Show simple item record

Genetic analysis of post‐epizootic amphibian chytrid strains in Bolivia: Adding a piece to the puzzle

dc.contributor.authorBurrowes, Patricia A.
dc.contributor.authorJames, Timothy Y.
dc.contributor.authorJenkinson, Thomas S.
dc.contributor.authorDe la Riva, Ignacio
dc.date.accessioned2020-10-01T23:30:50Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:50Z
dc.date.issued2020-09
dc.identifier.citationBurrowes, Patricia A.; James, Timothy Y.; Jenkinson, Thomas S.; De la Riva, Ignacio (2020). "Genetic analysis of post‐epizootic amphibian chytrid strains in Bolivia: Adding a piece to the puzzle." Transboundary and Emerging Diseases 67(5): 2163-2171.
dc.identifier.issn1865-1674
dc.identifier.issn1865-1682
dc.identifier.urihttps://hdl.handle.net/2027.42/162756
dc.description.abstractThe evolutionary history and dispersal pattern of Batrachochytrium dendrobatidis (Bd), an emergent fungal pathogen responsible for the decline and extinctions of many species of amphibians worldwide, is still not well understood. In South America, the tropical Andes are known as an important site for amphibian diversification, but also for being a place where hosts are at greater risk of chytridiomycosis. In an attempt to understand the history and the geographic pattern of Bd‐associated amphibian declines in Bolivia, we isolated Bd from hosts at two locations that differ in their chronology of Bd prevalence and host survival outcome, the cloud forests of the Amazonian slopes of the Andes and Lake Titicaca in the altiplano. We genotyped Bd from both locations and sequenced the genome from the cloud forest isolate and then compared them to reference sequences of other Bd strains across the world. We found that the Bolivian chytrid isolates were nearly genotypically identical and that they belong to the global panzootic lineage (Bd‐GPL). The Bolivian Bd strain grouped with other tropical New World strains but was closest to those from the Brazilian Atlantic Forest. Our results extend the presence of Bd‐GPL to the central Andes in South America and report this hypervirulent strain at Lago Titicaca, where Bd has been detected since 1863, without evidence of amphibian declines. These findings suggest a more complex evolutionary history for this pathogen in Bolivia and may point to the existence of an old lineage of Bd that has since been extirpated following the arrival of the panzootic Bd‐GPL or that the timing of Bd‐GPL emergence is earlier than generally acknowledged.
dc.publisherAsociación Herpetológica Española
dc.publisherWiley Periodicals, Inc.
dc.subject.otheramphibian declines
dc.subject.otherchytridiomycosis
dc.subject.otheremergent infectious diseases
dc.subject.otherfungal disease
dc.subject.othergenotyping
dc.subject.otherBatrachochytrium dendrobatidis
dc.titleGenetic analysis of post‐epizootic amphibian chytrid strains in Bolivia: Adding a piece to the puzzle
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEpidemiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162756/2/tbed13568_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162756/1/tbed13568.pdfen_US
dc.identifier.doi10.1111/tbed.13568
dc.identifier.sourceTransboundary and Emerging Diseases
dc.identifier.citedreferenceMcKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … De Pristo, M. A. ( 2010 ). The genome analysis toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20 ( 9 ), 1297 – 1303. https://doi.org/10.1101/gr.107524.110
dc.identifier.citedreferenceLa Marca, E., Lips, K. R., Lötters, S., Puschendorf, R., Ibáñez, R., Rueda‐Almonacid, J. V., … García‐Pérez, J. E. ( 2005 ). Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus ). Biotropica, 37 ( 2 ), 190 – 201.
dc.identifier.citedreferenceLi, H. ( 2013 ). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. ArXiv Preprint, arXiv:1303.3997.
dc.identifier.citedreferenceLips, K. R., Diffendorfer, J., Mendelson, J. R. III, & Sears, M. W. ( 2008 ). Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biology, 6 ( 3 ), e72. https://doi.org/10.1371/journal.pbio.0060072
dc.identifier.citedreferenceLongcore, J. E. ( 2000 ). Culture techniques for amphibian chytrids: Recognizing, isolating and culturing Batrachochytrium dendrobatidis from amphibians. Proceedings of Getting the Jump! On Amphibian Diseases Conference Workshop. Cairns, Australia, 26–30 August 2000, pp. 52 – 54.
dc.identifier.citedreferenceLongcore, J. E., Pessier, A. P., & Nichols, D. K. ( 1999 ). Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219 – 227.
dc.identifier.citedreferenceMartel, A., Spitzen‐van der Sluijs, A., Blooi, M., Bert, W., Ducatelle, R., Fisher, M. C., Pasmans, F. ( 2013 ). Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences USA, 110 ( 38 ), 15325 – 15329. https://doi.org/10.1073/pnas.1307356110
dc.identifier.citedreferenceMiller, C. A., Taboue, G. C. T., Ekane, M. M., Robak, M., Clee, P. R. S., Richards‐Zawacki, C., … Anthony, N. M. ( 2018 ). Distribution modeling and lineage diversity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a central African amphibian hotspot. PLoS ONE, 13 ( 6 ), e0199288. https://doi.org/10.1371/journal.pone.0199288
dc.identifier.citedreferenceMountain, J. L., & Cavalli‐Sforza, L. L. ( 1997 ). Multilocus genotypes, a tree of individuals, and human evolutionary history. The American Journal of Human Genetics, 61 ( 3 ), 705 – 718. https://doi.org/10.1086/515510
dc.identifier.citedreferenceNational Center for Biotechnology Information (NCBI) ( 2020 ) [Internet]. National Center for Biotechnology Information. Bethesda, MD: National Library of Medicine (US), [2020] – [cited March 12, 2020]. Retrieved from https://www.ncbi.nlm.nih.gov/
dc.identifier.citedreferenceO’hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G. M., Waldman, B., Bataille, A. … Martin, M. D. ( 2018 ). Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 360 ( 6389 ), 621 – 627.
dc.identifier.citedreferenceRenick Mayer, L. ( 2016 ). Hope in the face of 10,000 deaths. Global wildlife conservation [Article]. Retrieved from https://www.globalwildlife.org/hope‐in‐the‐face‐of‐10000‐deaths/
dc.identifier.citedreferenceRichgels, K. L., Russell, R. E., Adams, M. J., White, C. L., & Grant, E. H. C. ( 2016 ). Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA. Royal Society Open Science, 3 ( 2 ), 150616.
dc.identifier.citedreferenceRodriguez, D., Becker, C. G., Pupin, N. C., Haddad, C. F. B., & Zamudio, K. R. ( 2014 ). Long‐term endemism of two highly divergent lineages of the amphibian‐killing fungus in the Atlantic Forest of Brazil. Molecular Ecology, 23 ( 4 ), 774 – 787. https://doi.org/10.1111/mec.12615
dc.identifier.citedreferenceRon, S. R., Duellman, W. E., Coloma, L. A., & Bustamante, M. R. ( 2003 ). Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology, 37 ( 1 ), 116 – 126. https://doi.org/10.1670/0022‐1511(2003)037[0116:PDOTJT]2.0.CO;2
dc.identifier.citedreferenceRosenblum, E. B., James, T. Y., Zamudio, K. R., Poorten, T. J., Ilut, D., Rodriguez, D., … Longcore, J. E. ( 2013 ). Complex history of the amphibian‐killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences USA, 110 ( 23 ), 9385 – 9390. https://doi.org/10.1073/pnas.1300130110
dc.identifier.citedreferenceScheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., … Canessa, S. ( 2019 ). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363 ( 6434 ), 1459 – 1463.
dc.identifier.citedreferenceSchloegel, L. M., Toledo, L. F., Longcore, J. E., Greenspan, S. E., Vieira, C. A., Lee, M., … Davies, A. J. ( 2012 ). Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology, 21 ( 21 ), 5162 – 5177. https://doi.org/10.1111/j.1365‐294X.2012.05710.x
dc.identifier.citedreferenceSkerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., … Kenyon, N. ( 2007 ). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4 ( 2 ), 125 – 134. https://doi.org/10.1007/s10393‐007‐0093‐5
dc.identifier.citedreferenceStegen, G., Pasmans, F., Schmidt, B. R., Rouffaer, L. O., Van Praet, S., Schaub, M., … Martel, A. N. ( 2017 ). Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature, 544 ( 7650 ), 353. https://doi.org/10.1038/nature22059
dc.identifier.citedreferenceStuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S., Fischman, D. L., & Waller, R. W. ( 2004 ). Status and trends of amphibian declines and extinctions worldwide. Science, 306 ( 5702 ), 1783 – 1786.
dc.identifier.citedreferenceTamura, K., Battistuzzi, F. U., Billing‐Ross, P., Murillo, O., Filipski, A., & Kumar, S. ( 2012 ). Estimating divergence times in large molecular phylogenies. Proceedings of the National Academy of Sciences USA, 109 ( 47 ), 19333 – 19338. https://doi.org/10.1073/pnas.1213199109
dc.identifier.citedreferenceValenzuela‐Sánchez, A., O’Hanlon, S. J., Alvarado‐Rybak, M., Uribe‐Rivera, D. E., Cunningham, A. A., Fisher, M. C., & Soto‐Azat, C. ( 2018 ). Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transboundary and Emerging Diseases, 65 ( 2 ), 309 – 314.
dc.identifier.citedreferenceVieira, C. A., Toledo, L. F., Longcore, J. E., & Longcore, J. R. ( 2013 ). Body length of Hylodes cf. ornatus and Lithobates catesbeianus tadpoles, depigmentation of mouthparts, and presence of Batrachochytrium dendrobatidis are related. Brazilian Journal of Biology, 73 ( 1 ), 195 – 199.
dc.identifier.citedreferenceAgostini, M. G., & Burrowes, P. A. ( 2015 ). Infection patterns of the chytrid fungus, Batrachochytrium dendrobatidis, on anuran assemblages in agro‐ecosystems from Buenos Aires Province. Argentina. Phyllomedusa, 14 ( 2 ), 113 – 126. https://doi.org/10.11606/issn.2316‐9079.v14i2p113‐126
dc.identifier.citedreferenceAndrews, S. ( 2010 ). FastQC: A quality control tool for high throughput sequence data [Web tool]. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc
dc.identifier.citedreferenceArchundia, D., Duwig, C., Spadini, L., Uzu, G., Guédron, S., Morel, M. C., … Martins, J. M. F. ( 2017 ). How uncontrolled urban expansion increases the contamination of the Titicaca lake basin (El Alto, La Paz, Bolivia). Water, Air, & Soil Pollution, 228 ( 1 ), 44. https://doi.org/10.1007/s11270‐016‐3217‐0
dc.identifier.citedreferenceBataille, A., Fong, J. J., Cha, M., Wogan, G. O. U., Baek, H. J., Lee, H., … Waldaman, B. ( 2013 ). Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Molecular Ecology, 22, 4196 – 4209.
dc.identifier.citedreferenceBenavides, E. ( 2005 ). The Telmatobius species complex in Lake Titicaca: Applying phylogeographic and coalescent approaches to evolutionary studies of highly polymorphic Andean frogs. In: Lavilla, E. O., & De la Riva, I. (Eds.), Studies on the Andean Frogs of the Genera Telmatobius and Batrachophrynus (pp. 167 – 185 ). Valencia, Spain: Monografías de Herpetología, vol 7, Asociación Herpetológica Española.
dc.identifier.citedreferenceBerenguel, R. A., Elias, R. K., Weaver, T. J., & Reading, R. P. ( 2016 ). Chytrid fungus, Batrachochytrium dendrobatidis, in wild populations of the Lake Titicaca Frog, Telmatobius culeus, in Peru. Journal of Wildlife Diseases, 52 ( 4 ), 973 – 975.
dc.identifier.citedreferenceBolger, A. M., Lohse, M., & Usadel, B. ( 2014 ). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30 ( 15 ), 2114 – 2120. https://doi.org/10.1093/bioinformatics/btu170
dc.identifier.citedreferenceBurrowes, P. A., & De la Riva, I. ( 2017a ). Unraveling the historical prevalence of the Invasive chytrid fungus in the Bolivian Andes: Implications in recent amphibian declines. Biological Invasions, 19 ( 6 ), 1781 – 1794. https://doi.org/10.1007/s10530‐017‐1390‐8
dc.identifier.citedreferenceBurrowes, P. A., & De la Riva, I. ( 2017b ). Chytrid fungus detected in museum specimens of Andean aquatic birds: Implications for pathogen dispersal. Journal of Wildlife Diseases, 53 ( 2 ), 349 – 355.
dc.identifier.citedreferenceByrne, A. Q., Vredenburg, V. T., Martel, A., Pasmans, F., Bell, R. C., Blackburn, D. C., … Catenazzi, A. ( 2019 ). Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proceedings of the National Academy of Sciences USA, 116 ( 41 ), 20382 – 20387. https://doi.org/10.1073/pnas.1908289116
dc.identifier.citedreferenceCollins, J. P., & Crump, M. L. ( 2009 ). Extinction in our times: Global amphibian decline. New York, NY: Oxford University Press.
dc.identifier.citedreferenceCortez, C. ( 2009 ). Anfibios del Valle de Zongo (La Paz, Bolivia): I. Evaluación del estado de conservación. Ecología en Bolivia, 44 ( 2 ), 109 – 120.
dc.identifier.citedreferenceCunningham, A. A., Hyatt, A. D., Russell, P., & Bennett, P. M. ( 2007 ). Emerging epidemic diseases of frogs in Britain are dependent on the source of ranavirus agent and the route of exposure. Epidemiology & Infection, 135 ( 7 ), 1200 – 1212. https://doi.org/10.1017/S0950268806007679
dc.identifier.citedreferenceDaszak, P., Cunningham, A. A., & Hyatt, A. D. ( 2003 ). Infectious disease and amphibian population declines. Diversity and Distributions, 9 ( 2 ), 141 – 150. https://doi.org/10.1046/j.1472‐4642.2003.00016.x
dc.identifier.citedreferenceDe la Riva, I., & Burrowes, P. A. ( 2011 ). Rapid assessment of the presence of Batrachochytrium dendrobatidis in Bolivian Andean frogs. Herpetological Review, 42, 372 – 375.
dc.identifier.citedreferenceDe la Riva, I., Köhler, J., Lötters, S., & Reichle, S. ( 2000 ). Ten years of research on Bolivian amphibians: Updated checklist, distribution, taxonomic problems, literature and iconography. Revista Española de Herpetología, 14, 19 – 164.
dc.identifier.citedreferenceDe la Riva, I. ( 2005 ). Bolivian frogs of the genus Telmatobius (Anura: Leptodactylidae): Synopsis, taxonomic comments, and description of a new species. In: E. O. Lavilla, & I. De la Riva (Eds.), Studies on the Andean Frogs of the Genera Telmatobius and Batrachophrynus (pp. 65 – 101 ). Valencia, Spain: Monografías de Herpetología, vol 7, Asociación Herpetológica Española.
dc.identifier.citedreferenceDe la Riva, I., & Lavilla, E. O. ( 2008 ). Essay 9.2: Conservation status of the Andean frogs of the genera Telmatobius and Batrachophrynus. In: S. N. Stuart, M. Hoffmann, J. S. Chanson, N. A. Cox, R. Berridge, P. Ramani, & B. E. Young (Eds.), Threatened Amphibians of the World (p. 101 ). Barcelona, Spain: Lynx Ediciones, with IUCN—The World Conservation Union, Conservation International, and NatureServe.
dc.identifier.citedreferenceDe la Riva, I., & Reichle, S. ( 2014 ). Diversity and conservation of the amphibians of Bolivia. In: H. Heatwole, C. Barrio‐Amorós, & J. W. Wilkinson (Eds.), Status of decline of amphibians: Western Hemisphere (pp. 46 – 65 ). Amphibian biology. Chapter 13, Part 4 of Volume 9. Herpetological Monographs 28.
dc.identifier.citedreferenceFarrer, R. A., Henk, D. A., Garner, T. W., Balloux, F., Woodhams, D. C., & Fisher, M. C. ( 2013 ). Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genetics, 9 ( 8 ), e1003703. https://doi.org/10.1371/journal.pgen.1003703
dc.identifier.citedreferenceFarrer, R. A., Weinert, L. A., Bielby, J., Garner, T. W., Balloux, F., Clare, F., … Anderson, L. ( 2011 ). Multiple emergences of genetically diverse amphibian‐infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences USA, 108 ( 46 ), 18732 – 18736. https://doi.org/10.1073/pnas.1111915108
dc.identifier.citedreferenceFellers, G. M., Green, D. E., & Longcore, J. E. ( 2001 ). Oral chytridiomycosis in the mountain yellow‐legged frog ( Rana muscosa ). Copeia, 2001 ( 4 ), 945 – 953. https://doi.org/10.1643/0045‐8511(2001)001[0945:OCITMY]2.0.CO;2
dc.identifier.citedreferenceFelsenstein, J. ( 1993 ). PHYLIP version 3.5 c [Phylogeny inference package]. Retrieved from http://evolution.genetics.washington.edu/phylip.html
dc.identifier.citedreferenceFisher, M. C., Garner, T. W., & Walker, S. F. ( 2009 ). Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual Review of Microbiology, 63, 291 – 310.
dc.identifier.citedreferenceFisher, M. C., Ghosh, P., Shelton, J. M., Bates, K., Brookes, L., Wierzbicki, C., … Bataille, A. ( 2018 ). Development and worldwide use of non‐lethal, and minimal population‐level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 8 ( 1 ), 7772. https://doi.org/10.1038/s41598‐018‐24472‐2
dc.identifier.citedreferenceGarmyn, A., Van Rooij, P., Pasmans, F., Hellebuyck, T., Van Den Broeck, W., Haesebrouck, F., & Martel, A. ( 2012 ). Waterfowl: Potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE, 7 ( 4 ), e35038. https://doi.org/10.1371/journal.pone.0035038
dc.identifier.citedreferenceGoka, K., Yokoyama, J. U. N., Une, Y., Kuroki, T., Suzuki, K., Nakahara, M., … Hyatt, A. D. ( 2009 ). Amphibian chytridiomycosis in Japan: Distribution, haplotypes and possible route of entry into Japan. Molecular Ecology, 18 ( 23 ), 4757 – 4774. https://doi.org/10.1111/j.1365‐294X.2009.04384.x
dc.identifier.citedreferenceGray, M. J., Lewis, J. P., Nanjappa, P., Klocke, B., Pasmans, F., Martel, A., … Christman, M. R. ( 2015 ). Batrachochytrium salamandrivorans: The North American response and a call for action. Plos Pathogens, 11 ( 12 ), e1005251. https://doi.org/10.1371/journal.ppat.1005251
dc.identifier.citedreferenceGreenspan, S. E., Lambertini, C., Carvalho, T., James, T. Y., Toledo, L. F., Haddad, C. F. B., & Becker, C. G. ( 2018 ). Hybrids of amphibian chytrid show high virulence in native hosts. Scientific Reports, 8 ( 1 ), 9600. https://doi.org/10.1038/s41598‐018‐27828‐w
dc.identifier.citedreferenceHeads, M. ( 2005 ). Dating nodes on molecular phylogenies: A critique of molecular biogeography. Cladistics, 21 ( 1 ), 62 – 78. https://doi.org/10.1111/j.1096‐0031.2005.00052.x
dc.identifier.citedreferenceJames, T. Y., Litvintseva, A. P., Vilgalys, R., Morgan, J. A., Taylor, J. W., Fisher, M. C., … Longcore, J. E. ( 2009 ). Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Path, 5 ( 5 ), e1000458. https://doi.org/10.1371/journal.ppat.1000458
dc.identifier.citedreferenceJames, T. Y., Stenlid, J., Olson, Å., & Johannesson, H. ( 2008 ). Evolutionary significance of imbalanced nuclear ratios within heterokaryons of the basidiomycete fungus Heterobasidion parviporum. Evolution, 62 ( 9 ), 2279 – 2296.
dc.identifier.citedreferenceJames, T. Y., Toledo, L. F., Rödder, D., da Silva Leite, D., Belasen, A. M., Betancourt‐Román, C. M., … Ruggeri, J. ( 2015 ). Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution, 5 ( 18 ), 4079 – 4097.
dc.identifier.citedreferenceJenkinson, T. S., Betancourt Román, C. M., Lambertini, C., Valencia‐Aguilar, A., Rodriguez, D., Nunes‐de‐Almeida, C. H. L., … Longcore, J. E. ( 2016 ). Amphibian‐killing chytrid in Brazil comprises both locally endemic and globally expanding populations. Molecular Ecology, 25 ( 13 ), 2978 – 2996. https://doi.org/10.1111/mec.13599
dc.identifier.citedreferenceJenkinson, T. S., Rodriguez, D., Clemons, R. A., Michelotti, L. A., Zamudio, K. R., Toledo, L. F., … James, T. Y. ( 2018 ). Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proceedings of the Royal Society B, 285 ( 1893 ), 20181894. https://doi.org/10.1098/rspb.2018.1894
dc.identifier.citedreferenceJohnson, M. L., & Speare, R. ( 2005 ). Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms, 65 ( 3 ), 181 – 186. https://doi.org/10.3354/dao065181
dc.identifier.citedreferenceKaiser, K., & Pollinger, J. ( 2012 ). Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya Mountains of Belize. PLoS ONE, 7 ( 2 ), e32113. https://doi.org/10.1371/journal.pone.0032113
dc.identifier.citedreferenceKnapp, R. A., & Morgan, J. A. ( 2006 ). Tadpole mouthpart depigmentation as an accurate indicator of chytridiomycosis, an emerging disease of amphibians. Copeia, 2006 ( 2 ), 188 – 197. https://doi.org/10.1643/0045‐8511(2006)6[188:TMDAAA]2.0.CO;2
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.