Show simple item record

Implementation of a registry and open access genetic testing program for inherited retinal diseases within a non‐profit foundation

dc.contributor.authorMansfield, Brian C.
dc.contributor.authorYerxa, Benjamin R.
dc.contributor.authorBranham, Kari H.
dc.date.accessioned2020-10-01T23:30:56Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:30:56Z
dc.date.issued2020-09
dc.identifier.citationMansfield, Brian C.; Yerxa, Benjamin R.; Branham, Kari H. (2020). "Implementation of a registry and open access genetic testing program for inherited retinal diseases within a non‐profit foundation." American Journal of Medical Genetics Part C: Seminars in Medical Genetics 184(3): 838-845.
dc.identifier.issn1552-4868
dc.identifier.issn1552-4876
dc.identifier.urihttps://hdl.handle.net/2027.42/162760
dc.description.abstractThe Foundation Fighting Blindness is a 50‐year old 501c(3) non‐profit organization dedicated to supporting the development of treatments and cures for people affected by the inherited retinal diseases (IRD), a group of clinical diagnoses that include orphan diseases such as retinitis pigmentosa, Usher syndrome, and Stargardt disease, among others. Over $760 M has been raised and invested in preclinical and clinical research and resources. Key resources include a multi‐national clinical consortium, an international patient registry with over 15,700 members that is expanding rapidly, and an open access genetic testing program that provides no cost comprehensive genetic testing to people clinically diagnosed with an IRD living in the United States. These programs are described with particular focus on the challenges and outcomes of establishing the registry and genetic testing program.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherclinical consortium
dc.subject.otherventure philanthropy
dc.subject.otherpatient registry
dc.subject.otheropen access genetic testing
dc.subject.otherinherited retinal diseases
dc.titleImplementation of a registry and open access genetic testing program for inherited retinal diseases within a non‐profit foundation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHuman Genetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162760/2/ajmgc31825_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162760/1/ajmgc31825.pdfen_US
dc.identifier.doi10.1002/ajmg.c.31825
dc.identifier.sourceAmerican Journal of Medical Genetics Part C: Seminars in Medical Genetics
dc.identifier.citedreferenceSangermano, R., Garanto, A., Khan, M., Runhart, E. H., Bauwens, M., Bax, N. M., … Cremers, F. P. M. ( 2019 ). Deep‐intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 21 ( 8 ), 1751 – 1760. https://doi.org/10.1038/s41436-018-0414-9
dc.identifier.citedreferenceCella, D., Choi, S. W., Condon, D. M., Schalet, B., Hays, R. D., Rothrock, N. E., … Reeve, B. B. ( 2019 ). PROMIS([R]) adult health profiles: Efficient short‐form measures of seven health domains. Value in Health, 22 ( 5 ), 537 – 544. https://doi.org/10.1016/j.jval.2019.02.004
dc.identifier.citedreferenceCremers, F. P. M., Boon, C. J. F., Bujakowska, K., & Zeitz, C. ( 2018 ). Special issue introduction: Inherited retinal disease: Novel candidate genes, genotype‐phenotype correlations, and inheritance models. Genes (Basel), 9 ( 4 ), 215. https://doi.org/10.3390/genes9040215
dc.identifier.citedreferenceDaiger, S. P., Bowne, S. J., & Sullivan, L. S. ( 2007 ). Perspective on genes and mutations causing retinitis pigmentosa. Archives of Ophthalmology, 125 ( 2 ), 151 – 158. https://doi.org/10.1001/archopht.125.2.151
dc.identifier.citedreferenceDaiger, S. P., Rossiter, B. J. F., Greenberg, J., Christoffels, A., & Hide, W. ( 1998 ). Data services and software for identifying genes and mutations causing retinal degeneration. Investigative Ophthalmology & Visual Science, 39, s295.
dc.identifier.citedreferenceDaiger, S. P., Sullivan, L. S., & Bowne, S. J. ( 2013 ). Genes and mutations causing retinitis pigmentosa. Clinical Genetics, 84 ( 2 ), 132 – 141. https://doi.org/10.1111/cge.12203
dc.identifier.citedreferenceDryja, T. P., McGee, T. L., Reichel, E., Hahn, L. B., Cowley, G. S., Yandell, D. W., … Berson, E. L. ( 1990 ). A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 343 ( 6256 ), 364 – 366. https://doi.org/10.1038/343364a0
dc.identifier.citedreferenceDuncan, J. L., Liang, W., Maguire, M. G., Audo, I., Ayala, A. R., Birch, D. G., … Sahel, J.‐A. ( 2020 ). Baseline visual field findings in the RUSH2A study: Associated factors and correlation with other measures of disease severity. American Journal of Ophthalmology. https://doi.org/10.1016/j.ajo.2020.05.024
dc.identifier.citedreferenceFarrar, G. J., Kenna, P., Redmond, R., McWilliam, P., Bradley, D. G., Humphries, M. M., … Humphries, P. ( 1990 ). Autosomal dominant retinitis pigmentosa: Absence of the rhodopsin proline→histidine substitution (codon 23) in pedigrees from Europe. American Journal of Human Genetics, 47 ( 6 ), 941 – 945.
dc.identifier.citedreferenceFisher, J. K., Bromley, R. L., & Mansfield, B. C. ( 2016 ). My retina tracker™: An on‐line international registry for people affected with inherited orphan retinal degenerative diseases and their genetic relatives—A new resource. In C. Bowes Rickman, M. M. LaVail, R. E. Anderson, C. Grimm, J. Hollyfield, & J. Ash (Eds.), Retinal degenerative diseases (Vol. 854, pp. 245 – 251 ). Cham: Springer International Publishing.
dc.identifier.citedreferenceHaer‐Wigman, L., van Zelst‐Stams, W. A., Pfundt, R., van den Born, L. I., Klaver, C. C., Verheij, J. B., … Yntema, H. G. ( 2017 ). Diagnostic exome sequencing in 266 Dutch patients with visual impairment. European Journal of Human Genetics: EJHG, 25 ( 5 ), 591 – 599. https://doi.org/10.1038/ejhg.2017.9
dc.identifier.citedreferenceHanany, M., Rivolta, C., & Sharon, D. ( 2020 ). Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 5 ), 2710 – 2716. https://doi.org/10.1073/pnas.1913179117
dc.identifier.citedreferenceLeroy, B. P., Pennesi, M. E., & Ohnsman, C. M. ( 2018, July). Brave new world: Gene therapy for retinal disease. Eyenet Supplement.
dc.identifier.citedreferencePontikos, N., Arno, G., Jurkute, N., Schiff, E., Ba‐Abbad, R., Malka, S., … Mahroo, O. A. ( 2020 ). Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.04.008
dc.identifier.citedreferenceSahel, J.‐A., Marazova, K., & Audo, I. ( 2015 ). Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harbor Perspectives in Medicine, 5 ( 2 ), a017111. https://doi.org/10.1101/cshperspect.a017111
dc.identifier.citedreferenceShaberman, B., & Durham, T. ( 2019 ). The Foundation Fighting Blindness plays an essential and expansive role in driving genetic research for inherited retinal diseases. Genes, 10 ( 7 ), 511.
dc.identifier.citedreferenceSharon, D., Ben‐Yosef, T., Goldenberg‐Cohen, N., Pras, E., Gradstein, L., Soudry, S., … Perlman, I. ( 2020 ). A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Human Mutation, 41 ( 1 ), 140 – 149. https://doi.org/10.1002/humu.23903
dc.identifier.citedreferenceStone, E. M., Andorf, J. L., Whitmore, S. S., DeLuca, A. P., Giacalone, J. C., Streb, L. M., … Tucker, B. A. ( 2017 ). Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology, 124, 1314 – 1331. https://doi.org/10.1016/j.ophtha.2017.04.008
dc.identifier.citedreferenceStrauss, R. W., Kong, X., Bittencourt, M. G., Ho, A., Jha, A., Schonbach, E. M., … SMART Study Group. ( 2019 ). Scotopic Microperimetric assessment of rod function in Stargardt disease (SMART) study: Design and baseline characteristics (Report no. 1). Ophthalmic Research, 61, 36 – 43. https://doi.org/10.1159/000488711
dc.identifier.citedreferenceVervoort, R., Lennon, A., Bird, A. C., Tulloch, B., Axton, R., Miano, M. G., … Wright, A. F. ( 2000 ). Mutational hot spot within a new RPGR exon in X‐linked retinitis pigmentosa. Nature Genetics, 25 ( 4 ), 462 – 466. https://doi.org/10.1038/78182
dc.identifier.citedreferenceVervoort, R., & Wright, A. F. ( 2002 ). Mutations of RPGR in X‐linked retinitis pigmentosa (RP3). Human Mutation, 19 ( 5 ), 486 – 500. https://doi.org/10.1002/humu.10057
dc.identifier.citedreferenceZampaglione, E., Kinde, B., Place, E. M., Navarro‐Gomez, D., Maher, M., Jamshidi, F., … Bujakowska, K. M. ( 2020 ). Copy‐number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Genetics in Medicine: Official Journal of the American College of Medical Genetics., 22, 1079 – 1087. https://doi.org/10.1038/s41436-020-0759-8
dc.identifier.citedreferenceAchroma_Corp. ( 2018 ). Achroma Corp. announces global survey results of 226 people with achromatopsia. Achroma Corp. Retrieved from https://www.achromacorp.org/PatientJourney.html.
dc.identifier.citedreferenceBeltran, W. A. ( 2009 ). The use of canine models of inherited retinal degeneration to test novel therapeutic approaches. Veterinary Ophthalmology, 12 ( 3 ), 192 – 204. https://doi.org/10.1111/j.1463-5224.2009.00694.x
dc.identifier.citedreferenceBronstein, R., Capowski, E. E., Mehrotra, S., Jansen, A. D., Navarro‐Gomez, D., Maher, M., … Pierce, E. A. ( 2020 ). A combined RNA‐seq and whole genome sequencing approach for identification of non‐coding pathogenic variants in single families. Human Molecular Genetics, 29 ( 6 ), 967 – 979. https://doi.org/10.1093/hmg/ddaa016
dc.identifier.citedreferenceBujakowska, K. M., Fernandez‐Godino, R., Place, E., Consugar, M., Navarro‐Gomez, D., White, J., … Pierce, E. A. ( 2016 ). Copy‐number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genetics in Medicine, 19, 643 – 651. https://doi.org/10.1038/gim.2016.158
dc.identifier.citedreferenceCraig, B. M., Reeve, B. B., Brown, P. M., Cella, D., Hays, R. D., Lipscomb, J., Simon Pickard, A., Revicki, D. A. ( 2014 ). US Valuation of Health Outcomes Measured Using the PROMIS‐29. Value in Health, 17 ( 8 ), 846 – 853. http://dx.doi.org/10.1016/j.jval.2014.09.005.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.