Show simple item record

Efficient Er/O‐Doped Silicon Light‐Emitting Diodes at Communication Wavelength by Deep Cooling

dc.contributor.authorWen, Huimin
dc.contributor.authorHe, Jiajing
dc.contributor.authorHong, Jin
dc.contributor.authorJin, Shenbao
dc.contributor.authorXu, Zhenming
dc.contributor.authorZhu, Hong
dc.contributor.authorLiu, Jingquan
dc.contributor.authorSha, Gang
dc.contributor.authorYue, Fangyu
dc.contributor.authorDan, Yaping
dc.date.accessioned2020-10-01T23:29:13Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:29:13Z
dc.date.issued2020-09
dc.identifier.citationWen, Huimin; He, Jiajing; Hong, Jin; Jin, Shenbao; Xu, Zhenming; Zhu, Hong; Liu, Jingquan; Sha, Gang; Yue, Fangyu; Dan, Yaping (2020). "Efficient Er/O‐Doped Silicon Light‐Emitting Diodes at Communication Wavelength by Deep Cooling." Advanced Optical Materials 8(18): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/162702
dc.description.abstractA silicon light source at the communication wavelength is the bottleneck for developing monolithically integrated silicon photonics. Doping silicon with erbium and oxygen ions is considered one of the most promising approaches to produce silicon light sources. However, this method suffers from a high concentration of defects in the form of nonradiative recombination centers at the interface between the crystalline silicon and large Er2O3/ErSi1.7 precipitates during the standard rapid thermal treatment. Here, a deep cooling process is applied to suppress the growth of these precipitates by flushing the high‐temperature Er/O‐doped silicon substrates with helium gas cooled in liquid nitrogen. The resultant light‐emitting efficiency at room temperature is enhanced by two orders of magnitude in comparison with that of the sample treated via standard rapid thermal annealing. The deep‐cooling‐processed Si samples are further processed into light‐emitting diodes. Bright electroluminescence with a main spectral peak at 1536 nm is also observed from the silicon‐based diodes with the external quantum efficiency reaching ≈0.8% at room temperature. Based on these results, the development of electrically driven silicon optical amplifiers or even lasers at communication wavelengths is promising for monolithically integrated silicon photonics.A deep cooling technique is developed for silicon light sources by suppressing the growth of Er/O‐related precipitates. The resultant near‐infrared emission shows efficiency enhancement by two orders of magnitude. Bright electroluminescence with a main spectral peak at 1536 nm is also observed. The external quantum efficiency can reach 0.8% at room temperature.
dc.publisherWiley Periodicals, Inc.
dc.subject.othererbium dopants
dc.subject.othersilicon photonics
dc.subject.otherdeep cooling
dc.subject.othernear‐infrared radiation
dc.subject.otherlight‐emitting diodes
dc.titleEfficient Er/O‐Doped Silicon Light‐Emitting Diodes at Communication Wavelength by Deep Cooling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/3/adom202000720.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/2/adom202000720-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162702/1/adom202000720_am.pdfen_US
dc.identifier.doi10.1002/adom.202000720
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceN. Hamelin, P. G. Kik, J. F. Suyver, K. Kikoin, A. Polman, A. Schönecker, F. W. Saris, J. Appl. Phys. 2000, 88, 5381.
dc.identifier.citedreferenceM. A. Lourenço, M. M. Milošević, A. Gorin, R. M. Gwilliam, K. P. Homewood, Sci. Rep. 2016, 6, 37501.
dc.identifier.citedreferenceZ. Zhou, B. Yin, J. Michel, Light: Sci. Appl. 2015, 4, e358.
dc.identifier.citedreferenceA. J. Kenyon, Semicond. Sci. Technol. 2005, 20, R65.
dc.identifier.citedreferenceA. Polman, J. Appl. Phys. 1997, 82, 1.
dc.identifier.citedreferenceY. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, Nature 2013, 498, 470.
dc.identifier.citedreferenceH. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia, Nature 2005, 433, 292.
dc.identifier.citedreferenceY. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, H. Yang, Nat. Photonics 2016, 10, 595.
dc.identifier.citedreferenceS. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu, Nat. Photonics 2016, 10, 307.
dc.identifier.citedreferenceJ. Liu, X. Sun, R. Camacho‐Aguilera, L. C. Kimerling, J. Michel, Opt. Lett. 2010, 35, 679.
dc.identifier.citedreferenceD.‐C. Wang, C. Zhang, P. Zeng, W.‐J. Zhou, L. Ma, H.‐T. Wang, Z.‐Q. Zhou, F. Hu, S.‐Y. Zhang, M. Lu, X. Wu, Sci. Bull. 2018, 63, 75.
dc.identifier.citedreferenceV. P. Kuznetsov, R. A. Rubtsova, V. N. Shabanov, A. P. Kasatkin, S. V. Sedova, G. A. Maksimov, Z. F. Krasil’nik, E. V. Demidov, Phys. Solid State 2005, 47, 102.
dc.identifier.citedreferenceS. Scalese, G. Franzò, S. Mirabella, M. Re, A. Terrasi, F. Priolo, E. Rimini, C. Spinella, A. Camera, J. Appl. Phys. 2000, 88, 4091.
dc.identifier.citedreferenceA. Polman, J. S. Custer, E. Snoeks, G. N. van den Hoven, Appl. Phys. Lett. 1993, 62, 507.
dc.identifier.citedreferenceJ. S. Custer, A. Polman, H. M. van Pinxteren, J. Appl. Phys. 1994, 75, 2809.
dc.identifier.citedreferenceF. Priolo, G. Franzò, S. Coffa, A. Polman, S. Libertino, R. Barklie, D. Carey, J. Appl. Phys. 1995, 78, 3874.
dc.identifier.citedreferenceJ. D. B. Bradley, M. Pollnau, Laser Photonics Rev. 2011, 5, 368.
dc.identifier.citedreferenceM. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, C. Bongiorno, J. Appl. Phys. 2006, 100, 013502.
dc.identifier.citedreferenceJ. Li, Q. Lin, Z. Sun, J. Lumin. 2012, 132, 325.
dc.identifier.citedreferenceG. Beainy, C. Frilay, P. Pareige, F. Gourbilleau, E. Talbot, J. Alloys Compd. 2018, 755, 55.
dc.identifier.citedreferenceR. J. Kashtiban, U. Bangert, I. Crowe, M. P. Halsall, B. Sherliker, A. J. Harvey, J. Eccles, A. P. Knights, R. Gwilliam, M. Gass, J. Phys.: Conf. Ser. 2010, 209, 012043.
dc.identifier.citedreferenceD. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y.‐H. Xie, L. C. Kimerling, Appl. Phys. Lett. 1991, 58, 2797.
dc.identifier.citedreferenceA. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, S. Mobilito, Appl. Phys. Lett. 1997, 70, 1712.
dc.identifier.citedreferenceG. Sha, A. Cerezo, Ultramicroscopy 2005, 102, 151.
dc.identifier.citedreferenceN. Guerfi, T. A. N. Tan, J. Y. Veuillen, D. B. Lollman, Appl. Surf. Sci. 1992, 56–58, 501.
dc.identifier.citedreferenceN. S. Kalsi, R. Sehgal, V. S. Sharma, Mater. Manuf. Processes 2010, 25, 1077.
dc.identifier.citedreferenceV. Popescu, A. Zunger, Phys. Rev. B 2011, 84, 125315.
dc.identifier.citedreferenceW. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, Nature 2001, 410, 192.
dc.identifier.citedreferenceD. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris‐Morini, E. Cassan, L. Virot, J.‐M. Fédéli, J.‐M. Hartmann, J. H. Schmid, D.‐X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic, J. Optics 2016, 18, 073003.
dc.identifier.citedreferenceK. Thompson, D. Lawrence, D. J. Larson, J. D. Olson, T. F. Kelly, B. Gorman, Ultramicroscopy 2007, 107, 131.
dc.identifier.citedreferenceA. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. A. Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popvić, V. M. Stojanović, R. J. Ram, Nature 2018, 556, 349.
dc.identifier.citedreferenceH. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen, Opt. Express 2015, 23, 2487.
dc.identifier.citedreferenceD. A. B. Miller, Proc. IEEE 2009, 97, 1166.
dc.identifier.citedreferenceD. Liang, J. E. Bowers, Nat. Photonics 2010, 4, 511.
dc.identifier.citedreferenceH. Ennen, J. Schneider, G. Pomrenke, A. Axmann, Appl. Phys. Lett. 1983, 43, 943.
dc.identifier.citedreferenceF. Priolo, G. Franzò, S. Coffa, A. Carnera, Phys. Rev. B 1998, 57, 4443.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.