Show simple item record

Experimental and numerical evaluations on the effects of adhesive fillet, overlap length and unbonded area in adhesive- bonded joints

dc.contributor.authorWu, Guanghan
dc.contributor.authorLi, Dayong
dc.contributor.authorLai, Wei‐jen
dc.contributor.authorChen, Qiuren
dc.contributor.authorShi, Yandong
dc.contributor.authorHuang, Li
dc.contributor.authorHuang, Shiyao
dc.contributor.authorKang, Hongtae
dc.contributor.authorPeng, Yinghong
dc.contributor.authorSu, Xuming
dc.date.accessioned2020-10-01T23:29:35Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-10-01T23:29:35Z
dc.date.issued2020-10
dc.identifier.citationWu, Guanghan; Li, Dayong; Lai, Wei‐jen ; Chen, Qiuren; Shi, Yandong; Huang, Li; Huang, Shiyao; Kang, Hongtae; Peng, Yinghong; Su, Xuming (2020). "Experimental and numerical evaluations on the effects of adhesive fillet, overlap length and unbonded area in adhesive- bonded joints." Fatigue & Fracture of Engineering Materials & Structures 43(10): 2298-2311.
dc.identifier.issn8756-758X
dc.identifier.issn1460-2695
dc.identifier.urihttps://hdl.handle.net/2027.42/162715
dc.description.abstractTo realize robust structural design, the effects of the adhesive fillet, overlap length and unbonded area in adhesive- bonded joints need to be fully understood and incorporated into a fatigue life estimation method. In the present work, both static and fatigue experiments are performed on six types of adhesive- bonded joints to illuminate these effects systematically. A straightforward total fatigue life evaluation method is proposed to address these effects. A statistical crack initiation model is established based on the fatigue data of bulk adhesive specimens. Growth life is calculated using the interfacial crack model and mixed mode crack growth method. Good correlation is observed between the calculated and experimental fatigue lives. Furthermore, the effects of the adhesive fillet, overlap length and unbonded area are analysed based on both calculated and experimental results. Results indicate that adhesive fillet postpones crack initiation by reducing local strain level, both overlap length and unbonded area change the growth life by length. Besides, overlap length promotes the fraction of mode II strain energy release rate in total, reducing crack growth rates and extending growth life.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroverlap length
dc.subject.othermixed mode crack growth
dc.subject.otherlocal strain- stress approach
dc.subject.othercrack initiation
dc.subject.otheradhesive fillet
dc.subject.otherunbonded area
dc.titleExperimental and numerical evaluations on the effects of adhesive fillet, overlap length and unbonded area in adhesive- bonded joints
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162715/2/ffe13294.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162715/1/ffe13294_am.pdfen_US
dc.identifier.doi10.1111/ffe.13294
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structures
dc.identifier.citedreferenceChen Q, Guo H, Avery K, Kang H, Su X. Mixed- mode fatigue crack growth and life prediction of an automotive adhesive bonding system. Eng Fract Mech. 2018; 189: 439 - 450.
dc.identifier.citedreferenceMiyazaki T, Noda NA. Evaluation of debonding strength of single lap joint by the intensity of singular stress field. Journal of Physics: Conference Series. 2017;842:012078.
dc.identifier.citedreferencePashah S, Arif AFM. Fatigue life prediction of adhesive joint in heat sink using Monte Carlo method. Int J Adhesion Adhesives. 2014; 50: 164 - 175.
dc.identifier.citedreferenceShahani AR, Pourhosseini SM. The effect of adherent thickness on fatigue life of adhesively bonded joints. Fatigue Fract Eng Mater Struct. 2019; 42 ( 2 ): 561 - 571.
dc.identifier.citedreferenceBlaysat B, Hoefnagels JP, Lubineau G, Alfano M, Geers MG. Interface debonding characterization by image correlation integrated with double cantilever beam kinematics. Int J Solid Struct. 2015; 55: 79 - 91.
dc.identifier.citedreferenceKim HB, Naito K, Oguma H. Fatigue crack growth properties of a two- part acrylic- based adhesive in an adhesive bonded joint: double cantilever- beam tests under mode I loading. Int J Fatigue. 2017; 98: 286 - 295.
dc.identifier.citedreferenceAl- Khudairi O, Hadavinia H, Waggott A, Lewis E, Little C. Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates. Mater Des (1980- 2015). 2015; 66: 93 - 102.
dc.identifier.citedreferenceWahab MA, Ashcroft IA, Crocombe AD, Smith PA. Finite element prediction of fatigue crack propagation lifetime in composite bonded joints. Compos A: Appl Sci Manuf. 2004; 35 ( 2 ): 213 - 222.
dc.identifier.citedreferenceMonteiro J, Akhavan- Safar A, Carbas R, et al. Influence of mode mixity and loading conditions on the fatigue crack growth behaviour of an epoxy adhesive. Fatigue Fract Eng Mater Struct. 2020; 43 ( 2 ): 308 - 316.
dc.identifier.citedreferenceAyatollahi MR, Samari M, Razavi SMJ, da Silva LFM. Fatigue performance of adhesively bonded single lap joints with non- flat sinusoid interfaces. Fatigue Fract Eng Mater Struct. 2017; 40 ( 9 ): 1355 - 1363.
dc.identifier.citedreferenceSolana AG, Crocombe AD, Ashcroft IA. Fatigue life and backface strain predictions in adhesively bonded joints. Int J Adhesion Adhesives. 2010; 30 ( 1 ): 36 - 42.
dc.identifier.citedreferenceShenoy V, Ashcroft IA, Critchlow GW, Crocombe AD. Unified methodology for the prediction of the fatigue behaviour of adhesively bonded joints. Int J Fatigue. 2010; 32 ( 8 ): 1278 - 1288.
dc.identifier.citedreferenceTang JH, Sridhar I, Srikanth N. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints. Compos Sci Technol. 2013; 86: 18 - 25.
dc.identifier.citedreferenceJen YM, Ko CW. Evaluation of fatigue life of adhesively bonded aluminum single- lap joints using interfacial parameters. Int J Fatigue. 2010; 32 ( 2 ): 330 - 340.
dc.identifier.citedreferenceBraga DF, Maciel R, Bergmann L, et al. Fatigue performance of hybrid overlap friction stir welding and adhesive bonding of an Al- Mg- Cu alloy. Fatigue Fract Eng Mater Struct. 2019; 42 ( 6 ): 1262 - 1270.
dc.identifier.citedreferenceXu W, Liu L, Zhou Y, Mori H, Chen DL. Tensile and fatigue properties of weld- bonded and adhesive- bonded magnesium alloy joints. Mater Sci Eng A. 2013; 563: 125 - 132.
dc.identifier.citedreferenceAbdel Wahab MM, Hilmy I, Ashcroft IA, Crocombe AD. Evaluation of fatigue damage in adhesive bonding: part 2: single lap joint. J Adhes Sci Technol. 2010; 24 ( 2 ): 325 - 345.
dc.identifier.citedreferenceBelnoue JPH, Giannis S, Dawson M, Hallett SR. Cohesive/adhesive failure interaction in ductile adhesive joints part II: quasi- static and fatigue analysis of double lap- joint specimens subjected to through- thickness compressive loading. Int J Adhesion Adhesives. 2016; 68: 369 - 378.
dc.identifier.citedreferencede Moura MFSF, Gonçalves JPM. Cohesive zone model for high- cycle fatigue of composite bonded joints under mixed- mode I+ II loading. Eng Fract Mech. 2015; 140: 31 - 42.
dc.identifier.citedreferenceRoe KL, Siegmund T. An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech. 2003; 70 ( 2 ): 209 - 232.
dc.identifier.citedreferenceKhoramishad H, Crocombe AD, Katnam KB, Ashcroft IA. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model. Int J Fatigue. 2010; 32 ( 7 ): 1146 - 1158.
dc.identifier.citedreferenceISO B. 527- 2: 1996. Plastics- determination of tensile properties- part 2: test conditions for moulding and extrusion plastics. British Standards Institution, 1996; 1 - 14.
dc.identifier.citedreferenceASTM. D- 3166- 99: Standard test method for fatigue properties of adhesives in shear by tension loading (metal/metal). 2012.
dc.identifier.citedreferenceQuaresimin M, Ricotta M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Compos Sci Technol. 2006; 66 ( 2 ): 176 - 187.
dc.identifier.citedreferenceO’Mahoney DC, Katnam KB, O’Dowd NP, McCarthy CT, Young TM. Taguchi analysis of bonded composite single- lap joints using a combined interface- adhesive damage model. Int J Adhesion Adhesives. 2013; 40: 168 - 178.
dc.identifier.citedreferenceShenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Wahab MA. An investigation into the crack initiation and propagation behaviour of bonded single- lap joints using backface strain. Int J Adhesion Adhesives. 2009; 29 ( 4 ): 361 - 371.
dc.identifier.citedreferenceHuang L, Guo H, Shi Y, Huang S, Su X. Fatigue behavior and modeling of self- piercing riveted joints in aluminum alloy 6111. Int J Fatigue. 2017; 100: 274 - 284.
dc.identifier.citedreferenceWu G, Li D, Shi Y, Avery K, Huang L, Huang S, Su X, Peng Y. Stress Analysis on the Single- Lap SPR- Adhesive Hybrid Joint. SAE Technical Paper No. 2018- 01- 1445, April 2018.
dc.identifier.citedreferenceHutchinson JW, Suo Z. Mixed mode cracking in layered materials. Adv Appl Mech. 1991; 29: 63 - 191.
dc.identifier.citedreferenceSuo Z. Delamination specimens for orthotropic materials. J Appl Mech. 1990; 57 ( 3 ): 627 - 634.
dc.identifier.citedreferenceVantadori S, Camilla R, Carpinteri A. Multiaxial fatigue life evaluation of notched structural components: an analytical approach. Mater Des Process Commun. 2019; 1 ( 4 ): e74.
dc.identifier.citedreferenceGhosh PK, Avantak P, Kaushal K. Adhesive joining of copper using nano- filler composite adhesive. Polymer. 2016; 87: 159 - 169.
dc.identifier.citedreferenceChen Q, Guo H, Avery K, Su X, Kang H. Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach. Eng Fract Mech. 2017; 172: 73 - 89.
dc.identifier.citedreferenceLià ner M, Alabort E, Cui H, Pellegrino A, Petrinic N. On the rate dependent behaviour of epoxy adhesive joints: experimental characterisation and modelling of mode I failure. Compos Struct. 2018; 189: 286 - 303.
dc.identifier.citedreferenceDe Moura MFSF, Gonçalves JPM, Silva FGA. A new energy based mixed- mode cohesive zone model. Int J Solid Struct. 2016; 102: 112 - 119.
dc.identifier.citedreferenceWeià graeber P, Becker W. Finite fracture mechanics model for mixed mode fracture in adhesive joints. Int J Solid Struct. 2013; 50 ( 14- 15 ): 2383 - 2394.
dc.identifier.citedreferenceHan X, Akhmet G, Zhang W, et al. The effect of adhesive fillet on mechanical performance of adhesively bonded corrugated sandwich structures: an experimental- numerical study. J Adhes. 2020; 96 ( 5 ): 515 - 537.
dc.identifier.citedreferenceZielecki W, Kubit A, Kluz R, TrzepieciÅ ski T. Investigating the influence of the chamfer and fillet on the high- cyclic fatigue strength of adhesive joints of steel parts. J Adhes Sci Technol. 2017; 31 ( 6 ): 627 - 644.
dc.identifier.citedreferenceSolana AG, Crocombe AD, Wahab MA, Ashcroft IA. Fatigue initiation in adhesively- bonded single- lap joints. J Adhes Sci Technol. 2007; 21 ( 14 ): 1343 - 1357.
dc.identifier.citedreferenceAbdel Wahab MM. Fatigue in adhesively bonded joints: a review. ISRN Materials Science, 2012; 2012: 1 - 25.
dc.identifier.citedreferenceAzari S, Papini M, Schroeder JA, Spelt JK. Fatigue threshold behavior of adhesive joints. Int J Adhesion Adhesives. 2010; 30 ( 3 ): 145 - 159.
dc.identifier.citedreferenceSugiman S, Crocombe AD. The static and fatigue responses of aged metal laminate doublers joints under tension loading. J Adhes Sci Technol. 2016; 30 ( 3 ): 313 - 327.
dc.identifier.citedreferenceKumar S, Pandey PC. Fatigue life prediction of adhesively bonded single lap joints. Int J Adhesion Adhesives. 2011; 31 ( 1 ): 43 - 47.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.