Show simple item record

DRD4 polymorphisms modulate reward positivity and P3a in a gambling task: Exploring a genetic basis for cultural learning

dc.contributor.authorGlazer, James
dc.contributor.authorKing, Anthony
dc.contributor.authorYoon, Carolyn
dc.contributor.authorLiberzon, Israel
dc.contributor.authorKitayama, Shinobu
dc.date.accessioned2020-10-01T23:29:52Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-10-01T23:29:52Z
dc.date.issued2020-10
dc.identifier.citationGlazer, James; King, Anthony; Yoon, Carolyn; Liberzon, Israel; Kitayama, Shinobu (2020). "DRD4 polymorphisms modulate reward positivity and P3a in a gambling task: Exploring a genetic basis for cultural learning." Psychophysiology 57(10): n/a-n/a.
dc.identifier.issn0048-5772
dc.identifier.issn1469-8986
dc.identifier.urihttps://hdl.handle.net/2027.42/162723
dc.description.abstractPrior work shows that people respond more plastically to environmental influences, including cultural influences, if they carry the 7 or 2‐repeat (7/2R) allelic variant of the dopamine D4 receptor gene (DRD4). The 7/2R carriers are thus more likely to endorse the norms and values of their culture. So far, however, mechanisms underlying this moderation of cultural acquisition by DRD4 are unclear. To address this gap in knowledge, we tested the hypothesis that DRD4 modulates the processing of reward cues existing in the environment. About 72 young adults, preselected for their DRD4 status, performed a gambling task, while the electroencephalogram was recorded. Principal components of event‐related potentials aligned to the Reward‐Positivity (associated with bottom‐up processing of reward prediction errors) and frontal‐P3 (associated with top‐down attention) were both significantly more positive following gains than following losses. As predicted, the gain‐loss differences were significantly larger for 7/2R carriers than for noncarriers. Also, as predicted, the cultural backgrounds of the participants (East Asian vs. European American) did not moderate the effects of DRD4. Our findings suggest that the 7/2R variant of DRD4 enhances (a) the detection of reward prediction errors and (b) controlled attention that updates the context for the reward, thereby suggesting one possible mechanism underlying the DRD4 × Culture interactions.Is there a genetic basis for cultural learning? Recent work suggests carriers of 7‐ or 2‐repeat allele of the dopamine DRD4 are more likely than non‐carriers to acquire their culture’s beliefs and practices. We show carriers are more closely attuned to reward signals compared to non‐carriers. This finding offers a possible missing link in the analysis of the co‐evolutionary dynamic between genes and culture.
dc.publisherBasic Books
dc.publisherWiley Periodicals, Inc.
dc.subject.otherreward processing
dc.subject.othergene × culture interactions
dc.subject.otherevent‐related potential
dc.subject.otherDRD4
dc.titleDRD4 polymorphisms modulate reward positivity and P3a in a gambling task: Exploring a genetic basis for cultural learning
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychology
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162723/2/psyp13623_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162723/1/psyp13623.pdfen_US
dc.identifier.doi10.1111/psyp.13623
dc.identifier.sourcePsychophysiology
dc.identifier.citedreferenceO’Doherty, J. P. ( 2011 ). Contributions of the ventromedial prefrontal cortex to goal‐directed action selection. Annals of the New York Academy of Sciences, 1239, 118 – 129. https://doi.org/10.1111/j.1749‐6632.2011.06290.x
dc.identifier.citedreferenceMiltner, W. H., Braun, C. H., & Coles, M. G. ( 1997 ). Event‐related brain potentials following incorrect feedback in a time‐estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9 ( 6 ), 788 – 798. https://doi.org/10.1162/jocn.1997.9.6.788
dc.identifier.citedreferenceMueller, E. M., Burgdorf, C., Chavanon, M. L., Schweiger, D., Hennig, J., Wacker, J., & Stemmler, G. ( 2014 ). The COMT Val158Met polymorphism regulates the effect of a dopamine antagonist on the feedback‐related negativity. Psychophysiology, 51 ( 8 ), 805 – 809. https://doi.org/10.1111/psyp.12226
dc.identifier.citedreferenceNikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. ( 2011 ). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36 ( 9 ), 1940 – 1947. https://doi.org/10.1038/npp.2011.82
dc.identifier.citedreferenceNisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. ( 2001 ). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108 ( 2 ), 291 – 310. https://doi.org/10.1037/0033‐295X.108.2.291
dc.identifier.citedreferenceOchsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. ( 2004 ). For better or for worse: Neural systems supporting the cognitive down‐and up‐regulation of negative emotion. NeuroImage, 23 ( 2 ), 483 – 499. https://doi.org/10.1016/j.neuroimage.2004.06.030
dc.identifier.citedreferencePark, J., & Kitayama, S. ( 2012 ). Interdependent selves show face‐induced facilitation of error processing: Cultural neuroscience of self‐threat. Social Cognitive and Affective Neuroscience, 9 ( 2 ), 201 – 208. https://doi.org/10.1093/scan/nss125
dc.identifier.citedreferencePolich, J. ( 2007 ). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118 ( 10 ), 2128 – 2148. https://doi.org/10.1016/j.clinph.2007.04.019
dc.identifier.citedreferencePolich, J., & Criado, J. R. ( 2006 ). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60 ( 2 ), 172 – 185. https://doi.org/10.1016/j.ijpsycho.2005.12.012
dc.identifier.citedreferenceQin, J., Kimel, S., Kitayama, S., Wang, X., Yang, X., & Han, S. ( 2011 ). How choice modifies preference: Neural correlates of choice justification. NeuroImage, 55 ( 1 ), 240 – 246. https://doi.org/10.1016/j.neuroimage.2010.11.076
dc.identifier.citedreferenceRauss, K., & Pourtois, G. ( 2013 ). What is bottom‐up and what is top‐down in predictive coding? Frontiers in Psychology, 4. 276. https://doi.org/10.3389/fpsyg.2013.00276
dc.identifier.citedreferenceReist, C., Ozdemir, V., Wang, E., Hashemzadeh, M., Mee, S., & Moyzis, R. ( 2007 ). Novelty seeking and the dopamine D4 receptor gene (DRD4) revisited in Asians: Haplotype characterization and relevance of the 2‐repeat allele. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144 ( 4 ), 453 – 457. https://doi.org/10.1002/ajmg.b.30473
dc.identifier.citedreferenceRougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. ( 2005 ). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences, 102 ( 20 ), 7338 – 7343. https://doi.org/10.1073/pnas.0502455102
dc.identifier.citedreferenceSambrook, T. D., & Goslin, J. ( 2016 ). Principal components analysis of reward prediction errors in a reinforcement learning task. NeuroImage, 124, 276 – 286. https://doi.org/10.1016/j.neuroimage.2015.07.032
dc.identifier.citedreferenceSasaki, J. Y. ( 2013 ). Promise and challenges surrounding culture–gene coevolution and gene–culture interactions. Psychological Inquiry, 24 ( 1 ), 64 – 70. https://doi.org/10.1080/1047840X.2013.764814
dc.identifier.citedreferenceSaez, I., Set, E., & Hsu, M. ( 2014 ). From genes to behavior: Placing cognitive models in the context of biological pathways. Frontiers in neuroscience, 8 ( 336 ). https://doi.org/10.3389/fnins.2014.00336
dc.identifier.citedreferenceSilveira, P. P., Gaudreau, H., Atkinson, L., Fleming, A. S., Sokolowski, M. B., Steiner, M., … Dubé, L. ( 2016 ). Genetic differential susceptibility to socioeconomic status and childhood obesogenic behavior: Why targeted prevention may be the best societal investment. JAMA Pediatrics, 170 ( 4 ), 359 – 364. https://doi.org/10.1001/jamapediatrics.2015.4253
dc.identifier.citedreferenceSingelis, T. M. ( 1994 ). The measurement of independent and interdependent self‐construals. Personality and Social Psychology Bulletin, 20 ( 5 ), 580 – 591. https://doi.org/10.1177/0146167294205014
dc.identifier.citedreferenceStefani, M. R., & Moghaddam, B. ( 2006 ). Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. Journal of Neuroscience, 26 ( 34 ), 8810 – 8818. https://doi.org/10.1523/JNEUROSCI.1656‐06.2006
dc.identifier.citedreferenceSutton, R. S., & Barto, A. G. ( 1998 ). Introduction to reinforcement learning (Vol. 135 ). Cambridge, MA: MIT Press.
dc.identifier.citedreferenceTompson, S. H., Huff, S. T., Yoon, C., King, A., Liberzon, I., & Kitayama, S. ( 2018 ). The dopamine D4 receptor gene (DRD4) modulates cultural variation in emotional experience. Culture and Brain, 6 ( 2 ), 118 – 129. https://doi.org/10.1007/s40167‐018‐0063‐5
dc.identifier.citedreferenceTunbridge, E. M., Bannerman, D. M., Sharp, T., & Harrison, P. J. ( 2004 ). Catechol‐o‐methyltransferase inhibition improves set‐shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. Journal of Neuroscience, 24 ( 23 ), 5331 – 5335. https://doi.org/10.1523/JNEUROSCI.1124‐04.2004
dc.identifier.citedreferencevan der Meer, L., Costafreda, S., Aleman, A., & David, A. S. ( 2010 ). Self‐reflection and the brain: A theoretical review and meta‐analysis of neuroimaging studies with implications for schizophrenia. Neuroscience & Biobehavioral Reviews, 34 ( 6 ), 935 – 946. https://doi.org/10.1016/j.neubiorev.2009.12.004
dc.identifier.citedreferenceWang, E., Ding, Y.‐C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., … Moyzis, R. K. ( 2004 ). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. The American Journal of Human Genetics, 74 ( 5 ), 931 – 944. https://doi.org/10.1086/420854
dc.identifier.citedreferenceYu, Q., Abe, N., King, A., Yoon, C., Liberzon, I., & Kitayama, S. ( 2018 ). Cultural variation in the gray matter volume of the prefrontal cortex is moderated by the dopamine D4 receptor gene (DRD4). Cerebral Cortex, 29 ( 9 ), 3922 – 3931. https://doi.org/10.1093/cercor/bhy271
dc.identifier.citedreferenceBakermans‐Kranenburg, M. J., & Van Ijzendoorn, M. H. ( 2011 ). Differential susceptibility to rearing environment depending on dopamine‐related genes: New evidence and a meta‐analysis. Development and Psychopathology, 23 ( 1 ), 39 – 52. https://doi.org/10.1017/S0954579410000635
dc.identifier.citedreferenceBalleine, B. W., & O’Doherty, J. P. ( 2010 ). Human and rodent homologies in action control: Corticostriatal determinants of goal‐directed and habitual action. Neuropsychopharmacology, 35 ( 1 ), 48 – 69. https://doi.org/10.1038/npp.2009.131
dc.identifier.citedreferenceBelsky, J., & Pluess, M. ( 2009 ). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135 ( 6 ), 885 – 908. https://doi.org/10.1037/a0017376
dc.identifier.citedreferenceBerridge, K. C., Robinson, T. E., & Aldridge, J. W. ( 2009 ). Dissecting components of reward: ‘Liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9 ( 1 ), 65 – 73. https://doi.org/10.1016/j.coph.2008.12.014
dc.identifier.citedreferenceCarver, C. S., & White, T. L. ( 1994 ). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67 ( 2 ), 319 – 333. https://doi.org/10.1037/0022‐3514.67.2.319
dc.identifier.citedreferenceChee, M. W. L., Zheng, H., Goh, J. O. S., Park, D., & Sutton, B. P. ( 2011 ). Brain structure in young and old East Asians and Westerners: Comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 23 ( 5 ), 1065 – 1079. https://doi.org/10.1162/jocn.2010.21513
dc.identifier.citedreferenceChen, C., Burton, M., Greenberger, E., & Dmitrieva, J. ( 1999 ). Population migration and the variation of dopamine D4 receptor (DRD4) allele frequencies around the globe. Evolution and Human Behavior, 20 ( 5 ), 309 – 324. https://doi.org/10.1016/S1090‐5138(99)00015‐X
dc.identifier.citedreferenceClark, L. A., & Watson, D. ( 1991 ). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100 ( 3 ), 316 – 336. https://doi.org/10.1037//0021‐843x.100.3.316
dc.identifier.citedreferenceCorbetta, M., & Shulman, G. L. ( 2002 ). Control of goal‐directed and stimulus‐driven attention in the brain. Nature Reviews Neuroscience, 3 ( 3 ), 201 – 215. https://doi.org/10.1038/nrn755
dc.identifier.citedreferenceCreswell, K. G., Sayette, M. A., Manuck, S. B., Ferrell, R. E., Hill, S. Y., & Dimoff, J. D. ( 2012 ). DRD4 polymorphism moderates the effect of alcohol consumption on social bonding. PLoS One, 7 ( 2 ), e28914. https://doi.org/10.1371/journal.pone.0028914
dc.identifier.citedreferenceDelorme, A., & Makeig, S. ( 2004 ). EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134 ( 1 ), 9 – 21. https://doi.org/10.1016/j.jneumeth.2003.10.009
dc.identifier.citedreferenceDien, J. ( 2010 ). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event‐related potential data. Journal of Neuroscience Methods, 187 ( 1 ), 138 – 145. https://doi.org/10.1016/j.jneumeth.2009.12.009
dc.identifier.citedreferenceDien, J. ( 2012 ). Applying principal components analysis to event‐related potentials: A tutorial. Developmental neuropsychology, 37 ( 6 ), 497 – 517.
dc.identifier.citedreferenceDien, J., Beal, D. J., & Berg, P. ( 2005 ). Optimizing principal components analysis of event‐related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clinical Neurophysiology, 116 ( 8 ), 1808 – 1825. https://doi.org/10.1016/j.clinph.2004.11.025
dc.identifier.citedreferenceDonchin, E., & Coles, M. G. ( 1988 ). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11 ( 3 ), 357 – 374. https://doi.org/10.1017/S0140525X00058027
dc.identifier.citedreferenceDurstewitz, D., Seamans, J. K., & Sejnowski, T. J. ( 2000 ). Dopamine‐mediated stabilization of delay‐period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83 ( 3 ), 1733 – 1750. https://doi.org/10.1152/jn.2000.83.3.1733
dc.identifier.citedreferenceFellows, L. K. ( 2011 ). Orbitofrontal contributions to value‐based decision making: Evidence from humans with frontal lobe damage. Annals of the New York Academy of Sciences, 1239 ( 1 ), 51 – 58. https://doi.org/10.1111/j.1749‐6632.2011.06229.x
dc.identifier.citedreferenceFiorillo, C. D. ( 2013 ). Two dimensions of value: Dopamine neurons represent reward but not aversiveness. Science, 341 ( 6145 ), 546 – 549. https://doi.org/10.1126/science.1238699
dc.identifier.citedreferenceFiorillo, C. D., Tobler, P. N., & Schultz, W. ( 2003 ). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299 ( 5614 ), 1898 – 1902. https://doi.org/10.1126/science.1077349
dc.identifier.citedreferenceForbes, E. E., Brown, S. M., Kimak, M., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. ( 2009 ). Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Molecular Psychiatry, 14 ( 1 ), 60 – 70. https://doi.org/10.1038/sj.mp.4002086
dc.identifier.citedreferenceFoti, D., & Hajcak, G. ( 2012 ). Genetic variation in dopamine moderates neural response during reward anticipation and delivery: Evidence from event‐related potentials. Psychophysiology, 49 ( 5 ), 617 – 626. https://doi.org/10.1111/j.1469‐8986.2011.01343.x
dc.identifier.citedreferenceFoti, D., Hajcak, G., & Dien, J. ( 2009 ). Differentiating neural responses to emotional pictures: Evidence from temporal‐spatial PCA. Psychophysiology, 46 ( 3 ), 521 – 530. https://doi.org/10.1111/j.1469‐8986.2009.00796.x
dc.identifier.citedreferenceFoti, D., Weinberg, A., Dien, J., & Hajcak, G. ( 2011 ). Event‐related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity. Human Brain Mapping, 32 ( 12 ), 2207 – 2216. https://doi.org/10.1002/hbm.21182
dc.identifier.citedreferenceFrank, M. J., & Claus, E. D. ( 2006 ). Anatomy of a decision: Striato‐orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113 ( 2 ), 300 – 326. https://doi.org/10.1037/0033‐295X.113.2.300
dc.identifier.citedreferenceFrank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. ( 2007 ). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences, 104 ( 41 ), 16311 – 16316. https://doi.org/10.1073/pnas.0706111104
dc.identifier.citedreferenceGeertz, C. ( 1973 ). The interpretation of cultures (Vol. 5019 ). New York, NY: Basic Books.
dc.identifier.citedreferenceGlazer, J. E., Kelley, N. J., Pornpattananangkul, N., Mittal, V. A., & Nusslock, R. ( 2018 ). Beyond the FRN: Broadening the time‐course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132, 184 – 202. https://doi.org/10.1016/j.ijpsycho.2018.02.002
dc.identifier.citedreferenceGould, S. J., & Gold, S. J. ( 1996 ). The mismeasure of man. New York, NY: WW Norton & Company.
dc.identifier.citedreferenceGratton, G., Coles, M. G., & Donchin, E. ( 1983 ). A new method for off‐line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55 ( 4 ), 468 – 484. https://doi.org/10.1016/0013‐4694(83)90135‐9
dc.identifier.citedreferenceGrossberg, S. ( 2009 ). Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 ( 1521 ), 1223 – 1234. https://doi.org/10.1098/rstb.2008.0307
dc.identifier.citedreferenceHaber, S. N., & Knutson, B. ( 2010 ). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35 ( 1 ), 4 – 26. https://doi.org/10.1038/npp.2009.129
dc.identifier.citedreferenceHeatherton, T. F., & Wagner, D. D. ( 2011 ). Cognitive neuroscience of self‐regulation failure. Trends in Bognitive Sciences, 15 ( 3 ), 132 – 139. https://doi.org/10.1016/j.tics.2010.12.005
dc.identifier.citedreferenceHeine, S. J., Lehman, D. R., Markus, H. R., & Kitayama, S. ( 1999 ). Is there a universal need for positive self‐regard? Psychological Review, 106 ( 4 ), 766 – 794. https://doi.org/10.1037/0033‐295X.106.4.766
dc.identifier.citedreferenceHeitland, I., Oosting, R. S., Baas, J. M. P., Massar, S. A. A., Kenemans, J. L., & Böcker, K. B. E. ( 2012 ). Genetic polymorphisms of the dopamine and serotonin systems modulate the neurophysiological response to feedback and risk taking in healthy humans. Cognitive, Affective, & Behavioral Neuroscience, 12 ( 4 ), 678 – 691. https://doi.org/10.3758/s13415‐012‐0108‐8
dc.identifier.citedreferenceHitokoto, H., Glazer, J., & Kitayama, S. ( 2016 ). Cultural shaping of neural responses: Feedback‐related potentials vary with self‐construal and face priming. Psychophysiology, 53 ( 1 ), 52 – 63. https://doi.org/10.1111/psyp.12554
dc.identifier.citedreferenceHolroyd, C. B., & Coles, M. G. ( 2002 ). The neural basis of human error processing: Reinforcement learning, dopamine, and the error‐related negativity. Psychological Review, 109 ( 4 ), 679 – 709. https://doi.org/10.1037/0033‐295X.109.4.679
dc.identifier.citedreferenceHolroyd, C. B., Pakzad‐Vaezi, K. L., & Krigolson, O. E. ( 2008 ). The feedback correct‐related positivity: Sensitivity of the event‐related brain potential to unexpected positive feedback. Psychophysiology, 45 ( 5 ), 688 – 697. https://doi.org/10.1111/j.1469‐8986.2008.00668.x
dc.identifier.citedreferenceKim, H. S., & Sasaki, J. Y. ( 2014 ). Cultural neuroscience: Biology of the mind in cultural contexts. Annual Review of Psychology, 65, 487 – 514. https://doi.org/10.1146/annurev‐psych‐010213‐115040
dc.identifier.citedreferenceKitayama, S., King, A., Hsu, M., Liberzon, I., & Yoon, C. ( 2016 ). Dopamine‐system genes and cultural acquisition: The norm sensitivity hypothesis. Current Opinion in Psychology, 8, 167 – 174. https://doi.org/10.1016/j.copsyc.2015.11.006
dc.identifier.citedreferenceKitayama, S., King, A., Yoon, C., Tompson, S., Huff, S., & Liberzon, I. ( 2014 ). The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychological Science, 25 ( 6 ), 1169 – 1177. https://doi.org/10.1177/0956797614528338
dc.identifier.citedreferenceKitayama, S., Mesquita, B., & Karasawa, M. ( 2006 ). Cultural affordances and emotional experience: Socially engaging and disengaging emotions in Japan and the United States. Journal of Personality and Social Psychology, 91 ( 5 ), 890 – 903. https://doi.org/10.1037/0022‐3514.91.5.890
dc.identifier.citedreferenceKitayama, S., & Salvador, C. E. ( 2017 ). Culture embrained: Going beyond the nature‐nurture dichotomy. Perspectives on Psychological Science, 12 ( 5 ), 841 – 854. https://doi.org/10.1177/1745691617707317
dc.identifier.citedreferenceKitayama, S., & Uskul, A. K. ( 2011 ). Culture, mind, and the brain: Current evidence and future directions. Annual Review of Psychology, 62, 419 – 449. https://doi.org/10.1146/annurev‐psych‐120709‐145357
dc.identifier.citedreferenceKitayama, S., Yu, Q., King, A. P., Yoon, C., & Liberzon, I. ( 2019 ). The gray matter volume of the temporoparietal junction varies across cultures: Is it moderated by the dopamine D4 receptor gene? Manuscript under review.
dc.identifier.citedreferenceLe Foll, B., Gallo, A., Le Strat, Y., Lu, L., & Gorwood, P. ( 2009 ). Genetics of dopamine receptors and drug addiction: A comprehensive review. Behavioural Pharmacology, 20 ( 1 ), 1 – 17. https://doi.org/10.1097/FBP.0b013e3283242f05
dc.identifier.citedreferenceLi, D., Sham, P. C., Owen, M. J., & He, L. ( 2006 ). Meta‐analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15 ( 14 ), 2276 – 2284. https://doi.org/10.1093/hmg/ddl152
dc.identifier.citedreferenceLichter, J., Barr, C., Kennedy, J., Van Tol, H., Kidd, K., & Livak, K. ( 1993 ). A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Human Molecular Genetics, 2 ( 6 ), 767 – 773. https://doi.org/10.1093/hmg/2.6.767
dc.identifier.citedreferenceLopez‐Calderon, J., & Luck, S. J. ( 2014 ). ERPLAB: An open‐source toolbox for the analysis of event‐related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213
dc.identifier.citedreferenceLuck, S. J. ( 2014 ). An introduction to the event‐related potential technique. Cambridge, MA: MIT press.
dc.identifier.citedreferenceMa, R., Jia, H., Yi, F., Ming, Q., Wang, X., Gao, Y., … Yao, S. ( 2016 ). Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents. Neuroscience Letters, 610, 144 – 149. https://doi.org/10.1016/j.neulet.2015.11.009
dc.identifier.citedreferenceMarco‐Pallarés, J., Cucurell, D., Cunillera, T., Krämer, U. M., Càmara, E., Nager, W., … Rodriguez‐Fornells, A. ( 2009 ). Genetic variability in the dopamine system (dopamine receptor D4, catechol‐O‐methyltransferase) modulates neurophysiological responses to gains and losses. Biological Psychiatry, 66 ( 2 ), 154 – 161. https://doi.org/10.1016/j.biopsych.2009.01.006
dc.identifier.citedreferenceMarco‐Pallares, J., Cucurell, D., Münte, T. F., Strien, N., & Rodriguez‐Fornells, A. ( 2011 ). On the number of trials needed for a stable feedback‐related negativity. Psychophysiology, 48 ( 6 ), 852 – 860. https://doi.org/10.1111/j.1469‐8986.2010.01152.x
dc.identifier.citedreferenceMarkus, H. R., & Kitayama, S. ( 1991 ). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98 ( 2 ), 224 – 253. https://doi.org/10.1037/0033‐295X.98.2.224
dc.identifier.citedreferenceMatthews, L. J., & Butler, P. M. ( 2011 ). Novelty‐seeking DRD4 polymorphisms are associated with human migration distance out‐of‐Africa after controlling for neutral population gene structure. American Journal of Physical Anthropology, 145 ( 3 ), 382 – 389. https://doi.org/10.1002/ajpa.21507
dc.identifier.citedreferenceMeyer, T. J., Miller, M. L., Metzger, R. L., & Borkovec, T. D. ( 1990 ). Development and validation of the Penn State worry questionnaire. Behaviour Research and Therapy, 28 ( 6 ), 487 – 495. https://doi.org/10.1016/0005‐7967(90)90135‐6
dc.identifier.citedreferenceMiller, E. K., & Cohen, J. D. ( 2001 ). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24 ( 1 ), 167 – 202. https://doi.org/10.1146/annurev.neuro.24.1.167
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.