Show simple item record

The STONE Curve: A ROC‐Derived Model Performance Assessment Tool

dc.contributor.authorLiemohn, Michael W.
dc.contributor.authorAzari, Abigail R.
dc.contributor.authorGanushkina, Natalia Y.
dc.contributor.authorRastätter, Lutz
dc.date.accessioned2020-09-02T15:01:49Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T15:01:49Z
dc.date.issued2020-08
dc.identifier.citationLiemohn, Michael W.; Azari, Abigail R.; Ganushkina, Natalia Y.; Rastätter, Lutz (2020). "The STONE Curve: A ROC‐Derived Model Performance Assessment Tool." Earth and Space Science 7(8): n/a-n/a.
dc.identifier.issn2333-5084
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/2027.42/156486
dc.description.abstractA new model validation and performance assessment tool is introduced, the sliding threshold of observation for numeric evaluation (STONE) curve. It is based on the relative operating characteristic (ROC) curve technique, but instead of sorting all observations in a categorical classification, the STONE tool uses the continuous nature of the observations. Rather than defining events in the observations and then sliding the threshold only in the classifier/model data set, the threshold is changed simultaneously for both the observational and model values, with the same threshold value for both data and model. This is only possible if the observations are continuous and the model output is in the same units and scale as the observations, that is, the model is trying to exactly reproduce the data. The STONE curve has several similarities with the ROC curve—plotting probability of detection against probability of false detection, ranging from the (1,1) corner for low thresholds to the (0,0) corner for high thresholds, and values above the zero‐intercept unity‐slope line indicating better than random predictive ability. The main difference is that the STONE curve can be nonmonotonic, doubling back in both the x and y directions. These ripples reveal asymmetries in the data‐model value pairs. This new technique is applied to modeling output of a common geomagnetic activity index as well as energetic electron fluxes in the Earth’s inner magnetosphere. It is not limited to space physics applications but can be used for any scientific or engineering field where numerical models are used to reproduce observations.Plain Language SummaryScientists often try to reproduce observations with a model, helping them explain the observations by adjusting known and controllable features within the model. They then use a large variety of metrics for assessing the ability of a model to reproduce the observations. One such metric is called the relative operating characteristic (ROC) curve, a tool that assesses a model’s ability to predict events within the data. The ROC curve is made by sliding the event‐definition threshold in the model output, calculating certain metrics and making a graph of the results. Here, a new model assessment tool is introduced, called the sliding threshold of observation for numeric evaluation (STONE) curve. The STONE curve is created by sliding the event definition threshold not only for the model output but also simultaneously for the data values. This is applicable when the model output is trying to reproduce the exact values of a particular data set. While the ROC curve is still a highly valuable tool for optimizing the prediction of known and preclassified events, it is argued here that the STONE curve is better for assessing model prediction of a continuous‐valued data set.Key PointsA new event‐detection‐based metric for model performance appraisal is given with sliding thresholds in both observational and model valuesThe new metric is like the relative operating characteristic curve but uses continuous observational values, not just categorical statusThe new metric is used on real‐time model predictions of common geomagnetic activity parameters, demonstrating its features and strengths
dc.publisherWiley‐Blackwell
dc.subject.otherforecasting
dc.subject.othermodel validation
dc.subject.otherdata‐model comparison
dc.subject.otherSTONE curve
dc.subject.otherROC curve
dc.titleThe STONE Curve: A ROC‐Derived Model Performance Assessment Tool
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelSpace Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156486/2/ess2610.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156486/1/ess2610_am.pdfen_US
dc.identifier.doi10.1029/2020EA001106
dc.identifier.sourceEarth and Space Science
dc.identifier.citedreferenceMurphy, A. H., & Winkler, R. L. ( 1987 ). A general framework for forecast verification. Monthly Weather Review, 115 ( 7 ), 1330 – 1338. https://doi.org/10.1175/1520-0493(1987)115%3C1330:AGFFFV%3E2.0.CO;2
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., De Zeeuw, D. L., Rastaetter, L., Kuznetsova, M., Welling, D. T., Toth, G., Ilie, R., Gombosi, T. I., & van der Holst, B. ( 2018 ). Real‐time SWMF and CCMC: Assessing the Dst output from continuous operational simulations. Space Weather, 16, 1583 – 1603. https://doi.org/10.1029/2018SW001953
dc.identifier.citedreferenceLiemohn, M. W., & Jazowski, M. ( 2008 ). Ring current simulations of the 90 intense storms during solar cycle 23. Journal of Geophysical Research, 113, A00A17. https://doi.org/10.1029/2008JA013466
dc.identifier.citedreferenceLiemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., Tobiska, W. K., Wintoft, P., Ganushkina, N. Y., Welling, D. T., Bingham, S., Balikhin, M. A., Opgenoorth, H. J., Engel, M. A., Weigel, R. S., Singer, H. J., Buresova, D., Bruinsma, S., Zhelavskaya, I., Shprits, Y. Y., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16, 2079 – 2102. https://doi.org/10.1029/2018SW002067
dc.identifier.citedreferenceLiemohn, M. W., Xu, S., Dong, C., Bougher, S. W., Johnson, B. C., Ilie, R., & De Zeeuw, D. L. ( 2017 ). Ionospheric control of the dawn‐dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 122, 6397 – 6414. https://doi.org/10.1002/2016JA023707
dc.identifier.citedreferenceMa, Y. J., Nagy, A. F., Russell, C. T., Strangeway, R. J., Wei, H. Y., & Toth, G. ( 2013 ). A global multispecies single‐fluid MHD study of the plasma interaction around Venus. Journal of Geophysical Research: Space Physics, 118, 321 – 330. https://doi.org/10.1029/2012JA018265
dc.identifier.citedreferenceMason, I. B. ( 1982 ). A model for assessment of weather forecasts. Australian Meteorological Magazine, 30, 291 – 303.
dc.identifier.citedreferenceManzato, A. ( 2005 ). An odds ratio parameterization for ROC diagram and skill score indices. Weather and Forecasting, 20 ( 6 ), 918 – 930. https://doi.org/10.1175/WAF899.1
dc.identifier.citedreferenceManzato, A. ( 2007 ). A note on the maximum Peirce skill score. Weather and Forecasting, 22 ( 5 ), 1148 – 1154. https://doi.org/10.1175/WAF1041.1
dc.identifier.citedreferenceMathieu, J. A., & Aires, F. ( 2018 ). Using neural network classifier approach for statistically forecasting extreme corn yield losses in Eastern United States. Earth and Space Science, 5, 622 – 639. https://doi.org/10.1029/2017EA000343
dc.identifier.citedreferenceMeade, B. J., DeVries, P. M. R., Faller, J., Viegas, F., & Wattenberg, M. ( 2017 ). What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 10 5 mainshock‐aftershock pairs. Geophysical Research Letters, 44, 11,409 – 11,416. https://doi.org/10.1002/2017GL075875
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMuller, R. H. ( 1944 ). Verification of short‐range weather forecasts (a survey of the literature). Bulletin of the American Meteorological Society, 25 ( 1 ), 18 – 27. https://doi.org/10.1175/1520-0477-25.1.18
dc.identifier.citedreferenceMurphy, A. H. ( 1996 ). The Finley affair: A signal event in the history of forecast verification. Weather and Forecasting, 11 ( 1 ), 3 – 20. https://doi.org/10.1175/1520-0434(1996)011%3C0003:TFAASE%3E2.0.CO;2
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceReuter, B., & Schweizer, J. ( 2018 ). Describing snow instability by failure initiation, crack propagation, and slab tensile support. Geophysical Research Letters, 45, 7019 – 7027. https://doi.org/10.1029/2018GL078069
dc.identifier.citedreferenceRostoker, G. ( 1972 ). Geomagnetic indices. Reviews of Geophysics and Space Physics, 10 ( 4 ), 935 – 950. https://doi.org/10.1029/RG010i004p00935
dc.identifier.citedreferenceRowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three‐axis stabilized geostationary platform. Space Weather, 10, S11002. https://doi.org/10.1029/2012SW000816
dc.identifier.citedreferenceSillanpaa, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15, 1602 – 1614. https://doi.org/10.1002/2017SW001698
dc.identifier.citedreferenceStefanescu, E. R., Patra, A. K., Bursik, M. I., Madankan, R., Pouget, S., Jones, M., Singla, P., Singh, T., Pitman, E. B., Pavolonis, M., Morton, D., Webley, P., & Dehn, J. ( 2014 ). Temporal, probabilistic mapping of ash clouds using wind field stochastic variability and uncertain eruption source parameters: Example of the 14 April 2010 Eyjafjallajökull eruption. Journal of Advances in Modeling Earth Systems, 6, 1173 – 1184. https://doi.org/10.1002/2014MS000332
dc.identifier.citedreferenceStephenson, D. B., Casati, B., Ferro, C. A. T., & Wilson, C. A. ( 2008 ). The extreme dependency score: A non‐vanishing measure for forecasts of rare events. Meteorological Applications, 15 ( 1 ), 41 – 50. https://doi.org/10.1002/met.53
dc.identifier.citedreferenceSwets, J. A. ( 1973 ). The relative operating characteristic in psychology. Science, 182 ( 4116 ), 990 – 1000. https://doi.org/10.1126/science.182.4116.990
dc.identifier.citedreferenceToth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.‐J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceWilks, D. S. ( 2019 ). Statistical methods in the atmospheric sciences ( 4th ed. ). Oxford: Academic Press.
dc.identifier.citedreferenceYu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. ( 2010 ). Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations. Journal of Geophysical Research: Space Physics, 115 ( A8 ). https://doi.org/10.1029/2009ja014869
dc.identifier.citedreferenceAnagnostopoulos, G. G., Fatichi, S., & Burlando, P. ( 2015 ). An advanced process‐based distributed model for the investigation of rainfall‐induced landslides: The effect of process representation and boundary conditions. Water Resources Research, 51, 7501 – 7523. https://doi.org/10.1002/2015WR016909
dc.identifier.citedreferenceAzari, A. R., Liemohn, M. W., Jia, X., Thomsen, M. F., Mitchell, D. G., Sergis, N., Rymer, A. M., Hospodarsky, G. B., Paranicas, C., & Vandegriff, J. ( 2018 ). Interchange injections at Saturn: Statistical survey of energetic H + sudden flux intensifications. Journal of Geophysical Research: Space Physics, 123, 4692 – 4711. https://doi.org/10.1029/2018JA025391
dc.identifier.citedreferenceBobra, M. G., & Couvidat, S. ( 2015 ). Solar flare prediction using SDO/HMI vector magnetic field data with a machine learning algorithm. The Astrophysical Journal, 798 ( 2 ), 135. https://doi.org/10.1088/0004-637X/798/2/135
dc.identifier.citedreferenceBorah, N., Sahai, A. K., Chattopadhyay, R., Joseph, S., Abhilash, S., & Goswami, B. N. ( 2013 ). A self‐organizing map–based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon. Journal of Geophysical Research: Atmospheres, 118, 9022 – 9034. https://doi.org/10.1002/jgrd.50688
dc.identifier.citedreferenceBoynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time‐dependent 40‐keV electron flux models for geostationary orbit. Space Weather, 17, 894 – 906. https://doi.org/10.1029/2018SW002128
dc.identifier.citedreferenceBrenning, A., Grasser, M., & Friend, D. A. ( 2007 ). Statistical estimation and generalized additive modeling of rock glacier distribution in the San Juan Mountains, Colorado, United States. Journal of Geophysical Research, 112, F02S15. https://doi.org/10.1029/2006JF000528
dc.identifier.citedreferenceCarter, J. V., Pan, J., Rai, S. N., & Galandiuk, S. ( 2016 ). ROC‐ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery, 159 ( 6 ), 1638 – 1645. https://doi.org/10.1016/j.surg.2015.12.029
dc.identifier.citedreferenceChen, Y., Manchester, W. B., Hero, A. O., Toth, G., Dufumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z., & Gombosi, T. I. ( 2019 ). Identifying solar flare precursors using time series of SDO/HMI images and SHARP parameters. Space Weather, 17, 1404 – 1426. https://doi.org/10.1029/2019SW002214
dc.identifier.citedreferenceDelle Monache, L., Hacker, J. P., Zhou, Y., Deng, X., & Stull, R. B. ( 2006 ). Probabilistic aspects of meteorological and ozone regional ensemble forecasts. Journal of Geophysical Research, 111, D24307. https://doi.org/10.1029/2005JD006917
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Nagy, A. F., & Najib, D. ( 2014 ). Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model. Geophysical Research Letters, 41, 2708 – 2715. https://doi.org/10.1002/2014GL059515
dc.identifier.citedreferenceEkelund, S. ( 2011 ). ROC curves—What are they and how are they used? Point of Care, 11 ( 1 ), 16 – 21. https://doi.org/10.1097/POC.0b013e318246a642
dc.identifier.citedreferenceFawcett, T. ( 2006 ). An introduction to ROC analysis. Pattern Recognition Letters, 27 ( 8 ), 861 – 874. https://doi.org/10.1016/j.patrec.2005.10.010
dc.identifier.citedreferenceGabriel, P., Barker, H. W., O’Brien, D., Ferlay, N., & Stephens, G. L. ( 2009 ). Statistical approaches to error identification for plane‐parallel retrievals of optical and microphysical properties of three‐dimensional clouds: Bayesian inference. Journal of Geophysical Research, 114, D06207. https://doi.org/10.1029/2008JD011005
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Shprits, Y. Y., & Liemohn, M. W. ( 2013 ). Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 118, 82 – 98. https://doi.org/10.1029/2012JA017923
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Welling, D., & Heynderickx, D. ( 2015 ). Nowcast model for low‐energy electrons in the inner magnetosphere. Space Weather, 13, 16 – 34. https://doi.org/10.1002/2014SW001098
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low‐energy electrons (550 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 246 – 259. https://doi.org/10.1002/2013JA019304
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., & Dubyagin, S. ( 2018 ). Current systems in the Earth’s magnetosphere. Reviews of Geophysics, 26, 309 – 332. https://doi.org/10.1002/2017RG000590
dc.identifier.citedreferenceGanushkina, N. Y., Sillanpaa, I., Welling, D. T., Haiducek, J., Liemohn, M. W., Dubyagin, S., & Rodriguez, J. ( 2019 ). Validation of inner magnetosphere particle transport and acceleration model (IMPTAM) on the long‐term GOES MAGED measurements of keV electron fluxes at geostationary orbit. Space Weather, 17, 687 – 708. https://doi.org/10.1029/2018SW002028
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Bashkirov, V. F., Baker, D. N., & Li, X. ( 2001 ). Formation of intense nose structures. Geophysical Research Letters, 28, 491 – 494. https://doi.org/10.1029/2000GL011955
dc.identifier.citedreferenceGonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm?. Journal of Geophysical Research, 99 ( A4 ), 5771 – 5792. https://doi.org/10.1029/93ja02867
dc.identifier.citedreferenceHalford, A., Kellerman, A., Garcia‐Sage, K., Klenzing, J., Carter, B., McGranaghan, R., Guild, T., Cid, C., Henney, C., Ganushkina, N., Burrell, A., Terkildsen, M., Thompson, B. J., Pulkkinen, A., McCollough, J., Murray, S., Leka, K. D., Fung, S., Bingham, S., Walsh, B., Liemohn, M., Bisi, M., Morley, S., & Welling, D. ( 2019 ). Application usability levels: A framework for tracking project product progress. Journal of Space Weather and Space Climate, 9, A34. https://doi.org/10.1051/swsc/2019030
dc.identifier.citedreferenceHogan, R. J., & Mason, I. B. ( 2012 ). Deterministic forecasts of binary events. In I. T. Jolliffe, & D. B. Stephenson (Eds.), Forecast verification ( 31 – 60 ). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119960003.ch3
dc.identifier.citedreferenceIppolito, A., Scotto, C., Sabbagh, D., Sgrigna, V., & Maher, P. ( 2016 ). A procedure for the reliability improvement of the oblique ionograms automatic scaling algorithm. Radio Science, 51, 454 – 460. https://doi.org/10.1002/2015RS005919
dc.identifier.citedreferenceJia, X., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Toth, G., DeZeeuw, D. L., & Ridley, A. J. ( 2012 ). Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. Journal of Geophysical Research, 117, A05225. https://doi.org/10.1029/2012JA017575
dc.identifier.citedreferenceJolliffe, I. T., & Stephenson, D. B. ( 2012 ). Forecast verification: A practitioner’s guide in atmospheric science. Hoboken, NJ: Wiley‐Blackwell.
dc.identifier.citedreferenceKatus, R. M., & Liemohn, M. W. ( 2013 ). Similarities and differences in low‐to‐mid‐latitude geomagnetic indices. Journal of Geophysical Research: Space Physics, 118, 5149 – 5156. https://doi.org/10.1002/jgra.50501
dc.identifier.citedreferenceLi, X. ( 2004 ). Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather, 2, S03006. https://doi.org/10.1029/2003SW000017
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.