Show simple item record

Seeking Ethical use of AI Algorithms: Challenges and Mitigations

dc.contributor.authorTarafdar, Monideepa
dc.contributor.authorTeodorescu, Mike
dc.contributor.authorTanriverdi, Hüseyin
dc.contributor.authorRobert, Lionel + "Jr"
dc.contributor.authorMorse, Lily
dc.date.accessioned2020-09-27T11:19:13Z
dc.date.available2020-09-27T11:19:13Z
dc.date.issued2020-09-27
dc.identifier.citationTarafdar, M., Teodorescu, M., Tanriverdi, H., Robert, L. P., and Morse, L. 2020. Seeking Ethical use of Algorithms: Challenges and Mitigations, Proceedings of the 41th International Conference on Information Systems, December 13-16, India.en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/162590
dc.description.abstractThis panel will discuss the problems of bias and fairness in organizational use of AI algorithms. The panel will first put forth key issues regarding biases that arise when AI algorithms are applied to organizational processes. We will then propose a sociotechnical approach to bias mitigation. We will further share proposals for companies and policymakers on improving AI algorithmic fairness within organizations and bias mitigation. The panel will bring together scholars examining social and technical aspects of bias and its mitigation, from the perspective of information systems, ethics, machine learning, robotics, and human capital. The panel will end with an open discussion of where the field of information systems can step in to guide fairness and ethical use in AI algorithms in the coming years.en_US
dc.language.isoen_USen_US
dc.publisherICIS 2020en_US
dc.subjectmachine learningen_US
dc.subjectAI fairnessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectArtificial Intelligence Fairnessen_US
dc.subjectArtificial Intelligence Biasen_US
dc.subjectArtificial Intelligence Ethicsen_US
dc.subjectAI Biasesen_US
dc.subjectalgorithmsen_US
dc.subjectalgorithmic fairnessen_US
dc.subjectEthical Artificial Intelligenceen_US
dc.subjectTransparent Artificial Intelligenceen_US
dc.subjectExplainable Artificial Intelligenceen_US
dc.subjectArtificial Intelligence Accountabilityen_US
dc.subjectArtificial Intelligence Policyen_US
dc.subjectArtificial Intelligence and Human Interactionsen_US
dc.subjectHuman Interactions with Artificial Intelligenceen_US
dc.titleSeeking Ethical use of AI Algorithms: Challenges and Mitigationsen_US
dc.typeConference Paperen_US
dc.subject.hlbsecondlevelInformation and Library Science
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInformation, School ofen_US
dc.contributor.affiliationumRobot Instituteen_US
dc.contributor.affiliationotherLancaster Universityen_US
dc.contributor.affiliationotherBoston Collegeen_US
dc.contributor.affiliationotherUniversity of Texas at Austinen_US
dc.contributor.affiliationotherWest Virginia Universityen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162590/1/Tarafdar et al. 2020.pdfen_US
dc.identifier.sourceProceedings of the 41th International Conference on Information Systemsen_US
dc.identifier.orcid0000-0002-1410-2601en_US
dc.description.filedescriptionDescription of Tarafdar et al. 2020.pdf : Paper
dc.description.depositorSELFen_US
dc.identifier.name-orcidRobert, Lionel P.; 0000-0002-1410-2601en_US
dc.owningcollnameInformation, School of (SI)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.