Show simple item record

Inhibition of Aurora Kinase B attenuates fibroblast activation and pulmonary fibrosis

dc.contributor.authorKasam, Rajesh K
dc.contributor.authorGhandikota, Sudhir
dc.contributor.authorSoundararajan, Divyalakshmi
dc.contributor.authorReddy, Geereddy B
dc.contributor.authorHuang, Steven K
dc.contributor.authorJegga, Anil G
dc.contributor.authorMadala, Satish K
dc.date.accessioned2020-10-01T23:30:31Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:31Z
dc.date.issued2020-09-07
dc.identifier.citationKasam, Rajesh K; Ghandikota, Sudhir; Soundararajan, Divyalakshmi; Reddy, Geereddy B; Huang, Steven K; Jegga, Anil G; Madala, Satish K (2020). "Inhibition of Aurora Kinase B attenuates fibroblast activation and pulmonary fibrosis." EMBO Molecular Medicine 12(9): n/a-n/a.
dc.identifier.issn1757-4676
dc.identifier.issn1757-4684
dc.identifier.urihttps://hdl.handle.net/2027.42/162746
dc.description.abstractFibroblast activation including proliferation, survival, and ECM production is central to initiation and maintenance of fibrotic lesions in idiopathic pulmonary fibrosis (IPF). However, druggable molecules that target fibroblast activation remain limited. In this study, we show that multiple pro‐fibrotic growth factors, including TGFα, CTGF, and IGF1, increase aurora kinase B (AURKB) expression and activity in fibroblasts. Mechanistically, we demonstrate that Wilms tumor 1 (WT1) is a key transcription factor that mediates TGFα‐driven AURKB upregulation in fibroblasts. Importantly, we found that inhibition of AURKB expression or activity is sufficient to attenuate fibroblast activation. We show that fibrosis induced by TGFα is highly dependent on AURKB expression and treating TGFα mice with barasertib, an AURKB inhibitor, reverses fibroblast activation, and pulmonary fibrosis. Barasertib similarly attenuated fibrosis in the bleomycin model of pulmonary fibrosis. Together, our preclinical studies provide important proof‐of‐concept that demonstrate barasertib as a possible intervention therapy for IPF.SynopsisFibroblast activation is central for the initiation and maintenance of fibrotic lesions in idiopathic pulmonary fibrosis. Our preclinical study describes the pathological role for AURKB in fibroblast activation and presents a potential therapy for the treatment of pulmonary fibrosis using barasertib.AURKB is upregulated in the lungs of IPF patients and mouse models of pulmonary fibrosis.WT1 binds directly to the promoter of AURKB to upregulates its expression.AURKB functions as a positive regulator of fibroproliferation, myofibroblast survival, and ECM production.In vivo barasertib therapy attenuates TGFα‐and bleomycin‐induced pulmonary fibrosis.Fibroblast activation is central for the initiation and maintenance of fibrotic lesions in idiopathic pulmonary fibrosis. Our preclinical study describes the pathological role for AURKB in fibroblast activation and presents a potential therapy for the treatment of pulmonary fibrosis using barasertib.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAurora Kinase B
dc.subject.otherfibroproliferation
dc.subject.otherpulmonary fibrosis
dc.subject.otherWilms’ tumor 1
dc.subject.otherBarasertib
dc.titleInhibition of Aurora Kinase B attenuates fibroblast activation and pulmonary fibrosis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/7/emmm202012131-sup-0003-SDataFig1.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/6/emmm202012131-sup-0002-EVFigs.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/5/emmm202012131-sup-0006-SDataFig6.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/4/emmm202012131.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/3/emmm202012131-sup-0005-SDataFig4.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/2/emmm202012131-sup-0001-Appendix.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/1/emmm202012131_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/9/emmm202012131.reviewer_comments.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162746/8/emmm202012131-sup-0004-SDataFig2.pdfen_US
dc.identifier.doi10.15252/emmm.202012131
dc.identifier.sourceEMBO Molecular Medicine
dc.identifier.citedreferenceSontake V, Shanmukhappa SK, DiPasquale BA, Reddy GB, Medvedovic M, Hardie WD, White ES, Madala SK ( 2015 ) Fibrocytes regulate Wilms tumor 1‐positive cell accumulation in severe fibrotic lung disease. J Immunol 195: 3978 – 3991
dc.identifier.citedreferenceRaghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA et al ( 2011 ) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence‐based guidelines for diagnosis and management. Am J Respir Crit Care Med 183: 788 – 824
dc.identifier.citedreferenceRaghu G ( 2017 ) Idiopathic pulmonary fibrosis: lessons from clinical trials over the past 25 years. Eur Respir J 50: 1701209
dc.identifier.citedreferenceReyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie‐Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z et al ( 2018 ) Single‐cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 199: 1517 – 1536
dc.identifier.citedreferenceRicheldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y et al ( 2014 ) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370: 2071 – 2082
dc.identifier.citedreferenceRock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL ( 2011 ) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 108: E1475 – E1483
dc.identifier.citedreferenceSingh B, Kasam RK, Sontake V, Wynn TA, Madala SK ( 2017 ) Repetitive intradermal bleomycin injections evoke T‐helper cell 2 cytokine‐driven pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 313: L796 – L806
dc.identifier.citedreferenceSontake V, Wang Y, Kasam RK, Sinner D, Reddy GB, Naren AP, McCormack FX, White ES, Jegga AG, Madala SK ( 2017 ) Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight 2: e91454
dc.identifier.citedreferenceSontake V, Kasam RK, Sinner D, Korfhagen TR, Reddy GB, White ES, Jegga AG, Madala SK ( 2018 ) Wilms’ tumor 1 drives fibroproliferation and myofibroblast transformation in severe fibrotic lung disease. JCI Insight 3: e121252
dc.identifier.citedreferenceSorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, Spalletti‐Cernia D, Laccetti P, Linardopoulos S, Chieffi P et al ( 2005 ) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90: 928 – 935
dc.identifier.citedreferenceTang A, Gao K, Chu L, Zhang R, Yang J, Zheng J ( 2017 ) Aurora kinases: novel therapy targets in cancers. Oncotarget 8: 23937 – 23954
dc.identifier.citedreferenceThannickal VJ, Horowitz JC ( 2006 ) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3: 350 – 356
dc.identifier.citedreferenceTsuboi K, Yokozawa T, Sakura T, Watanabe T, Fujisawa S, Yamauchi T, Uike N, Ando K, Kihara R, Tobinai K et al ( 2011 ) A Phase I study to assess the safety, pharmacokinetics and efficacy of barasertib (AZD1152), an Aurora B kinase inhibitor, in Japanese patients with advanced acute myeloid leukemia. Leuk Res 35: 1384 – 1389
dc.identifier.citedreferenceTsukui T, Sun KH, Wetter JB, Wilson‐Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO et al ( 2020 ) Collagen‐producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 11: 1920
dc.identifier.citedreferenceVallath S, Hynds RE, Succony L, Janes SM, Giangreco A ( 2014 ) Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J 44: 513 – 522
dc.identifier.citedreferenceWalton KL, Johnson KE, Harrison CA ( 2017 ) Targeting TGF‐beta mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol 8: 461
dc.identifier.citedreferenceWilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, Crafter C, Foster JR, Brady MC, Bigley A, Brown E et al ( 2007 ) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13: 3682 – 3688
dc.identifier.citedreferenceWillems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B ( 2018 ) The functional diversity of Aurora kinases: a comprehensive review. Cell Div 13: 7
dc.identifier.citedreferenceWilson MS, Wynn TA ( 2009 ) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2: 103 – 121
dc.identifier.citedreferenceWollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M ( 2015 ) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45: 1434 – 1445
dc.identifier.citedreferenceWu L, Ma CA, Zhao Y, Jain A ( 2011 ) Aurora B interacts with NIR‐p53, leading to p53 phosphorylation in its DNA‐binding domain and subsequent functional suppression. J Biol Chem 286: 2236 – 2244
dc.identifier.citedreferenceWynn TA ( 2011 ) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208: 1339 – 1350
dc.identifier.citedreferenceWynn TA, Ramalingam TR ( 2012 ) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18: 1028 – 1040
dc.identifier.citedreferenceXia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, Griffin T, Benyumov A, Yang L, Bitterman PB et al ( 2017 ) Calcium‐binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest 127: 2586 – 2597
dc.identifier.citedreferenceYamauchi T, Uzui K, Shigemi H, Negoro E, Yoshida A, Ueda T ( 2013 ) Aurora B inhibitor barasertib and cytarabine exert a greater‐than‐additive cytotoxicity in acute myeloid leukemia cells. Cancer Sci 104: 926 – 933
dc.identifier.citedreferenceYang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP et al ( 2007 ) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110: 2034 – 2040
dc.identifier.citedreferenceAlferez DG, Goodlad RA, Odedra R, Sini P, Crafter C, Ryan AJ, Wedge SR, Wright NA, Anderson E, Wilkinson RW ( 2012 ) Inhibition of Aurora‐B kinase activity confers antitumor efficacy in preclinical mouse models of early and advanced gastrointestinal neoplasia. Int J Oncol 41: 1475 – 1485
dc.identifier.citedreferenceAllen JT, Spiteri MA ( 2002 ) Growth factors in idiopathic pulmonary fibrosis: relative roles. Respir Res 3: 13
dc.identifier.citedreferenceAlvarez D, Cardenes N, Sellares J, Bueno M, Corey C, Hanumanthu VS, Peng Y, D’Cunha H, Sembrat J, Nouraie M et al ( 2017 ) IPF lung fibroblasts have a senescent phenotype. Am J Physiol Lung Cell Mol Physiol 313: L1164 – L1173
dc.identifier.citedreferenceBarratt SL, Creamer A, Hayton C, Chaudhuri N ( 2018 ) Idiopathic pulmonary fibrosis (IPF): an overview. J Clin Med 7: 201
dc.identifier.citedreferenceBaughman RP, Lower EE, Miller MA, Bejarano PA, Heffelfinger SC ( 1999 ) Overexpression of transforming growth factor‐alpha and epidermal growth factor‐receptor in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 16: 57 – 61
dc.identifier.citedreferenceBogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, Keller JM, Mathews Griner LA, Ferrer M, Song YK et al ( 2015 ) Aurora B kinase is a potent and selective target in MYCN‐driven neuroblastoma. Oncotarget 6: 35247 – 35262
dc.identifier.citedreferenceChaudhary NI, Roth GJ, Hilberg F, Muller‐Quernheim J, Prasse A, Zissel G, Schnapp A, Park JE ( 2007 ) Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J 29: 976 – 985
dc.identifier.citedreferenceChen J, Bardes EE, Aronow BJ, Jegga AG ( 2009 ) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37: W305 – W311
dc.identifier.citedreferenceChieffi P ( 2018 ) Aurora B: a new promising therapeutic target in cancer. Intractable Rare Dis Res 7: 141 – 144
dc.identifier.citedreferenceCollins GP, Eyre TA, Linton KM, Radford J, Vallance GD, Soilleux E, Hatton C ( 2015 ) A phase II trial of AZD1152 in relapsed/refractory diffuse large B‐cell lymphoma. Br J Haematol 170: 886 – 890
dc.identifier.citedreferenceCostabel U, Bendstrup E, Cottin V, Dewint P, Egan JJ, Ferguson J, Groves R, Hellstrom PM, Kreuter M, Maher TM et al ( 2014 ) Pirfenidone in idiopathic pulmonary fibrosis: expert panel discussion on the management of drug‐related adverse events. Adv Ther 31: 375 – 391
dc.identifier.citedreferenceDennis M, Davies M, Oliver S, D’Souza R, Pike L, Stockman P ( 2012 ) Phase I study of the Aurora B kinase inhibitor barasertib (AZD1152) to assess the pharmacokinetics, metabolism and excretion in patients with acute myeloid leukemia. Cancer Chemother Pharmacol 70: 461 – 469
dc.identifier.citedreferenceDePianto DJ, Chandriani S, Abbas AR, Jia G, N’Diaye EN, Caplazi P, Kauder SE, Biswas S, Karnik SK, Ha C et al ( 2015 ) Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax 70: 48 – 56
dc.identifier.citedreferenceDesai O, Winkler J, Minasyan M, Herzog EL ( 2018 ) The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med 5: 43
dc.identifier.citedreferenceEvans RP, Naber C, Steffler T, Checkland T, Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Lai R, Reiman T ( 2008 ) The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. Br J Haematol 140: 295 – 302
dc.identifier.citedreferenceFloc’h N, Ashton S, Taylor P, Trueman D, Harris E, Odedra R, Maratea K, Derbyshire N, Caddy J, Jacobs VN et al ( 2017 ) Optimizing therapeutic effect of aurora B inhibition in acute myeloid leukemia with AZD2811 nanoparticles. Mol Cancer Ther 16: 1031 – 1040
dc.identifier.citedreferenceFrangini A, Sjoberg M, Roman‐Trufero M, Dharmalingam G, Haberle V, Bartke T, Lenhard B, Malumbres M, Vidal M, Dillon N ( 2013 ) The aurora B kinase and the polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. Mol Cell 51: 647 – 661
dc.identifier.citedreferenceFu J, Bian M, Jiang Q, Zhang C ( 2007 ) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5: 1 – 10
dc.identifier.citedreferenceGribbin J, Hubbard RB, Le Jeune I, Smith CJ, West J, Tata LJ ( 2006 ) Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK. Thorax 61: 980 – 985
dc.identifier.citedreferenceGrimminger F, Gunther A, Vancheri C ( 2015 ) The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 45: 1426 – 1433
dc.identifier.citedreferenceGully CP, Zhang F, Chen J, Yeung JA, Velazquez‐Torres G, Wang E, Yeung SC, Lee MH ( 2010 ) Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol Cancer 9: 42
dc.identifier.citedreferenceGully CP, Velazquez‐Torres G, Shin JH, Fuentes‐Mattei E, Wang E, Carlock C, Chen J, Rothenberg D, Adams HP, Choi HH et al ( 2012 ) Aurora B kinase phosphorylates and instigates degradation of p53. Proc Natl Acad Sci USA 109: E1513 – E1522
dc.identifier.citedreferenceHardie WD, Le Cras TD, Jiang K, Tichelaar JW, Azhar M, Korfhagen TR ( 2004 ) Conditional expression of transforming growth factor‐alpha in adult mouse lung causes pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 286: L741 – L749
dc.identifier.citedreferenceHardie WD, Korfhagen TR, Sartor MA, Prestridge A, Medvedovic M, Le Cras TD, Ikegami M, Wesselkamper SC, Davidson C, Dietsch M et al ( 2007 ) Genomic profile of matrix and vasculature remodeling in TGF‐alpha induced pulmonary fibrosis. Am J Respir Cell Mol Biol 37: 309 – 321
dc.identifier.citedreferenceHardie WD, Hagood JS, Dave V, Perl AK, Whitsett JA, Korfhagen TR, Glasser S ( 2010 ) Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle 9: 2769 – 2776
dc.identifier.citedreferenceHinz B, Lagares D ( 2020 ) Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 16: 11 – 31
dc.identifier.citedreferenceHorowitz JC, Thannickal VJ ( 2019 ) Mechanisms for the resolution of organ fibrosis. Physiology 34: 43 – 55
dc.identifier.citedreferenceHughes G, Toellner H, Morris H, Leonard C, Chaudhuri N ( 2016 ) Real world experiences: pirfenidone and nintedanib are effective and well tolerated treatments for idiopathic pulmonary fibrosis. J Clin Med 5: 78
dc.identifier.citedreferenceJha HC, Lu J, Saha A, Cai Q, Banerjee S, Prasad MA, Robertson ES ( 2013 ) EBNA3C‐mediated regulation of aurora kinase B contributes to Epstein‐Barr virus‐induced B‐cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol 87: 12121 – 12138
dc.identifier.citedreferenceKasam RK, Reddy GB, Jegga AG, Madala SK ( 2019 ) Dysregulation of mesenchymal cell survival pathways in severe fibrotic lung disease: the effect of nintedanib therapy. Front Pharmacol 10: 532
dc.identifier.citedreferenceKing TE Jr, Bradford WZ, Castro‐Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L et al ( 2014 ) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370: 2083 – 2092
dc.identifier.citedreferenceKollareddy M, Dzubak P, Zheleva D, Hajduch M ( 2008 ) Aurora kinases: structure, functions and their association with cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152: 27 – 33
dc.identifier.citedreferenceLampson MA, Cheeseman IM ( 2011 ) Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol 21: 133 – 140
dc.identifier.citedreferenceLancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, Wijsenbeek MS, Stauffer JL, Kirchgaessler KU, Costabel U ( 2017 ) Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 26: 170057
dc.identifier.citedreferenceLey B, Collard HR, King TE Jr ( 2011 ) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183: 431 – 440
dc.identifier.citedreferenceLowenberg B, Muus P, Ossenkoppele G, Rousselot P, Cahn JY, Ifrah N, Martinelli G, Amadori S, Berman E, Sonneveld P et al ( 2011 ) Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood 118: 6030 – 6036
dc.identifier.citedreferenceMadala SK, Schmidt S, Davidson C, Ikegami M, Wert S, Hardie WD ( 2012 ) MEK‐ERK pathway modulation ameliorates pulmonary fibrosis associated with epidermal growth factor receptor activation. Am J Respir Cell Mol Biol 46: 380 – 388
dc.identifier.citedreferenceMadala SK, Edukulla R, Schmidt S, Davidson C, Ikegami M, Hardie WD ( 2014 ) Bone marrow‐derived stromal cells are invasive and hyperproliferative and alter transforming growth factor‐alpha‐induced pulmonary fibrosis. Am J Respir Cell Mol Biol 50: 777 – 786
dc.identifier.citedreferenceMadala SK, Sontake V, Edukulla R, Davidson CR, Schmidt S, Hardie WD ( 2016a ) Unique and redundant functions of p70 ribosomal S6 kinase isoforms regulate mesenchymal cell proliferation and migration in pulmonary fibrosis. Am J Respir Cell Mol Biol 55: 792 – 803
dc.identifier.citedreferenceMadala SK, Thomas G, Edukulla R, Davidson C, Schmidt S, Schehr A, Hardie WD ( 2016b ) p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor‐alpha expression in the lung. Am J Physiol Lung Cell Mol Physiol 310: L175 – L186
dc.identifier.citedreferenceMadtes DK, Raines EW, Sakariassen KS, Assoian RK, Sporn MB, Bell GI, Ross R ( 1988 ) Induction of transforming growth factor‐alpha in activated human alveolar macrophages. Cell 53: 285 – 293
dc.identifier.citedreferenceMarchetti S, Pluim D, van Eijndhoven M, van Tellingen O, Mazzanti R, Beijnen JH, Schellens JH ( 2013 ) Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib‐hydroxy‐QPA. Invest New Drugs 31: 1125 – 1135
dc.identifier.citedreferenceNigg EA ( 2001 ) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2: 21 – 32
dc.identifier.citedreferencePardo A, Selman M ( 2016 ) Lung fibroblasts, aging, and idiopathic pulmonary fibrosis. Ann Am Thorac Soc 13 ( Suppl 5 ): S417 – S421
dc.identifier.citedreferencePatel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D ( 2012 ) Autophagy in idiopathic pulmonary fibrosis. PLoS ONE 7: e41394
dc.identifier.citedreferencePhan SH ( 2008 ) Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc 5: 334 – 337
dc.identifier.citedreferencePorcelli L, Guida G, Quatrale AE, Cocco T, Sidella L, Maida I, Iacobazzi RM, Ferretta A, Stolfa DA, Strippoli S et al ( 2015 ) Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy. J Transl Med 13: 26
dc.identifier.citedreferencePortella G, Passaro C, Chieffi P ( 2011 ) Aurora B: a new prognostic marker and therapeutic target in cancer. Curr Med Chem 18: 482 – 496
dc.identifier.citedreferencePrele CM, Yao E, O’Donoghue RJ, Mutsaers SE, Knight DA ( 2012 ) STAT3: a central mediator of pulmonary fibrosis? Proc Am Thorac Soc 9: 177 – 182
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.