Show simple item record

Uncovering Biological Factors That Regulate Hepatocellular Carcinoma Growth Using Patient‐Derived Xenograft Assays

dc.contributor.authorZhu, Min
dc.contributor.authorLi, Lin
dc.contributor.authorLu, Tianshi
dc.contributor.authorYoo, Hyesun
dc.contributor.authorZhu, Ji
dc.contributor.authorGopal, Purva
dc.contributor.authorWang, Sam C.
dc.contributor.authorPorembka, Matthew R.
dc.contributor.authorRich, Nicole E.
dc.contributor.authorKagan, Sofia
dc.contributor.authorOdewole, Mobolaji
dc.contributor.authorRenteria, Veronica
dc.contributor.authorWaljee, Akbar K.
dc.contributor.authorWang, Tao
dc.contributor.authorSingal, Amit G.
dc.contributor.authorYopp, Adam C.
dc.contributor.authorZhu, Hao
dc.date.accessioned2020-10-01T23:30:22Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:22Z
dc.date.issued2020-09
dc.identifier.citationZhu, Min; Li, Lin; Lu, Tianshi; Yoo, Hyesun; Zhu, Ji; Gopal, Purva; Wang, Sam C.; Porembka, Matthew R.; Rich, Nicole E.; Kagan, Sofia; Odewole, Mobolaji; Renteria, Veronica; Waljee, Akbar K.; Wang, Tao; Singal, Amit G.; Yopp, Adam C.; Zhu, Hao (2020). "Uncovering Biological Factors That Regulate Hepatocellular Carcinoma Growth Using Patient‐Derived Xenograft Assays." Hepatology (3): 1085-1101.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/162740
dc.publisherWiley Periodicals, Inc.
dc.titleUncovering Biological Factors That Regulate Hepatocellular Carcinoma Growth Using Patient‐Derived Xenograft Assays
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/3/hep31096.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/2/hep31096-sup-0001-Suppinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162740/1/hep31096_am.pdfen_US
dc.identifier.doi10.1002/hep.31096
dc.identifier.sourceHepatology
dc.identifier.citedreferenceWang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res 2010; 38: e164.
dc.identifier.citedreferenceBruix J, Sherman M, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020 ‐ 1022.
dc.identifier.citedreferenceHuynh H, Soo KC, Chow PKH, Panasci L, Tran E. Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 2006; 12: 4306 ‐ 4314.
dc.identifier.citedreferenceWei W, Wu S, Wang X, Sun CK‐W, Yang X, Yan X, et al. Novel celastrol derivatives inhibit the growth of hepatocellular carcinoma patient‐derived xenografts. Oncotarget 2014; 5: 5819 ‐ 5831.
dc.identifier.citedreferenceGu Q, Zhang B, Sun H, Xu Q, Tan Y, Wang G, et al. Genomic characterization of a large panel of patient‐derived hepatocellular carcinoma xenograft tumor models for preclinical development. Oncotarget 2015; 6: 20160 ‐ 20176.
dc.identifier.citedreferenceYan M, Li H, Zhao F, Zhang L, Ge C, Yao M, et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin J Cancer Res 2013; 25: 289 ‐ 298.
dc.identifier.citedreferenceYang JD, Kim WR, Coelho R, Mettler TA, Benson JT, Sanderson SO, et al. Cirrhosis is present in most patients with hepatitis B and hepatocellular carcinoma. Clin Gastroenterol Hepatol 2011; 9: 64 ‐ 70.
dc.identifier.citedreferenceSonoshita M, Scopton AP, Ung PMU, Murray MA, Silber L, Maldonado AY, et al. A whole‐animal platform to advance a clinical kinase inhibitor into new disease space. Nat Chem Biol 2018; 14: 291 ‐ 298.
dc.identifier.citedreferenceHuynh H, Ong R, Zopf D. Antitumor activity of the multikinase inhibitor regorafenib in patient‐derived xenograft models of gastric cancer. J Exp Clin Cancer Res 2015; 34: 132.
dc.identifier.citedreferenceLi H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics 2009; 25: 1754 ‐ 1760.
dc.identifier.citedreferenceDePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next‐generation DNA sequencing data. Nat Genet 2011; 43: 491 ‐ 498.
dc.identifier.citedreferenceMcKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Res 2010; 20: 1297 ‐ 1303.
dc.identifier.citedreferenceVan der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy‐Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013; 11: 11.10.1 ‐ 11.10.33.
dc.identifier.citedreferenceCibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213 ‐ 219.
dc.identifier.citedreferenceKoboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568 ‐ 576.
dc.identifier.citedreferenceHansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: detection of genetic alterations in tumors using next‐generation sequence data. Bioinformatics 2013; 29: 1498 ‐ 1503.
dc.identifier.citedreferenceChiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: ultra‐fast personal genome analysis and interpretation. Nat Methods 2015; 12: 966 ‐ 968.
dc.identifier.citedreferenceChen X, Schulz‐Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016; 32: 1220 ‐ 1222.
dc.identifier.citedreferenceSaunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small‐variant calling from sequenced tumor‐normal sample pairs. Bioinformatics 2012; 28: 1811 ‐ 1817.
dc.identifier.citedreferenceKim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12: 357 ‐ 360.
dc.identifier.citedreferenceDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics 2013; 29: 15 ‐ 21.
dc.identifier.citedreferenceHarrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22: 1760 ‐ 1774.
dc.identifier.citedreferenceLiao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30: 923 ‐ 930.
dc.identifier.citedreferenceMcCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation. Nucleic Acids Res 2012; 40: 4288 ‐ 4297.
dc.identifier.citedreferenceRobinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139 ‐ 140.
dc.identifier.citedreferenceSubramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545 ‐ 15550.
dc.identifier.citedreferenceAn C, Choi YA, Choi D, Paik YH, Ahn SH, Kim M‐J, et al. Growth rate of early‐stage hepatocellular carcinoma in patients with chronic liver disease. Clin Mol Hepatol 2015; 21: 279 ‐ 286.
dc.identifier.citedreferenceAzuma H, Paulk N, Ranade A, Dorrell C, Al‐Dhalimy M, Ellis E, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 2007; 25: 903 ‐ 910.
dc.identifier.citedreferenceGrompe M, Lindstedt S, al‐Dhalimy M, Kennaway NG, Papaconstantinou J, Torres‐Ramos CA, et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 1995; 10: 453 ‐ 460.
dc.identifier.citedreferenceTrojan J, Waidmann O. Role of regorafenib as second‐line therapy and landscape of investigational treatment options in advanced hepatocellular carcinoma. J Hepatocell Carcinoma 2016; 3: 31 ‐ 36.
dc.identifier.citedreferenceTang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY) 2018; 43: 13 ‐ 25.
dc.identifier.citedreferenceEl‐Serag HB. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004; 127: S27 ‐ S34.
dc.identifier.citedreferenceWhite DL, Kanwal F, El‐Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 2012; 10: 1342 ‐ 1359.e2.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.