Show simple item record

TC- E 5003, a protein methyltransferase 1 inhibitor, activates the PKA- dependent thermogenic pathway in primary murine and human subcutaneous adipocytes

dc.contributor.authorPark, Min‐jung
dc.contributor.authorLiao, Jiling
dc.contributor.authorKim, Dong‐il
dc.date.accessioned2020-10-01T23:28:58Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:28:58Z
dc.date.issued2020-09
dc.identifier.citationPark, Min‐jung ; Liao, Jiling; Kim, Dong‐il (2020). "TC- E 5003, a protein methyltransferase 1 inhibitor, activates the PKA- dependent thermogenic pathway in primary murine and human subcutaneous adipocytes." FEBS Letters 594(17): 2923-2930.
dc.identifier.issn0014-5793
dc.identifier.issn1873-3468
dc.identifier.urihttps://hdl.handle.net/2027.42/162696
dc.publisherWiley Periodicals, Inc.
dc.subject.otherthermogenesis
dc.subject.otherUCP1
dc.subject.otherPRMT1
dc.subject.otherPKA
dc.subject.otherlipolysis
dc.titleTC- E 5003, a protein methyltransferase 1 inhibitor, activates the PKA- dependent thermogenic pathway in primary murine and human subcutaneous adipocytes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162696/2/feb213900_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162696/1/feb213900.pdfen_US
dc.identifier.doi10.1002/1873-3468.13900
dc.identifier.sourceFEBS Letters
dc.identifier.citedreferenceLim J, Park HS, Kim J, Jang YJ, Kim JH, Lee Y and Heo Y ( 2020 ) Depot- specific UCP1 expression in human white adipose tissue and its association with obesity- related markers. Int J Obes (Lond) 44, 697 - 706.
dc.identifier.citedreferenceAnthonsen MW, Ronnstrand L, Wernstedt C, Degerman E and Holm C ( 1998 ) Identification of novel phosphorylation sites in hormone- sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 273, 215 - 221.
dc.identifier.citedreferenceBachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK and Lowell BB ( 2002 ) betaAR signaling required for diet- induced thermogenesis and obesity resistance. Science 297, 843 - 845.
dc.identifier.citedreferenceKarpe F and Pinnick KE ( 2015 ) Biology of upper- body and lower- body adipose tissue- link to whole- body phenotypes. Nat Rev Endocrinol 11, 90 - 100.
dc.identifier.citedreferenceVosselman MJ, van der Lans AA, Brans B, Wierts R, van Baak MA, Schrauwen P and van Marken Lichtenbelt WD ( 2012 ) Systemic beta- adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 61, 3106 - 3113.
dc.identifier.citedreferenceCypess AM, Weiner LS, Roberts- Toler C, Franquet Elía E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A et al. ( 2015 ) Activation of human brown adipose tissue by a beta3- adrenergic receptor agonist. Cell Metab 21, 33 - 38.
dc.identifier.citedreferenceMin SY, Kady J, Nam M, Rojas- Rodriguez R, Berkenwald A, Kim JH, Noh H- L, Kim JK, Cooper MP, Fitzgibbons T et al. ( 2016 ) Human - brite/beige- adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22, 312 - 318.
dc.identifier.citedreferenceO’Mara AE, Johnson JW, Linderman JD, Brychta RJ, McGehee S, Fletcher LA, Fink YA, Kapuria D, Cassimatis TM, Kelsey N et al. ( 2020 ) Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest 130, 2209 - 2219.
dc.identifier.citedreferenceJespersen NZ, Feizi A, Andersen ES, Heywood S, Hattel HB, Daugaard S, Peijs L, Bagi P, Feldt- Rasmussen B, Schultz HS et al. ( 2019 ) Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol Metab 24, 30 - 43.
dc.identifier.citedreferenceLynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein C, Lee A et al. ( 2017 ) The cold- induced lipokine 12,13- diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23, 631 - 637.
dc.identifier.citedreferenceSimcox J, Geoghegan G, Maschek JA, Bensard CL, Pasquali M, Miao R, Lee S, Jiang L, Huck I, Kershaw EE et al. ( 2017 ) Global analysis of plasma lipids identifies liver- derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab 26, 509 - 522.e6.
dc.identifier.citedreferenceMuzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J and Granneman JG ( 2013 ) 15O PET measurement of blood flow and oxygen consumption in cold- activated human brown fat. J Nucl Med 54, 523 - 531.
dc.identifier.citedreferenceArner P ( 1999 ) Catecholamine- induced lipolysis in obesity. Int J Obes Relat Metab Disord 23 ( Suppl 1 ), 10 - 13.
dc.identifier.citedreferenceMowers J, Uhm M, Reilly SM, Simon J, Leto D, Chiang SH, Chang L and Saltiel AR ( 2013 ) Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKepsilon and TBK1. Elife 2, e01119.
dc.identifier.citedreferenceLu A and Hirsch JP ( 2005 ) Cyclic AMP- independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins. Eukaryot Cell 4, 1794 - 1800.
dc.identifier.citedreferenceMa Y, Pitson S, Hercus T, Murphy J, Lopez A and Woodcock J ( 2005 ) Sphingosine activates protein kinase A type II by a novel cAMP- independent mechanism. J Biol Chem 280, 26011 - 26017.
dc.identifier.citedreferenceKohr MJ, Traynham CJ, Roof SR, Davis JP and Ziolo MT ( 2010 ) cAMP- independent activation of protein kinase A by the peroxynitrite generator SIN- 1 elicits positive inotropic effects in cardiomyocytes. J Mol Cell Cardiol 48, 645 - 648.
dc.identifier.citedreferenceMelville Z, Hernández- Ochoa EO, Pratt SJP, Liu Y, Pierce AD, Wilder PT, Adipietro KA, Breysse DH, Varney KM, Schneider MF et al. ( 2017 ) The activation of protein kinase A by the calcium- binding protein S100A1 is independent of cyclic AMP. Biochemistry 56, 2328 - 2337.
dc.identifier.citedreferenceTaneda T, Miyata S, Kousaka A, Inoue K, Koyama Y, Mori Y and Tohyama M ( 2007 ) Specific regional distribution of protein arginine methyltransferase 8 (PRMT8) in the mouse brain. Brain Res 1155, 1 - 9.
dc.identifier.citedreferenceYadav N, Cheng D, Richard S, Morel M, Iyer VR, Aldaz CM and Bedford MT ( 2008 ) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9, 193 - 198.
dc.identifier.citedreferenceHwang JW, So YS, Bae GU, Kim SN and Kim YK ( 2019 ) Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferatoractivated receptor gamma activity. Int J Mol Med 43, 2462 - 2470.
dc.identifier.citedreferencevan Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P and Teule GJ ( 2009 ) Cold- activated brown adipose tissue in healthy men. N Engl J Med 360, 1500 - 1508.
dc.identifier.citedreferenceVirtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N- J, Enerbäck S et al. ( 2009 ) Functional brown adipose tissue in healthy adults. N Engl J Med 360, 1518 - 1525.
dc.identifier.citedreferenceCypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y- H, Doria A et al. ( 2009 ) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 1509 - 1517.
dc.identifier.citedreferenceSharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V et al. ( 2012 ) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7, e49452.
dc.identifier.citedreferenceShinoda K, Luijten IHN, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng Y- Ha et al. ( 2015 ) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21, 389 - 394.
dc.identifier.citedreferenceCypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts- Toler C, Weiner LS, Sze C et al. ( 2013 ) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19, 635 - 639.
dc.identifier.citedreferenceJespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J et al. ( 2013 ) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17, 798 - 805.
dc.identifier.citedreferenceWu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A- H, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al. ( 2012 ) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366 - 376.
dc.identifier.citedreferenceCannon B and Nedergaard J ( 2004 ) Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277 - 359.
dc.identifier.citedreferenceQiao X, Kim D- I, Jun H, Ma Y, Knights AJ, Park M- J, Zhu K, Lipinski JH, Liao J, Li Y et al. ( 2019 ) Protein arginine methyltransferase 1 interacts with PGC1alpha and modulates thermogenic fat activation. Endocrinology 160, 2773 - 2786.
dc.identifier.citedreferenceHu H, Qian K, Ho MC and Zheng YG ( 2016 ) Small molecule inhibitors of protein arginine methyltransferases. Expert Opin Investig Drugs 25, 335 - 358.
dc.identifier.citedreferenceLi X, Wang C, Jiang H and Luo C ( 2019 ) A patent review of arginine methyltransferase inhibitors (2010- 2018). Expert Opin Ther Pat 29, 97 - 114.
dc.identifier.citedreferenceEmont MP, Yu H, Jun H, Hong X, Maganti N, Stegemann JP and Wu J ( 2015 ) Using a 3D culture system to differentiate visceral adipocytes in vitro. Endocrinology 156, 4761 - 4768.
dc.identifier.citedreferenceKim D- I, Liao J, Emont MP, Park M- J, Jun H, Ramakrishnan SK, Lin JD, Shah YM, Omary MB and Wu J ( 2018 ) An OLTAM system for analysis of brown/beige fat thermogenic activity. Int J Obes (Lond) 42, 939 - 945.
dc.identifier.citedreferenceCheng D, Yadav N, King RW, Swanson MS, Weinstein EJ and Bedford MT ( 2004 ) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279, 23892 - 23899.
dc.identifier.citedreferenceEram MS, Shen Y, Szewczyk MM, Wu H, Senisterra G, Li F, Butler KV, Kaniskan Hà , Speed BA, Dela Seña C et al. ( 2016 ) A potent, selective, and cell- active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol 11, 772 - 781.
dc.identifier.citedreferenceYan L, Yan C, Qian K, Su H, Kofsky- Wofford SA, Lee W- C, Zhao X, Ho M- C, Ivanov I and Zheng YG ( 2014 ) Diamidine compounds for selective inhibition of protein arginine methyltransferase 1. J Med Chem 57, 2611 - 2622.
dc.identifier.citedreferenceBissinger E- M, Heinke R, Spannhoff A, Eberlin A, Metzger E, Cura V, Hassenboehler P, Cavarelli J, Schüle R, Bedford MT et al. ( 2011 ) Acyl derivatives of p- aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg Med Chem 19, 3717 - 3731.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.