceFerry, J. M., & Watson, E. B. ( 2007 ). New thermodynamic models and revised calibrations for the Ti‐in‐zircon and Zr‐in‐rutile thermometers. Contributions to Mineralogy and Petrology, 154 ( 4 ), 429 – 437. https://doi.org/10.1007/s00410-007-0201-0
dc.identifier.citedreferenceFinger, F., & Krenn, E. ( 2007 ). Three metamorphic monazite generations in a high‐pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95 ( 1–2 ), 103 – 115. https://doi.org/10.1016/j.lithos.2006.06.003
dc.identifier.citedreferenceFoster, G., Gibson, H. D., Parrish, R., Horstwood, M., Fraser, J., & Tindle, A. ( 2002 ). Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology, 191 (1–3), 1–3 – 207. https://doi.org/10.1016/S0009-2541(02)00156-0, 183
dc.identifier.citedreferenceFoster, G., Kinny, P., Vance, D., Prince, C., & Harris, N. ( 2000 ). The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 181 ( 3 ), 327 – 340. https://doi.org/10.1016/S0012-821X(00)00212-0
dc.identifier.citedreferenceGarber, J. M., Hacker, B. R., Kylander‐Clark, A. R. C., Stearns, M. A., & Seward, G. ( 2017 ). Controls on trace element uptake in metamorphic titanite: Implications for petrochronology. Journal of Petrology, 58 ( 6 ), 1031 – 1057. https://doi.org/10.1093/petrology/egx046
dc.identifier.citedreferenceHacker, B., Kylander‐Clark, A., & Holder, R. ( 2019 ). REE partitioning between monazite and garnet: Implications for petrochronology. Journal of Metamorphic Geology, 37 ( 2 ), 227 – 237. https://doi.org/10.1111/jmg.12458
dc.identifier.citedreferenceHayden, L. A., Watson, E. B., & Wark, D. A. ( 2008 ). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155 ( 4 ), 529 – 540. https://doi.org/10.1007/s00410-007-0256-y
dc.identifier.citedreferenceHermann, J., & Rubatto, D. ( 2003 ). Relating zircon and monazite domains to garnet growth zones: Age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21 ( 9 ), 833 – 852. https://doi.org/10.1046/j.1525-1314.2003.00484.x
dc.identifier.citedreferenceHokada, T., & Harley, S. L. ( 2004 ). Zircon growth in UHT leucosome: Constraints from zircon‐garnet rare earth elements (REE) relations in Napier complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99 ( 4 ), 180 – 190. https://doi.org/10.2465/jmps.99.180
dc.identifier.citedreferenceHolder, R., Yakymchuk, C., Viete, D. ( 2020 ). Modeled mineral Eu anomalies in suprasolidus metasediments, version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/111590
dc.identifier.citedreferenceHolder, R. M., Hacker, B. R., Horton, F., & Rakotondrazafy, A. F. M. ( 2018 ). Ultrahigh‐temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long‐lived high‐ T orogen. Journal of Metamorphic Geology, 36 ( 7 ), 855 – 880. https://doi.org/10.1111/jmg.12316
dc.identifier.citedreferenceHolder, R. M., Hacker, B. R., Kylander‐Clark, A. R. C., & Cottle, J. M. ( 2015 ). Monazite trace‐element and isotopic signatures of (ultra)high‐pressure metamorphism: Examples from the Western Gneiss region, Norway. Chemical Geology, 409, 99 – 111. https://doi.org/10.1016/j.chemgeo.2015.04.021
dc.identifier.citedreferenceJanots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M., & Cemič, L. ( 2007 ). Thermochemistry of monazite‐(La) and dissakisite‐(La): Implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology, 154 ( 1 ), 1 – 14. https://doi.org/10.1007/s00410-006-0176-2
dc.identifier.citedreferenceKelly, N. M., Clarke, G. L., & Harley, S. L. ( 2006 ). Monazite behaviour and age significance in poly‐metamorphic high‐grade terrains: A case study from the western Musgrave Block, central Australia11Abbreviations: After Kretz, 1983. Lithos, 88 ( 1‐4 ), 100 – 134. https://doi.org/10.1016/j.lithos.2005.08.007
dc.identifier.citedreferenceKelly, N. M., & Harley, S. L. ( 2005 ). An integrated microtextural and chemical approach to zircon geochronology: Refining the Archaean history of the Napier complex, east Antarctica. Contributions to Mineralogy and Petrology, 149 ( 1 ), 57 – 84. https://doi.org/10.1007/s00410-004-0635-6
dc.identifier.citedreferenceKelsey, D. E., Clark, C., & Hand, M. ( 2008 ). Thermobarometric modelling of zircon and monazite growth in melt‐bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26 ( 2 ), 199 – 212. https://doi.org/10.1111/j.1525-1314.2007.00757.x
dc.identifier.citedreferenceKohn, M. J. ( 2017 ). Titanite petrochronology. Reviews in Mineralogy and Geochemistry, 83 ( 1 ), 419 – 441. https://doi.org/10.2138/rmg.2017.83.13
dc.identifier.citedreferenceKohn, M. J., Corrie, S. L., & Markley, C. ( 2015 ). The fall and rise of metamorphic zircon. American Mineralogist, 100 ( 4 ), 897 – 908. https://doi.org/10.2138/am-2015-5064
dc.identifier.citedreferenceKohn, M. J., & Kelly, N. M. ( 2017 ). Petrology and geochronology of metamorphic zircon. Microstructural Geochronology: Planetary Records Down to Atom Scale, 35 – 61. https://doi.org/10.1002/9781119227250.ch2
dc.identifier.citedreferenceKorhonen, F. J., Brown, M., Clark, C., & Bhattacharya, S. ( 2013 ). Osumilite‐melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P‐T‐t evolution of the eastern ghats province, India. Journal of Metamorphic Geology, 31 ( 8 ), 881 – 907. https://doi.org/10.1111/jmg.12049
dc.identifier.citedreferenceMcDonough, W. F., & Sun, S.‐s. ( 1995 ). The composition of the Earth. Chemical Geology, 120 ( 3‐4 ), 223 – 253. https://doi.org/10.1016/0009-2541(94)00140-4
dc.identifier.citedreferenceMottram, C. M., Warren, C. J., Regis, D., Roberts, N. M. W., Harris, N. B. W., Argles, T. W., & Parrish, R. R. ( 2014 ). Developing an inverted Barrovian sequence; insights from monazite petrochronology. Earth and Planetary Science Letters, 403, 418 – 431. https://doi.org/10.1016/j.epsl.2014.07.006
dc.identifier.citedreferenceO’Brien, P. J., & Rötzler, J. ( 2003 ). High‐pressure granulites: Formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21 ( 1 ), 3 – 20. https://doi.org/10.1046/j.1525-1314.2003.00420.x
dc.identifier.citedreferencePhilpotts, J. A. ( 1970 ). Redox estimation from a calculation of Eu 2+ and Eu 3+ concentrations in natural phases. Earth and Planetary Science Letters, 9 ( 3 ), 257 – 268. https://doi.org/10.1016/0012-821X(70)90036-1
dc.identifier.citedreferencePyle, J. M., & Spear, F. S. ( 1999 ). Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research, 1 ( 6 ), 1 – 49.
dc.identifier.citedreferencePyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. ( 2001 ). Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. Journal of Petrology, 42 ( 11 ), 2083 – 2107. https://doi.org/10.1093/petrology/42.11.2083
dc.identifier.citedreferenceRen, M. ( 2004 ). Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma. American Mineralogist, 89 ( 8–9 ), 1290 – 1303. https://doi.org/10.2138/am-2004-8-918
dc.identifier.citedreferenceRosenberg, C. L., & Handy, M. R. ( 2005 ). Experimental deformation of partially melted granite revisited: Implications for the continental crust. Journal of Metamorphic Geology, 23 ( 1 ), 19 – 28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
dc.identifier.citedreferenceRubatto, D. ( 2002 ). Zircon trace element geochemistry: Distribution coefficients and the link between U‐Pb ages and metamorphism. Chemical Geology, 184 ( 1‐2 ), 123 – 138. Retrieved from. www.elsevier.com/locate/chemgeo, https://doi.org/10.1016/S0009-2541(01)00355-2
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.