Show simple item record

Magnetopause Reconnection as Influenced by the Dipole Tilt Under Southward IMF Conditions: Hybrid Simulation and MMS Observation

dc.contributor.authorGuo, Zhifang
dc.contributor.authorLin, Yu
dc.contributor.authorWang, Xueyi
dc.contributor.authorVines, Sarah K.
dc.contributor.authorLee, S. H.
dc.contributor.authorChen, Yuxi
dc.date.accessioned2020-10-01T23:28:44Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:28:44Z
dc.date.issued2020-09
dc.identifier.citationGuo, Zhifang; Lin, Yu; Wang, Xueyi; Vines, Sarah K.; Lee, S. H.; Chen, Yuxi (2020). "Magnetopause Reconnection as Influenced by the Dipole Tilt Under Southward IMF Conditions: Hybrid Simulation and MMS Observation." Journal of Geophysical Research: Space Physics 125(9): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/162687
dc.description.abstractUsing a three‐dimensional (3‐D) global‐scale hybrid code, the Magnetospheric Multiscale (MMS) reconnection event around 02:13 UT on 18 November 2015, highlighted in the Geospace Environment Modeling (GEM) Dayside Kinetic Challenge, is simulated, in which the interplanetary magnetic field (IMF) points southward and the geomagnetic field has a −27° dipole tilt angle. Strong southward plasma jets are found near the magnetopause as a result of the dayside reconnection. Our results indicate that the subsolar magnetopause reconnection X line shifts from the subsolar point toward the Northern Hemisphere due to the effect of the tilted geomagnetic dipole angle, consistent with the MMS observation. Subsequently, the reconnection X lines or sites and reconnection flux ropes above the equator propagate northward along the magnetopause. The formation and global distribution of the X lines and the structure of the magnetopause reconnection are investigated in detail with the simulation. Mirror mode waves are also found in the middle of the magnetosheath downstream of the quasi‐perpendicular shock where the plasma properties are consistent with the mirror instability condition. As a special outcome of the GEM challenge event, the spatial and temporal variations in reconnection, the electromagnetic power spectra, and the associated D‐shaped ion velocity distributions in the simulated reconnection event are compared with the MMS observation.Key PointsSubsolar magnetopause X lines shift toward the Northern Hemisphere due to the effect of the negative tilted geomagnetic dipole angleThe hybrid simulation magnetic fields and plasma date match MMS3 observations well during the magnetopause crossingMirror mode waves appear in the middle of the magnetosheath downstream of the quasi‐perpendicular shock
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Cham
dc.titleMagnetopause Reconnection as Influenced by the Dipole Tilt Under Southward IMF Conditions: Hybrid Simulation and MMS Observation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162687/2/jgra55909_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162687/1/jgra55909.pdfen_US
dc.identifier.doi10.1029/2020JA027795
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRetinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M., & Owen, C. J. ( 2007 ). In situ evidence of magnetic reconnection in turbulent plasma. Nature Physics, 3 ( 4 ), 235 – 238. https://doi.org/10.1038/nphys574
dc.identifier.citedreferenceShay, M. A., Phan, T. D., Haggerty, C. C., Fujimoto, M., Drake, J. F., Malakit, K., Cassak, P. A., & Swisdak, M. ( 2016 ). Kinetic signatures of the region surrounding the X‐line in asymmetric (magnetopause) reconnection. Geophysical Research Letters, 43, 4145 – 4154. https://doi.org/10.1002/2016GL069034
dc.identifier.citedreferenceSibeck, D. G., & Omidi, N. ( 2012 ). Flux transfer events: Motion and signatures. Journal of Atmospheric and Solar‐Terrestrial Physics, 87‐88, 20 – 24. https://doi.org/10.1016/j.jastp.2011.07.010
dc.identifier.citedreferenceSonnerup, B. U. Ö. ( 1974 ). Magnetopause reconnection rate. Journal of Geophysical Research, 79 ( 10 ), 1546 – 1549. https://doi.org/10.1029/JA079i010p01546
dc.identifier.citedreferenceSonnerup, B. U. Ö., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann, & P. W. Daly (Eds.), Analysis methods for multi‐spacecraft data, ISSI Scientific Report Series SR‐001 (pp. 185 – 220 ). Noordwijk, Netherlands: ESA Publ.
dc.identifier.citedreferenceSoucek, J., Lucek, E., & Dandouras, I. ( 2008 ). Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters. Journal of Geophysical Research, 113, A04203. https://doi.org/10.1029/2007JA012649
dc.identifier.citedreferenceSun, T. R., Tang, B. B., Wang, C., Guo, X. C., & Wang, Y. ( 2019 ). Large‐scale characteristics of flux transfer events on the dayside magnetopause. Journal of Geophysical Research: Space Physics, 124, 2425 – 2434. https://doi.org/10.1029/2018JA026395
dc.identifier.citedreferenceSwift, D. W. ( 1996 ). Use of a hybrid code for global‐scale plasma simulation. Journal of Computational Physics, 126 ( 1 ), 109 – 121. https://doi.org/10.1006/jcph.1996.0124
dc.identifier.citedreferenceTan, B., Lin, Y., Perez, J. D., & Wang, X. Y. ( 2011 ). Global‐scale hybrid simulation of dayside magnetic reconnection under southward IMF: Structure and evolution of reconnection. Journal of Geophysical Research, 116, A02206. https://doi.org/10.1029/2010JA015580
dc.identifier.citedreferenceTan, B., Lin, Y., Perez, J. D., & Wang, X. Y. ( 2012 ). Global‐scale hybrid simulation of cusp precipitating ions associated with magnetopause reconnection under southward IMF. Journal of Geophysical Research, 117, A03217. https://doi.org/10.1029/2011JA016871
dc.identifier.citedreferenceTerasawa, T. ( 1983 ). Hall current effect on tearing mode instability. Geophysical Research Letters, 10 ( 6 ), 475 – 478. https://doi.org/10.1029/GL010i006p00475
dc.identifier.citedreferenceTrattner, K. J., Burch, J. L., Cassak, P. A., Ergun, R., Eriksson, S., Fuselier, S. A., Giles, B. L., Gomez, R. G., Grimes, E. W., Petrinec, S. M., Webster, J. M., & Wilder, F. D. ( 2018 ). The transition between antiparallel and component magnetic reconnection at Earth’s dayside magnetopause. Journal of Geophysical Research: Space Physics, 123, 10,177 – 10,188. https://doi.org/10.1029/2018JA026081
dc.identifier.citedreferenceTrattner, K. J., Fuselier, S. A., & Petrinec, S. M. ( 2004 ). Location of the reconnection line for northward interplanetary magnetic field. Journal of Geophysical Research, 109, A03219. https://doi.org/10.1029/2003JA009975
dc.identifier.citedreferenceTrattner, K. J., Mulcock, J. S., Petrinec, S. M., & Fuselier, S. A. ( 2007 ). Location of the reconnection line at the magnetopause during southward IMF conditions. Geophysical Research Letters, 34, L03108. https://doi.org/10.1029/2006GL028397
dc.identifier.citedreferenceTrattner, K. J., Petrinec, S. M., Fuselier, S. A., & Phan, T. D. ( 2012 ). The location of the reconnection line: Testing the maximum magnetic shear model with THEMIS observations. Journal of Geophysical Research, 117, A01201. https://doi.org/10.1029/2011JA016959
dc.identifier.citedreferenceVasyliunas, V. M. ( 1975 ). Theoretical models of magnetic merging. Reviews of Geophysics, 13 ( 1 ), 303 – 336. https://doi.org/10.1029/RG013i001p00303
dc.identifier.citedreferenceWang, H., Lin, Y., Wang, X., & Guo, Z. ( 2019 ). Generation of kinetic Alfvén waves in dayside magnetopause reconnection: A 3‐D global‐scale hybrid simulation. Physics of Plasmas, 26, 072102. https://doi.org/10.1063/1.5092561
dc.identifier.citedreferenceWang, R., Lu, Q., Nakamura, R., Huang, C., Du, A., Guo, F., Teh, W., Wu, M., Lu, S., & Wang, S. ( 2016 ). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nature Physics, 12 ( 3 ), 263 – 267. https://doi.org/10.1038/nphys3578
dc.identifier.citedreferenceWebster, J. M., Burch, J. L., Reiff, P. H., Daou, A. G., Genestreti, K. J., Graham, D. B., Torbert, R. B., Ergun, R. E., Sazykin, S. Y., Marshall, A., Allen, R. C., Chen, L.‐J., Wang, S., Phan, T. D., Giles, B. L., Moore, T. E., Fuselier, S. A., Cozzani, G., Russell, C. T., Eriksson, S., Rager, A. C., Broll, J. M., Goodrich, K., & Wilder, F. ( 2018 ). Magnetospheric Multiscale dayside reconnection electron diffusion region events. Journal of Geophysical Research: Space Physics, 123, 4858 ‐ 4878. https://doi.org/10.1029/2018JA025245
dc.identifier.citedreferenceXie, H., & Lin, Y. ( 2000 ). Two‐dimensional hybrid simulation of the dayside reconnection layer and associated ion transport. Journal of Geophysical Research, 105 ( A11 ), 25,171 – 25,183. https://doi.org/10.1029/2000JA000143
dc.identifier.citedreferenceYordanova, E., Vörös, Z., Varsani, A., Graham, D. B., Norgren, C., Khotyaintsev, Y. V., Vaivads, A., Eriksson, E., Nakamura, R., Lindqvist, P. A., Marklund, G., Ergun, R. E., Magnes, W., Baumjohann, W., Fischer, D., Plaschke, F., Narita, Y., Russell, C. T., Strangeway, R. J., Le Contel, O., Pollock, C., Torbert, R. B., Giles, B. J., Burch, J. L., Avanov, L. A., Dorelli, J. C., Gershman, D. J., Paterson, W. R., Lavraud, B., & Saito, Y. ( 2016 ). Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath. Geophysical Research Letters, 43, 5969 – 5978. https://doi.org/10.1002/2016GL069191
dc.identifier.citedreferenceYoung, D. T., Burch, J. L., Gomez, R. G., Los Santos, A., Miller, G. P., Wilson, P. IV, Paschalidis, N., Fuselier, S. A., Pickens, K., Hertzberg, E., Pollock, C. J., Scherrer, J., Wood, P. B., Donald, E. T., Aaron, D., Furman, J., George, D., Gurnee, R. S., Hourani, R. S., Jacques, A., Johnson, T., Orr, T., Pan, K. S., Persyn, S., Pope, S., Roberts, J., Stokes, M. R., Trattner, K. J., & Webster, J. M. ( 2016 ). Hot plasma composition Analyzer for the Magnetospheric Multiscale mission. Space Science Reviews, 199 ( 1‐4 ), 407 – 470. https://doi.org/10.1007/s11214-014-0119-6
dc.identifier.citedreferenceAngelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., Larson, D., Lewis, J. W., McTiernan, J., Roberts, D. A., Russell, C. L., Hori, T., Kasahara, Y., Kumamoto, A., Matsuoka, A., Miyashita, Y., Miyoshi, Y., Shinohara, I., Teramoto, M., Faden, J. B., Halford, A. J., McCarthy, M., Millan, R. M., Sample, J. G., Smith, D. M., Woodger, L. A., Masson, A., Narock, A. A., Asamura, K., Chang, T. F., Chiang, C. Y., Kazama, Y., Keika, K., Matsuda, S., Segawa, T., Seki, K., Shoji, M., Tam, S. W. Y., Umemura, N., Wang, B. J., Wang, S. Y., Redmon, R., Rodriguez, J. V., Singer, H. J., Vandegriff, J., Abe, S., Nose, M., Shinbori, A., Tanaka, Y. M., UeNo, S., Andersson, L., Dunn, P., Fowler, C., Halekas, J. S., Hara, T., Harada, Y., Lee, C. O., Lillis, R., Mitchell, D. L., Argall, M. R., Bromund, K., Burch, J. L., Cohen, I. J., Galloy, M., Giles, B., Jaynes, A. N., Le Contel, O., Oka, M., Phan, T. D., Walsh, B. M., Westlake, J., Wilder, F. D., Bale, S. D., Livi, R., Pulupa, M., Whittlesey, P., DeWolfe, A., Harter, B., Lucas, E., Auster, U., Bonnell, J. W., Cully, C. M., Donovan, E., Ergun, R. E., Frey, H. U., Jackel, B., Keiling, A., Korth, H., McFadden, J., Nishimura, Y., Plaschke, F., Robert, P., Turner, D. L., Weygand, J. M., Candey, R. M., Johnson, R. C., Kovalick, T., Liu, M. H., McGuire, R., Breneman, A., Kersten, K., & Schroeder, P. ( 2019 ). The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 215, 9. https://doi.org/10.1007/s11214-018-0576-4
dc.identifier.citedreferenceAngelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.‐H., Auster, U., Donovan, E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Zhou, X.‐Z., & Kepko, L. ( 2008 ). Tail reconnection triggering substorm onset. Science, 321 ( 5891 ), 931, Aug– 935. https://doi.org/10.1126/science.1160495
dc.identifier.citedreferenceBirn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A., & Pritchett, P. L. ( 2001 ). Geospace environment modeling (GEM) magnetic reconnection challenge. Journal of Geophysical Research, 106 ( A3 ), 3715 – 3719. https://doi.org/10.1029/1999JA900449
dc.identifier.citedreferenceBoardsen, S. A., Eastman, T. E., Sotirelis, T., & Green, J. L. ( 2000 ). An empirical model of the high‐latitude magnetopause. Journal of Geophysical Research, 105 ( A10 ), 23,193 – 23,219. https://doi.org/10.1029/1998JA000143
dc.identifier.citedreferenceBroll, J. M., Fuselier, S. A., & Trattner, K. J. ( 2017 ). Locating dayside magnetopause reconnection with exhaust ion distributions. Journal of Geophysical Research: Space Physics, 122, 5105 – 5113. https://doi.org/10.1002/2016JA023590
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric Multiscale overview and science objectives. Space Science Reviews, 199 ( 1‐4 ), 5 – 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceBurch, J. L., & Phan, T. D. ( 2016 ). Magnetic reconnection at the dayside magnetosphere: Advances with MMS. Geophysical Research Letters, 43, 8327 – 8338. https://doi.org/10.1002/2016GL069787
dc.identifier.citedreferenceCassak, P. A., & Fuselier, S. A. ( 2016 ). Reconnection at Earth’s dayside magnetopause. In W. Gonzalez, & E. Parker (Eds.), Magnetic reconnection: Concepts and applocations, asstrophysics and space science library (Vol. 427, pp. 213 – 276 ). Hiedelberg, NY: Springer Cham. https://doi.org/10.1007/978-3-319-26432-5_6
dc.identifier.citedreferenceCassak, P. A., Genestreti, K. J., Burch, J. L., Phan, T. D., Shay, M. A., Swisdak, M., Drake, J. F., Price, L., Eriksson, S., Ergun, R. E., Anderson, B. J., Merkin, V. G., & Komar, C. M. ( 2017 ). The effect of a guide field on local energy conversion during asymmetric magnetic reconnection: Particle‐in‐cell simulation. Journal of Geophysical Research: Space Physics, 122, 11,523 – 11,542. https://doi.org/10.1002/2017JA024555
dc.identifier.citedreferenceChen, Y., Toth, G., Hietala, H., Vines, S. K., Zou, Y., Nishimura, Y., Silveira, M. V. D., Guo, Z., & Lin, Y. ( 2020 ). Magnetohydrodynamic with embedded particle-in-cell simulation of the Geospace Environment Modeling dayside kinetic processes challenge event, Earth and Space Science, 7, e2020EA001331. https://doi.org/10.1029/2020EA001331
dc.identifier.citedreferenceCowley, S. W. H. ( 1982 ). The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. Reviews of Geophysics, 20 ( 3 ), 531 – 565. https://doi.org/10.1029/RG020i003p00531
dc.identifier.citedreferenceCrooker, N. U. ( 1979 ). Dayside merging and cusp geometry. Journal of Geophysical Research, 84 ( A3 ), 951 – 959. https://doi.org/10.1029/JA084iA03p00951
dc.identifier.citedreferenceDorelli, J. C., & Bhattacharjee, A. ( 2009 ). On the generation and topology of flux transfer events. Journal of Geophysical Research, 114, A06213. https://doi.org/10.1029/2008JA013410
dc.identifier.citedreferenceDoss, C. E., Komar, C. M., Cassak, P. A., Wilder, F. D., Eriksson, S., & Drake, J. F. ( 2015 ). Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause. Journal of Geophysical Research: Space Physics, 120, 7748 – 7763. https://doi.org/10.1002/2015JA021489
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Oieroset, M., Shay, M. A., Malakit, K., Swisdak, M., Drake, J. F., & Masters, A. ( 2013 ). Influence of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space plasmas. Plasma Physics and Controlled Fusion, 55, 124001. https://doi.org/10.1088/0741-3335/55/12/124001
dc.identifier.citedreferenceFu, Z. F., & Lee, L. C. ( 1985 ). Simulation of multiple X‐line reconnection at the dayside magnetopause. Geophysical Research Letters, 12 ( 5 ), 291 – 294. https://doi.org/10.1029/GL012i005p00291
dc.identifier.citedreferenceFuselier, S. A., Klumpar, D. M., & Shelley, E. G. ( 1991 ). Ion reflection and transmission during reconnection at the Earth’s subsolar magnetopause. Geophysical Research Letters, 18 ( 2 ), 139 – 142. https://doi.org/10.1029/90GL02676
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., & Petrinec, S. M. ( 2011 ). Antiparallel and component reconnection at the dayside magnetopause. Journal of Geophysical Research, 116, A10227. https://doi.org/10.1029/2011JA016888
dc.identifier.citedreferenceFuselier, S. A., Trattner, K. J., Petrinec, S. M., & Lavraud, B. ( 2012 ). Dayside magnetic topology at the Earth’s magnetopause for northward IMF. Journal of Geophysical Research, 117, A08235. https://doi.org/10.1029/2012JA017852
dc.identifier.citedreferenceGénot, V., Budnik, E., Hellinger, P., Passot, T., Belmont, G., Trávníˇcek, P. M., Sulem, P.‐L., Lucek, E., & Dandouras, I. ( 2009 ). Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations. Annales de Geophysique, 27 ( 2 ), 601 – 615. https://doi.org/10.5194/angeo-27-601-2009
dc.identifier.citedreferenceGlocer, A., Dorelli, J., Toth, G., Komar, C. M., & Cassak, P. A. ( 2016 ). Separator reconnection at the magnetopause for predominantly northward and southward IMF: Techniques and results. Journal of Geophysical Research: Space Physics, 121, 140 – 156. https://doi.org/10.1002/2015JA021417
dc.identifier.citedreferenceGonzalez, W. D., & Mozer, F. S. ( 1974 ). A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. Journal of Geophysical Research, 79 ( 28 ), 4186 – 4194. https://doi.org/10.1029/JA079i028p04186
dc.identifier.citedreferenceGosling, J. T., Skoug, R. M., McComas, D. J., & Smith, C. W. ( 2005 ). Direct evidence for magnetic reconnection in the solar wind near 1 AU. Journal of Geophysical Research, 110, A01107. https://doi.org/10.1029/2004JA010809
dc.identifier.citedreferenceGuo, Z., Lin, Y., Wang, X., & Du, A. ( 2018 ). Magnetosheath reconnection before magnetopause reconnection driven by interplanetary tangential discontinuity: A three‐dimensional global hybrid simulation with the oblique interplanetary magnetic field. Journal of Geophysical Research: Space Physics, 123, 9169 – 9186. https://doi.org/10.1029/2018JA025679
dc.identifier.citedreferenceHasegawa, A. ( 1969 ). Drift mirror instability of the magnetosphere. Physics of Fluids, 12 ( 12 ), 2642 – 2650. https://doi.org/10.1063/1.1692407
dc.identifier.citedreferenceHasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q. H., Lavraud, B., Taylor, M. G. G. T., Constantinescu, O. D., Berchem, J., Angelopoulos, V., McFadden, J. P., Frey, H. U., Panov, E. V., Volwerk, M., & Bogdanova, Y. V. ( 2010 ). Evidence for a flux transfer event generated by multiple X‐line reconnection at the magnetopause. Geophysical Research Letters, 37, L16101. https://doi.org/10.1029/2010GL044219
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Pfau‐Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., von Alfthan, S., & Palmroth, M. ( 2017 ). Reconnection rates and X line motion at the magnetopause: Global 2D‐3V hybrid‐Vlasov simulation results. Journal of Geophysical Research: Space Physics, 122, 2877 – 2888. https://doi.org/10.1002/2016JA023709
dc.identifier.citedreferenceHoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P., & Palmroth, M. ( 2014 ). Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF Bx. Journal of Geophysical Research: Space Physics, 119, 4484 – 4494. https://doi.org/10.1002/2013JA019693
dc.identifier.citedreferenceKhotyaintsev, Y. V., Graham, D. B., Norgren, C., Eriksson, E., Li, W., Johlander, A., Vaivads, A., André, M., Pritchett, P. L., Retinò, A., Phan, T. D., Ergun, R. E., Goodrich, K., Lindqvist, P.‐. A., Marklund, G. T., Le Contel, O., Plaschke, F., Magnes, W., Strangeway, R. J., Russell, C. T., Vaith, H., Argall, M. R., Kletzing, C. A., Nakamura, R., Torbert, R. B., Paterson, W. R., Gershman, D. J., Dorelli, J. C., Avanov, L. A., Lavraud, B., Saito, Y., Giles, B. L., Pollock, C. J., Turner, D. L., Blake, J. D., Fennell, J. F., Jaynes, A., Mauk, B. H., & Burch, J. L. ( 2016 ). Electron jet of asymmetric reconnection. Geophysical Research Letters, 43, 5571 – 5580. https://doi.org/10.1002/2016GL069064
dc.identifier.citedreferenceKitamura, N., Hasegawa, H., Saito, Y., Shinohara, I., Yokota, S., Nagai, T., Pollock, C. J., Giles, B. L., Moore, T. E., Dorelli, J. C., Gershman, D. J., Avanov, L. A., Paterson, W. R., Coffey, V. N., Chandler, M. O., Sauvaud, J. A., Lavraud, B., Torbert, R. B., Russell, C. T., Strangeway, R. J., & Burch, J. L. ( 2016 ). Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations. Geophysical Research Letters, 43, 5581 – 5588. https://doi.org/10.1002/2016GL069095
dc.identifier.citedreferenceKomar, C. M., Cassak, P. A., Dorelli, J. C., Glocer, A., & Kuznetsova, M. M. ( 2013 ). Tracing magnetic separators and their dependence on IMF clock angle in global magnetospheric simulations. Journal of Geophysical Research: Space Physics, 118, 4998 – 5007. https://doi.org/10.1002/jgra.50479
dc.identifier.citedreferenceLin, J., & Forbes, T. G. ( 2000 ). Effects of reconnection on the coronal mass ejection process. Journal of Geophysical Research, 105 ( A2 ), 2375 – 2392. https://doi.org/10.1029/1999JA900477
dc.identifier.citedreferenceLin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., & Gong, J. C. ( 2010 ). A three‐dimensional asymmetric magnetopause model. Journal of Geophysical Research, 115, A04207. https://doi.org/10.1029/2009JA014235
dc.identifier.citedreferenceLin, Y., Johnson, J. R., & Wang, X. Y. ( 2010 ). Hybrid simulation of mode conversion at the magnetopause. Journal of Geophysical Research, 115, A04208. https://doi.org/10.1029/2009JA014524
dc.identifier.citedreferenceLin, Y., & Lee, L. C. ( 1993a ). Structure of the dayside reconnection layer in resistive MHD and hybrid models. Journal of Geophysical Research, 98 ( A3 ), 3919 – 3934. https://doi.org/10.1029/92JA02363
dc.identifier.citedreferenceLin, Y., & Lee, L. ( 1993b ). Structure of reconnection layers in the magnetosphere. Space Science Reviews, 65, 59 – 179.
dc.identifier.citedreferenceLin, Y., & Lee, L. C. ( 1995 ). Simulation study of the Riemann problem associated with the magnetotail reconnection. Journal of Geophysical Research, 100 ( A10 ), 19,227 – 19,237. https://doi.org/10.1029/95JA01549
dc.identifier.citedreferenceLin, Y., & Wang, X. Y. ( 2005 ). Three‐dimensional global hybrid simulation of dayside dynamics associated with the quasi‐parallel bow shock. Journal of Geophysical Research, 110, A12216. https://doi.org/10.1029/2005JA011243
dc.identifier.citedreferenceLin, Y., Wang, X. Y., Lu, S., Perez, J. D., & Lu, Q. ( 2014 ). Investigation of storm time magnetotail and ion injection using three‐dimensional global hybrid simulation. Journal of Geophysical Research: Space Physics, 119, 7413 – 7432. https://doi.org/10.1002/2014JA020005
dc.identifier.citedreferenceLin, Y., & Xie, H. ( 1997 ). Formation of reconnection layer at the dayside magnetopause. Geophysical Research Letters, 24 ( 24 ), 3145 – 3148. https://doi.org/10.1029/97GL03278
dc.identifier.citedreferenceLiu, Y.‐H., Hesse, M., & Kuznetsova, M. ( 2015 ). Orientation of X lines in asymmetric magnetic reconnection—Mass ratio dependency. Journal of Geophysical Research: Space Physics, 120, 7331 – 7341. https://doi.org/10.1002/2015JA021324
dc.identifier.citedreferenceLiu, Y.‐H., Hesse, M., Li, T. C., Kuznetsova, M., & Le, A. ( 2018 ). Orientation and stability of asymmetric magnetic reconnection X line. Journal of Geophysical Research: Space Physics, 123, 4908 – 4920. https://doi.org/10.1029/2018JA025410
dc.identifier.citedreferenceLiu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., & Cao, X. ( 2012 ). Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. Journal of Geophysical Research, 117, A07207. https://doi.org/10.1029/2011JA017441
dc.identifier.citedreferenceLu, J. Y., Liu, Z. Q., Kabin, K., Jing, H., Zhao, M. X., & Wang, Y. ( 2013 ). The IMF dependence of the magnetopause from global MHD simulations. Journal of Geophysical Research: Space Physics, 118, 3113 – 3125. https://doi.org/10.1002/jgra.50324
dc.identifier.citedreferenceLuhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., & Stahara, S. S. ( 1984 ). Patterns of potential magnetic field merging sites on the dayside magnetopause. Journal of Geophysical Research, 89 ( A3 ), 1739 – 1742. https://doi.org/10.1029/JA089iA03p01739
dc.identifier.citedreferenceMasuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. ( 1994 ). A loop‐top hard X‐ray source in a compact solar flare as evidence for magnetic reconnection. Nature, 371 ( 6497 ), 495 – 497. https://doi.org/10.1038/371495a0
dc.identifier.citedreferenceMoore, T. E., Fok, M.‐C., & Chandler, M. O. ( 2002 ). The dayside reconnection X line. Journal of Geophysical Research, 107 ( A10 ), 1332. https://doi.org/10.1029/2002JA009381
dc.identifier.citedreferenceNagai, T., Shinohara, I., Fujimoto, M., Hoshino, M., Saito, Y., Machida, S., & Mukai, T. ( 2001 ). Geotail observations of the hall current system: Evidence of magnetic reconnection in the magnetotail. Journal of Geophysical Research, 106, 25,929 – 25,949. https://doi.org/10.1029/2001JA900038
dc.identifier.citedreferenceNakamura, R., Baumjohann, W., Asano, Y., Runov, A., Balogh, A., Owen, C. J., Fazakerley, A. N., Fujimoto, M., Klecker, B., & Rème, H. ( 2006 ). Dynamics of thin current sheets associated with magnetotail reconnection. Journal of Geophysical Research, 111, A11206. https://doi.org/10.1029/2006JA011706
dc.identifier.citedreferenceØieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., & Lepping, R. P. ( 2001 ). In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature, 412 ( 6845 ), 414 – 417. https://doi.org/10.1038/35086520
dc.identifier.citedreferenceOnsager, T. G., Scudder, J. D., Lockwood, M., & Russell, C. T. ( 2001 ). Reconnection at the high‐latitude magnetopause during northward interplanetary magnetic field conditions. Journal of Geophysical Research, 106 ( A11 ), 25,467 – 25,488. https://doi.org/10.1029/2000JA000444
dc.identifier.citedreferencePang, Y., Lin, Y., Deng, X. H., Wang, X. Y., & Tan, B. ( 2010 ). Three‐dimensional hybrid simulation of magnetosheath reconnection under northward and southward interplanetary magnetic field. Journal of Geophysical Research, 115, A03203. https://doi.org/10.1029/2009JA014415
dc.identifier.citedreferencePark, K. S., Ogino, T., & Walker, R. J. ( 2006 ). On the importance of antiparallel reconnection when the dipole tilt and IMF B y are nonzero. Journal of Geophysical Research, 111, A05202. https://doi.org/10.1029/2004JA010972
dc.identifier.citedreferencePhan, T., et al. ( 2018 ). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature, 557 ( 7704 ), 202 – 206. https://doi.org/10.1038/s41586-018-0091-5
dc.identifier.citedreferencePhan, T. D., Paschmann, G., Twitty, C., Mozer, F. S., Gosling, J. T., Eastwood, J. P., Øieroset, M., Rème, H., & Lucek, E. A. ( 2007 ). Evidence for magnetic reconnection initiated in the magnetosheath. Geophysical Research Letters, 34, L14104. https://doi.org/10.1029/2007GL030343
dc.identifier.citedreferencePollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D., Giles, B., Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C., Auletti, C., Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D., Christian, K., Clark, G., Collinson, G., Corris, T., de Los Santos, A., Devlin, R., Diaz, T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F., Duncan, C., Figueroa‐Vinas, A., Firman, C., Freeman, M., Galassi, N., Garcia, K., Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger, E., Holland, M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski, J., Lavu, V., Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E., Mariano, A., Mukai, T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson, W., Persyn, S., Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil, A., Reichenthal, L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y., Samara, M., Sauvaud, J. A., Schuster, D., Shappirio, M., Shelton, K., Sher, D., Smith, D., Smith, K., Smith, S., Steinfeld, D., Szymkiewicz, R., Tanimoto, K., Taylor, J., Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole, P., Weidner, S., White, D., Winkert, G., Yeh, P. S., & Zeuch, M. ( 2016 ). Fast Plasma Investigation for Magnetospheric Multiscale. Space Science Reviews, 199 ( 1‐4 ), 331 – 406. https://doi.org/10.1007/s11214-016-0245-4
dc.identifier.citedreferencePritchett, P. L. ( 2001 ). Geospace environment modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. Journal of Geophysical Research, 106 ( A3 ), 3783 – 3798. https://doi.org/10.1029/1999JA001006
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annales de Geophysique, 24 ( 1 ), 381 – 392. https://doi.org/10.5194/angeo-24-381-2006
dc.identifier.citedreferenceRetinò, A., Vaivads, A., & Bale, S. D. ( 2007 ). Dissipation in turbulent plasma due to reconnection in thin current sheets. Physical Review Letters, 99, 025004. https://doi.org/10.1103/PhysRevLett.99.025004
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le Contel, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., & Richter, I. ( 2016 ). The Magnetospheric Multiscale magnetometers. Space Science Reviews, 199 ( 1‐4 ), 189 – 256. https://doi.org/10.1007/s11214-014-0057-3
dc.identifier.citedreferenceRussell, C. T., Wang, Y. L., & Raeder, J. ( 2003 ). Possible dipole tilt dependence of dayside magnetopause reconnection. Geophysical Research Letters, 30 ( 18 ), 1937. https://doi.org/10.1029/2003GL017725
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.