Show simple item record

Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors

dc.contributor.authorWu, Yuanpeng
dc.contributor.authorLaleyan, David A.
dc.contributor.authorDeng, Zihao
dc.contributor.authorAhn, Chihyo
dc.contributor.authorAiello, Anthony F.
dc.contributor.authorPandey, Ayush
dc.contributor.authorLiu, Xianhe
dc.contributor.authorWang, Ping
dc.contributor.authorSun, Kai
dc.contributor.authorAhmadi, Elaheh
dc.contributor.authorSun, Yi
dc.contributor.authorKira, Mackillo
dc.contributor.authorBhattacharya, Pallab K.
dc.contributor.authorKioupakis, Emmanouil
dc.contributor.authorMi, Zetian
dc.date.accessioned2020-10-01T23:30:40Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:40Z
dc.date.issued2020-09
dc.identifier.citationWu, Yuanpeng; Laleyan, David A.; Deng, Zihao; Ahn, Chihyo; Aiello, Anthony F.; Pandey, Ayush; Liu, Xianhe; Wang, Ping; Sun, Kai; Ahmadi, Elaheh; Sun, Yi; Kira, Mackillo; Bhattacharya, Pallab K.; Kioupakis, Emmanouil; Mi, Zetian (2020). "Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors." Advanced Electronic Materials 6(9): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/162750
dc.description.abstractUltrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices.Controlled defects formation and efficient current conduction of nanoscale AlN are realized. Under N‐rich epitaxy conditions, the formation energy for N‐vacancy related compensating defects is increased by nearly 3 eV, eliminating donor‐like compensating defects. Meanwhile, the p‐type Al‐substitutional Mg‐dopant formation energy is reduced by 2 eV, significantly enhancing Mg‐dopant incorporation and reducing hole carrier tunneling barrier.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otheraluminum nitride
dc.subject.otherdefects
dc.subject.otherlight emitting diodes
dc.subject.othernanostructures
dc.subject.otheroptoelectronics
dc.subject.otherultraviolet optoelectronics
dc.titleControlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162750/3/aelm202000337-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162750/2/aelm202000337_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162750/1/aelm202000337.pdfen_US
dc.identifier.doi10.1002/aelm.202000337
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceS. Fernandez‐Garrido, J. K. Zettler, L. Geelhaar, O. Brandt, Nano Lett. 2015, 15, 1930.
dc.identifier.citedreferenceH. Umezawa, Mater. Sci. Semicond. Process. 2018, 78, 147.
dc.identifier.citedreferenceS. Hwang, M. Islam, B. Zhang, M. Lachab, J. Dion, A. Heidari, H. Nazir, V. Adivarahan, A. Khan, Appl. Phys. Express 2011, 4, 012102.
dc.identifier.citedreferenceV. Adivarahan, A. Heidari, B. Zhang, Q. Fareed, S. Hwang, M. Islam, A. Khan, Appl. Phys. Express 2009, 2, 102101.
dc.identifier.citedreferenceM. Nami, A. Rashidi, M. Monavarian, S. Mishkat‐Ul‐Masabih, A. K. Rishinaramangalam, S. R. J. Brueck, D. Feezell, ACS Photonics 2019, 6, 1618.
dc.identifier.citedreferenceM. Monavarian, A. Rashidi, D. Feezell, Phys. Status Solidi A 2018, 216, 1800628.
dc.identifier.citedreferenceZ. Mi, S. Zhao, S. Y. Woo, M. Bugnet, M. Djavid, X. Liu, J. Kang, X. Kong, W. Ji, H. Guo, Z. Liu, G. A. Botton, J. Phys. D: Appl. Phys. 2016, 49, 364006.
dc.identifier.citedreferenceY. Wu, Y. Wang, K. Sun, Z. Mi, J. Cryst. Growth 2019, 507, 65.
dc.identifier.citedreferenceK. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2003, 83, 878.
dc.identifier.citedreferenceM. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Altahtamouni, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2006, 89, 152120.
dc.identifier.citedreferenceM. L. Nakarmi, N. Nepal, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2009, 94, 091903.
dc.identifier.citedreferenceA. Pandey, X. Liu, Z. Deng, W. J. Shin, D. A. Laleyan, K. Mashooq, E. T. Reid, E. Kioupakis, P. Bhattacharya, Z. Mi, Phys. Rev. Mater. 2019, 3, 053401.
dc.identifier.citedreferenceQ. Yan, A. Janotti, M. Scheffler, C. G. Van de Walle, Appl. Phys. Lett. 2014, 105, 111104.
dc.identifier.citedreferenceT. Koppe, H. Hofsäss, U. Vetter, J. Lumin. 2016, 178, 267.
dc.identifier.citedreferenceA. M. Siladie, G. Jacopin, A. Cros, N. Garro, E. Robin, D. Caliste, P. Pochet, F. Donatini, J. Pernot, B. Daudin, Nano Lett. 2019, 19, 8357.
dc.identifier.citedreferenceS. Zhao, B. H. Le, D. P. Liu, X. D. Liu, M. G. Kibria, T. Szkopek, H. Guo, Z. Mi, Nano Lett. 2013, 13, 5509.
dc.identifier.citedreferenceW. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Nano Lett. 2010, 10, 3355.
dc.identifier.citedreferenceS. Zhao, A. T. Connie, M. H. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, Z. Mi, Sci. Rep. 2015, 5, 8332.
dc.identifier.citedreferenceK. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2003, 83, 2787.
dc.identifier.citedreferenceR. Boger, M. Fiederle, L. Kirste, M. Maier, J. Wagner, J. Phys. D: Appl. Phys. 2006, 39, 4616.
dc.identifier.citedreferenceQ. Wang, S. Zhao, A. T. Connie, I. Shih, Z. Mi, T. Gonzalez, M. P. Andrews, X. Z. Du, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2014, 104, 223107.
dc.identifier.citedreferenceJ. Ristić, E. Calleja, S. Fernández‐Garrido, L. Cerutti, A. Trampert, U. Jahn, K. H. Ploog, J. Cryst. Growth 2008, 310, 4035.
dc.identifier.citedreferenceT. Zywietz, J. Neugebauer, M. Scheffler, Appl. Phys. Lett. 1998, 73, 487.
dc.identifier.citedreferenceK. Kishino, S. Ishizawa, Nanotechnology 2015, 26, 225602.
dc.identifier.citedreferenceK. Yamano, K. Kishino, Appl. Phys. Lett. 2018, 112, 091105.
dc.identifier.citedreferenceY. H. Liang, E. Towe, Appl. Phys. Rev. 2018, 5, 011107.
dc.identifier.citedreferenceM. Kira, S. W. Koch, Semiconductor Quantum Optics, Cambridge University Press, Cambridge, England 2012.
dc.identifier.citedreferenceI. Aleksandrov, K. Zhuravlev, Phys. Status Solidi C 2010, 7, 2230.
dc.identifier.citedreferenceA. B. Slimane, A. Najar, R. Elafandy, D. P. San‐Roman‐Alerigi, D. Anjum, T. K. Ng, B. S. Ooi, Nanoscale Res. Lett. 2013, 8, 342.
dc.identifier.citedreferenceN. H. Tran, B. H. Le, S. Zhao, Z. Mi, Appl. Phys. Lett. 2017, 110, 032102.
dc.identifier.citedreferenceJ. M. Shah, Y. L. Li, T. Gessmann, E. F. Schubert, J. Appl. Phys. 2003, 94, 2627.
dc.identifier.citedreferenceP. Perlin, M. Osiński, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, P. Sartori, Appl. Phys. Lett. 1996, 69, 1680.
dc.identifier.citedreferenceH. C. Casey, J. Muth, S. Krishnankutty, J. M. Zavada, Appl. Phys. Lett. 1996, 68, 2867.
dc.identifier.citedreferenceK. B. Lee, P. J. Parbrook, T. Wang, J. Bai, F. Ranalli, R. J. Airey, G. Hill, Phys. Status Solidi B 2010, 247, 1761.
dc.identifier.citedreferenceM. Lee, H. Lee, K. M. Song, J. Kim, Nanomaterials 2018, 8, 543.
dc.identifier.citedreferenceA. T. Connie, S. Zhao, S. M. Sadaf, I. Shih, Z. Mi, X. Du, J. Lin, H. Jiang, Appl. Phys. Lett. 2015, 106, 213105.
dc.identifier.citedreferenceN. Sanders, D. Bayerl, G. Shi, K. A. Mengle, E. Kioupakis, Nano Lett. 2017, 17, 7345.
dc.identifier.citedreferenceA. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, P. Bhattacharya, Phys. Rev. Lett. 2011, 107, 066405.
dc.identifier.citedreferenceS. Zhao, M. Djavid, Z. Mi, Nano Lett. 2015, 15, 7006.
dc.identifier.citedreferenceS. Matta, J. Brault, M. Korytov, T. Q. Phuong Vuong, C. Chaix, M. Al Khalfioui, P. Vennéguès, J. Massies, B. Gil, J. Cryst. Growth 2018, 499, 40.
dc.identifier.citedreferenceY. Taniyasu, M. Kasu, T. Makimoto, Nature 2006, 441, 325.
dc.identifier.citedreferenceY. Wu, X. Liu, P. Wang, D. A. Laleyan, K. Sun, Y. Sun, C. Ahn, M. Kira, E. Kioupakis, Z. Mi, Appl. Phys. Lett. 2020, 116, 013101.
dc.identifier.citedreferenceD. A. Laleyan, S. Zhao, S. Y. Woo, H. N. Tran, H. B. Le, T. Szkopek, H. Guo, G. A. Botton, Z. Mi, Nano Lett. 2017, 17, 3738.
dc.identifier.citedreferenceJ. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov, Nat. Rev. Mater. 2019, 4, 552.
dc.identifier.citedreferenceS. J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 2018, 124, 220901.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.