Show simple item record

Empirical noise performance of prototype active pixel arrays employing polycrystalline silicon thin- film transistors

dc.contributor.authorKoniczek, Martin
dc.contributor.authorAntonuk, Larry E.
dc.contributor.authorEl‐mohri, Youcef
dc.contributor.authorLiang, Albert K.
dc.contributor.authorZhao, Qihua
dc.date.accessioned2020-10-01T23:30:42Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:42Z
dc.date.issued2020-09
dc.identifier.citationKoniczek, Martin; Antonuk, Larry E.; El‐mohri, Youcef ; Liang, Albert K.; Zhao, Qihua (2020). "Empirical noise performance of prototype active pixel arrays employing polycrystalline silicon thin- film transistors." Medical Physics (9): 3972-3983.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/162751
dc.publisherWiley Periodicals, Inc.
dc.subject.otheractive pixel arrays
dc.subject.othernoise performance
dc.subject.otherpolycrystalline silicon thin- film transistors
dc.subject.othercorrelated multiple sampling
dc.titleEmpirical noise performance of prototype active pixel arrays employing polycrystalline silicon thin- film transistors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162751/2/mp14321.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162751/1/mp14321_am.pdfen_US
dc.identifier.doi10.1002/mp.14321
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceGeng R, Gong Y. High performance active image sensor pixel design with circular structure oxide TFT. J Semicond. 2019; 40: 022402.
dc.identifier.citedreferenceLi D, Zhao W. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x- ray imaging: spatial resolution. Med Phys. 2008; 35: 3151 - 3161.
dc.identifier.citedreferenceScheuermann JR, Howansky A, Hansroul M, Leveille S, Tanioka K, Zhao W. Toward scintillator high- gain avalanche rushing photoconductor active matrix flat panel imager (SHARP- AMPFI): initial fabrication and characterization. Med Phys. 2018; 45: 794 - 802.
dc.identifier.citedreferenceStreet RA, Ready SE, van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix x- ray image sensors. J Appl Phys. 2002; 91: 3345 - 3355.
dc.identifier.citedreferenceZentai G, Partain L, Pavlyuchkova R. Dark current and DQE improvements of mercuric iodide medical imagers. Proc SPIE. 2007; 6510: 65100Q.
dc.identifier.citedreferenceDu H, Antonuk LE, El- Mohri Y, et al. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat- panel imagers incorporating polycrystalline HgI2. Phys Med Biol. 2008; 53: 1325 - 1351.
dc.identifier.citedreferenceOh K, Shin J, Kim S, et al. The development of efficient X- ray conversion material for digital mammography. J Instrum. 2012; 7: C02009.
dc.identifier.citedreferenceJiang H, Zhao Q, Antonuk LE, El- Mohri Y, Gupta T. Development of active matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic x- ray imaging. Phys Med Biol. 2013; 58: 703 - 714.
dc.identifier.citedreferenceGuerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State- of- the- art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Investig. 2006; 10: 1 - 7.
dc.identifier.citedreferenceShen Y, Zhong Y, Lai CJ, Wang T, Shaw CC. Cone beam breast CT with a high pitch (75 µm), thick (500 µm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications. Med Phys. 2013; 40: 101915.
dc.identifier.citedreferenceCao Q, Sisniega A, Brehler M, et al. Modeling and evaluation of a high- resolution CMOS detector for cone- beam CT of the extremities. Med Phys. 2018; 45: 114 - 130.
dc.identifier.citedreferenceKarim K, Nathan A, Rowlands JA. Amorphous silicon active pixel sensor readout circuit for digital imaging. IEEE Trans Electron Devices. 2003; 50: 200 - 208.
dc.identifier.citedreferenceIzadi MH, Tousignant O, Mokam MF, Karim K. An a- Si active pixel sensor (APS) array for medical x- ray imaging. IEEE Trans Electron Devices. 2010; 57: 3020 - 3026.
dc.identifier.citedreferenceKuo T- T, Wu C- M, Chan I. A new amorphous Se x- ray imager based on an active pixel sensor. J Imaging Sci Technol. 2014; 58: 020502.
dc.identifier.citedreferenceZhao C, Kanicki J. Amorphous In- Ga- Zn- O thin- film transistor active pixel sensor x- ray imager for digital breast tomosynthesis. Med Phys. 2014; 41: 091902.
dc.identifier.citedreferenceLi Y, Antonuk LE, El- Mohri Y, et al. Effects of x- ray irradiation on polycrystalline silicon, thin- film transistors. J Appl Phys. 2006; 99: 064501.
dc.identifier.citedreferenceAntonuk LE, El- Mohri Y, Zhao Q, et al. Exploration of the potential performance of polycrystalline silicon- based active matrix flat- panel imagers incorporating active pixel sensor architectures. Proc SPIE. 2008; 6913: 69130I.
dc.identifier.citedreferenceEl- Mohri Y, Antonuk LE, Koniczek M, et al. Active pixel imagers incorporating pixel- level amplifiers based on polycrystalline- silicon thin- film transistors. Med Phys. 2009; 36: 3340 - 3355.
dc.identifier.citedreferenceBoyce JB, Fulks RT, Ho J, et al. Laser processing of amorphous silicon for large- area polysilicon imagers. Thin Solid Films. 2001; 383: 137 - 142.
dc.identifier.citedreferenceKoniczek M, Antonuk LE, El- Mohri Y, Liang AK, Zhao Q. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors. Med Phys. 2017; 44: 3491 - 3503.
dc.identifier.citedreferenceYarema RJ, Zimmerman T, Srage J, et al. A programmable, low noise, multichannel ASIC for readout of pixelated amorphous silicon arrays. Nucl Instrum Meth Phys Res A. 2000; 439: 413 - 417.
dc.identifier.citedreferenceKoniczek M, Antonuk LE, El- Mohri Y, Liang A, Zhao Q. Empirical and theoretical examination of the noise performance of a prototype polycrystalline silicon active pixel array. Proc SPIE. 2018; 10573: 105730L.
dc.identifier.citedreferenceIniguez B, Xu Z, Fjeldly TA, Shur MS. Unified model for short- channel poly- Si TFTs. Solid- State Electron. 1999; 43: 1821 - 1831.
dc.identifier.citedreferenceSteinke MF, Bezak E. Technological approaches to in- room CBCT imaging. Australas Phys Eng Sci Med. 2008; 31: 167 - 179.
dc.identifier.citedreferenceZhao B, Zhao W. Imaging performance of an amorphous selenium digital mammogrphy detector in a breast tomosynthesis system. Med Phys. 2008; 35: 1978 - 1987.
dc.identifier.citedreferenceO- Connell AM, Karellas A, Vedantham S. The potential role of dedicated 3D breast CT as a diagnostic tool: review and early clinical examples. Breast J. 2014; 20: 592 - 605.
dc.identifier.citedreferenceAntonuk LE, Jee K- W, El- Mohri Y, et al. Strategies to improve the signal and noise performance of active matrix, flat- panel imagers for diagnostic x- ray applications. Med Phys. 2000; 27: 289 - 306.
dc.identifier.citedreferenceHunt DC, Tousignant O, Rowlands JA. Evaluation of the imaging properties of an amorphous selenium- based flat panel detector for digital fluoroscopy. Med Phys. 2004; 31: 1166 - 1175.
dc.identifier.citedreferenceEl- Mohri Y, Antonuk LE, Zhao Q, et al. Performance of a high fill factor, indirect detection prototype flat- panel imager for mammography. Med Phys. 2007; 34: 315 - 327.
dc.identifier.citedreferenceMaolinbay M, Zimmerman T, Yarema RJ, Antonuk LE, El- Mohri Y, Yeakey M. Design and performance of a low noise, 128- channel ASIC preamplifier for readout of active matrix flat- panel imaging arrays. Nucl Instrum Meth Phys Res A. 2002; 485: 661 - 675.
dc.identifier.citedreferenceFreestone S, Weisfield R, Tongnina C, Job I, Colbeth RE. Analysis of a new indium gallium zinc oxide (IGZO) detector. Proc SPIE. 2020; 11312: 113123W.
dc.identifier.citedreferenceZhao W, Li D, Reznik A, et al. Indirect flat- panel detector with avalanche gain: fundamental feasibility investigation for SHARP- AMFPI (scintillator HARP active matrix flat panel imager). Med Phys. 2005; 32: 2954 - 2966.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.