Show simple item record

Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma

dc.contributor.authorMarques, Ana Elizia M.
dc.contributor.authorNascimento Filho, Carlos Henrique V.
dc.contributor.authorMarinho Bezerra, Thamara M.
dc.contributor.authorGuerra, Eliete N. S.
dc.contributor.authorCastilho, Rogerio M.
dc.contributor.authorSquarize, Cristiane H.
dc.date.accessioned2020-10-01T23:31:00Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:00Z
dc.date.issued2020-09
dc.identifier.citationMarques, Ana Elizia M.; Nascimento Filho, Carlos Henrique V.; Marinho Bezerra, Thamara M.; Guerra, Eliete N. S.; Castilho, Rogerio M.; Squarize, Cristiane H. (2020). "Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma." Journal of Oral Pathology & Medicine 49(8): 771-779.
dc.identifier.issn0904-2512
dc.identifier.issn1600-0714
dc.identifier.urihttps://hdl.handle.net/2027.42/162762
dc.description.abstractIntroductionAlterations of the epigenome may influence cancer initiation and progression. At the cellular level, histones are key regulators of chromatin accessibility and gene transcription; thus, the inhibition of histone deacetylase enzymes (HDACs) constitutes an attractive target for therapy. In this study, we investigated the effects of the HDAC inhibitor entinostat on oral squamous cell carcinoma (OSCC).Materials and MethodsWe tested the effects of entinostat on OSCC cell lines. Cell viability and growth were analyzed using MTT assay. Cell cycle analysis, cell apoptosis, cancer stem cell (CSC) content, and the concentration of reactive oxygen species (ROS) in OSCC tumor cells were assessed using flow cytometry. The expression of histones and cell cycle regulatory proteins was examined by Western blot.ResultsThe administration of entinostat resulted in reduced proliferation of OSCC cells, followed by cell cycle arrest at the G0/G1 phase, as well as substantial tumor apoptosis. We found an increase in ROS production and significant reductions in CSCs. We also found that entinostat caused increased acetylation histone H3 and histone H4, and changes in the expression of cell cycle‐associated proteins such as p21.ConclusionThis study indicates that entinostat is a potential novel therapeutic agent for OSCC by halting tumor proliferation, inducing cytotoxicity and intracellular ROS, and attacking the CSCs.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherapoptosis
dc.subject.othercancer stem cells
dc.subject.otherepigenetics
dc.subject.otherHDAC inhibitor
dc.subject.otheroral cancer
dc.titleEntinostat is a novel therapeutic agent to treat oral squamous cell carcinoma
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162762/2/jop13039.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162762/1/jop13039_am.pdfen_US
dc.identifier.doi10.1111/jop.13039
dc.identifier.sourceJournal of Oral Pathology & Medicine
dc.identifier.citedreferenceSiddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012; 30 ( 3 ): 372 ‐ 378.
dc.identifier.citedreferenceEnzenhofer E, Kadletz L, Stanisz I, et al. Effect of the histone deacetylase inhibitor resminostat on head and neck squamous cell carcinoma cell lines. Head Neck. 2017; 39 ( 5 ): 900 ‐ 907.
dc.identifier.citedreferenceAlgazi AP, Grandis JR. Head and neck cancer in 2016: a watershed year for improvements in treatment? Nat Rev Clin Oncol. 2017; 14 ( 2 ): 76 ‐ 78.
dc.identifier.citedreferenceJackson SE, Chester JD. Personalised cancer medicine. Int J Cancer. 2015; 137 ( 2 ): 262 ‐ 266.
dc.identifier.citedreferenceCastilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int J Mol Sci. 2017; 18 ( 7 ): 1506.
dc.identifier.citedreferenceWest AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014; 124 ( 1 ): 30 ‐ 39.
dc.identifier.citedreferenceRyan QC, Headlee D, Acharya M, et al. Phase I and pharmacokinetic study of MS‐275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol. 2005; 23 ( 17 ): 3912 ‐ 3922.
dc.identifier.citedreferenceConnolly RM, Li H, Jankowitz RC, et al. Combination epigenetic therapy in advanced breast cancer with 5‐azacitidine and entinostat: a Phase II National Cancer Institute/stand up to cancer study. Clin Cancer Res. 2017; 23 ( 11 ): 2691 ‐ 2701.
dc.identifier.citedreferenceJespersen H, Olofsson Bagge R, Ullenhag G, et al. Concomitant use of pembrolizumab and entinostat in adult patients with metastatic uveal melanoma (PEMDAC study): protocol for a multicenter phase II open label study. BMC Cancer. 2019; 19 ( 1 ): 415.
dc.identifier.citedreferenceHuang XP, Li X, Situ MY, et al. Entinostat reverses cisplatin resistance in esophageal squamous cell carcinoma via down‐regulation of multidrug resistance gene 1. Cancer Lett. 2018; 414: 294 ‐ 300.
dc.identifier.citedreferenceTrapani D, Esposito A, Criscitiello C, et al. Entinostat for the treatment of breast cancer. Expert Opin Investig Drugs. 2017; 26 ( 8 ): 965 ‐ 971.
dc.identifier.citedreferencePazin MJ, Kadonaga JT. What’s up and down with histone deacetylation and transcription? Cell. 1997; 89 ( 3 ): 325 ‐ 328.
dc.identifier.citedreferenceGlozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non‐histone proteins. Gene. 2005; 363: 15 ‐ 23.
dc.identifier.citedreferenceLuo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000; 408 ( 6810 ): 377 ‐ 381.
dc.identifier.citedreferenceUngerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2005; 102 ( 3 ): 673 ‐ 678.
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001; 414 ( 6859 ): 105 ‐ 111.
dc.identifier.citedreferenceDionne LK, Driver ER, Wang XJ. Head and neck cancer stem cells: from identification to tumor immune network. J Dent Res. 2015; 94 ( 11 ): 1524 ‐ 1531.
dc.identifier.citedreferenceErlich RB, Kherrouche Z, Rickwood D, et al. Preclinical evaluation of dual PI3K‐mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer. 2012; 106 ( 1 ): 107 ‐ 115.
dc.identifier.citedreferenceMeng Z, Jia LF, Gan YH. PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene. 2016; 35 ( 18 ): 2333 ‐ 2344.
dc.identifier.citedreferenceKadoch C. Lifting up the HAT: synthetic lethal screening reveals a novel vulnerability at the CBP‐p300 axis. Cancer Discov. 2016; 6 ( 4 ): 350 ‐ 352.
dc.identifier.citedreferenceRoy S, Kaur M, Agarwal C, Tecklenburg M, Sclafani RA, Agarwal R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther. 2007; 6 ( 10 ): 2696 ‐ 2707.
dc.identifier.citedreferenceLee BI, Park SH, Kim JW, et al. MS‐275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res. 2001; 61 ( 3 ): 931 ‐ 934.
dc.identifier.citedreferenceVidugiriene J, Leippe D, Sobol M, et al. Bioluminescent cell‐based NAD(P)/NAD(P)H assays for rapid dinucleotide measurement and inhibitor screening. Assay Drug Dev Technol. 2014; 12 ( 9–10 ): 514 ‐ 526.
dc.identifier.citedreferenceImai SI, Guarente L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016; 2: 16017.
dc.identifier.citedreferenceRoth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene. 2014; 33 ( 13 ): 1609 ‐ 1620.
dc.identifier.citedreferenceZu G, Ji A, Zhou T, Che N. Clinicopathological significance of SIRT1 expression in colorectal cancer: a systematic review and meta analysis. Int J Surg. 2016; 26: 32 ‐ 37.
dc.identifier.citedreferenceWagner VP, Martins MD, Martins MAT, et al. Targeting histone deacetylase and NFkappaB signaling as a novel therapy for mucoepidermoid carcinomas. Sci Rep. 2018; 8 ( 1 ): 2065.
dc.identifier.citedreferenceVogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000; 408 ( 6810 ): 307 ‐ 310.
dc.identifier.citedreferenceSonnemann J, Marx C, Becker S, et al. p53‐dependent and p53‐independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer. 2014; 110 ( 3 ): 656 ‐ 667.
dc.identifier.citedreferenceHashibe M, Brennan P, Chuang SC, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009; 18 ( 2 ): 541 ‐ 550.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.