Show simple item record

Inverse Solidification Induced by Active Janus Particles

dc.contributor.authorHuang, Tao
dc.contributor.authorMisko, Vyacheslav R.
dc.contributor.authorGobeil, Sophie
dc.contributor.authorWang, Xu
dc.contributor.authorNori, Franco
dc.contributor.authorSchütt, Julian
dc.contributor.authorFassbender, Jürgen
dc.contributor.authorCuniberti, Gianaurelio
dc.contributor.authorMakarov, Denys
dc.contributor.authorBaraban, Larysa
dc.date.accessioned2020-10-01T23:31:20Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:20Z
dc.date.issued2020-09
dc.identifier.citationHuang, Tao; Misko, Vyacheslav R.; Gobeil, Sophie; Wang, Xu; Nori, Franco; Schütt, Julian ; Fassbender, Jürgen ; Cuniberti, Gianaurelio; Makarov, Denys; Baraban, Larysa (2020). "Inverse Solidification Induced by Active Janus Particles." Advanced Functional Materials 30(39): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/162773
dc.description.abstractCrystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long‐range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here a counter‐intuitive behavior of the occurrence of crystalline long‐range order in an initially disordered matrix is demonstrated. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects—photocatalytic Janus particles. The observed crystallization occurs when the amount of active‐defect‐induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast‐induced solidification. Here, the role of “internal micro‐blasts” is played by the photochemical activity of defects residing in the colloidal matrix. The defect‐induced solidification occurs under non‐equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. The findings could be useful for the understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium.Inverse solidification driven by active colloids provides novel insight into the collective effects in mixed colloidal systems. It offers versatile possibilities to address the processes of solidification in various systems out of equilibrium, including the formation of bio‐molecular condensates or biomineralization, transitions from amorphous to polycrystalline state in condensed matter, or synthesis of materials under extreme conditions.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherphotocatalytic reaction
dc.subject.otheractive defects
dc.subject.othercolloidal crystallization
dc.subject.otherphase transition
dc.titleInverse Solidification Induced by Active Janus Particles
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162773/3/adfm202003851.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162773/2/adfm202003851-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162773/1/adfm202003851_am.pdfen_US
dc.identifier.doi10.1002/adfm.202003851
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceJ. Simmchen, A. Baeza, A. Miguel‐Lopez, M. M. Stanton, M. Vallet‐Regi, D. Ruiz‐Molina, S. Sánchez, ChemNanoMat 2017, 3, 65.
dc.identifier.citedreferenceG. C. Hwang, D. A. Blom, T. Vogt, J. Lee, H.‐J. Choi, S. Shao, Y. Ma, Y. Lee, Nat. Commun. 2018, 9, 5412.
dc.identifier.citedreferenceH. E. Stanley, Nature 2000, 404, 718.
dc.identifier.citedreferencea) M. Batzill, E. H. Morales, U. Diebold, Phys. Rev. Lett. 2006, 96, 026103; b) S. Samson, C. Fonstad, J. Appl. Phys. 1973, 44, 4618; c) A. L. Thorneywork, J. L. Abbott, D. G. Aarts, R. P. Dullens, Phys. Rev. Lett. 2017, 118, 158001.
dc.identifier.citedreferenceH. Fecht, Nature 1992, 356, 133.
dc.identifier.citedreferenceD. Helbing, I. J. Farkas, T. Vicsek, Phys. Rev. Lett. 2000, 84, 1240.
dc.identifier.citedreferencea) M. E. Leunissen, C. G. Christova, A.‐P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, M. Dijkstra, R. V. Roij, A. V. Blaaderen, Nature 2005, 437, 235; b) H. Löwen, Phys. Rep. 1994, 237, 249; c) E. Shevchenko, D. Talapin, A. Kornowski, F. Wiekhorst, J. Kötzler, M. Haase, A. Rogach, H. Weller, Adv. Mater. 2002, 14, 287; d) M. Sullivan, K. Zhao, A. Hollingsworth, R. H. Austin, W. Russel, P. Chaikin, Phys. Rev. Lett. 2006, 96, 015703.
dc.identifier.citedreferencea) J. Zhang, E. Luijten, B. A. Grzybowski, S. Granick, Chem. Soc. Rev. 2017, 46, 5551; b) L. Baraban, D. Makarov, M. Albrecht, N. Rivier, P. Leiderer, A. Erbe, Phys. Rev. E 2008, 77, 031407; c) J.‐Q. Yan, J.‐S. Zhou, J. B. Goodenough, Phys. Rev. B 2004, 70, 014402; d) S.‐R. Yeh, M. Seul, B. I. Shraiman, Nature 1997, 386, 57.
dc.identifier.citedreferenceI. Buttinoni, J. Cha, W.‐H. Lin, S. Job, C. Daraio, L. Isa, Proc. Natl. Acad. Sci. USA 2017, 114, 12150.
dc.identifier.citedreferencea) L. Baraban, D. Makarov, R. Streubel, I. Monch, D. Grimm, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 3383; b) L. Baraban, M. Tasinkevych, M. N. Popescu, S. Sanchez, S. Dietrich, O. Schmidt, Soft Matter 2012, 8, 48; c) K. M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Kagan, S. Balasubramanian, J. Wang, ACS Nano 2010, 4, 1799; d) H. Yu, A. Kopach, V. R. Misko, A. A. Vasylenko, D. Makarov, F. Marchesoni, F. Nori, L. Baraban, G. Cuniberti, Small 2016, 12, 5882.
dc.identifier.citedreferenceA. Gelblum, I. Pinkoviezky, E. Fonio, A. Ghosh, N. Gov, O. Feinerman, Nat. Commun. 2015, 6, 7729.
dc.identifier.citedreferenceD. P. Singh, U. Choudhury, P. Fischer, A. G. Mark, Adv. Mater. 2017, 29, 1701328.
dc.identifier.citedreferenceJ. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Science 2013, 339, 936.
dc.identifier.citedreferenceM. Ibele, T. E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 2009, 48, 3308.
dc.identifier.citedreferencea) S. Das, A. Garg, A. I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S. J. Ebbens, Nat. Commun. 2015, 6, 8999; b) A. L. Holterhoff, M. Li, J. G. Gibbs, J. Phys. Chem. Lett. 2018, 9, 5023.
dc.identifier.citedreferencea) L. Berthier, Phys. Rev. Lett. 2014, 112, 220602; b) R. Ni, M. A. C. Stuart, M. Dijkstra, Nat. Commun. 2013, 4, 2704; c) R. Mandal, P. J. Bhuyan, M. Rao, C. Dasgupta, Soft Matter 2016, 12, 6268.
dc.identifier.citedreferencea) I. Theurkauff, C. Cottin‐Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 2012, 108, 268303; b) B. van der Meer, L. Filion, M. Dijkstra, Soft Matter 2016, 12, 3406.
dc.identifier.citedreferencea) U. Choudhury, D. P. Singh, T. Qiu, P. Fischer, Adv. Mater. 2019, 31, 1807382; b) J. Stenhammar, R. Wittkowski, D. Marenduzzo, M. E. Cates, Phys. Rev. Lett. 2015, 114, 018301; c) B. Liebchen, D. Marenduzzo, I. Pagonabarraga, M. E. Cates, Phys. Rev. Lett. 2015, 115, 258301.
dc.identifier.citedreferenceF. Cinti, T. Macrì, W. Lechner, G. Pupillo, T. Pohl, Nat. Commun. 2014, 5, 3235.
dc.identifier.citedreferenceY. N. Palyanov, I. N. Kupriyanov, Y. M. Borzdov, Carbon 2019, 143, 769.
dc.identifier.citedreferencea) A. A. Hyman, C. A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 2014, 30, 39; b) S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 2017, 18, 285.
dc.identifier.citedreferencea) X. Wang, L. Baraban, A. Nguyen, J. Ge, V. R. Misko, J. Tempere, F. Nori, P. Formanek, T. Huang, G. Cuniberti, Small 2018, 14, 1803613; b) X. Wang, L. Baraban, V. R. Misko, F. Nori, T. Huang, G. Cuniberti, J. Fassbender, D. Makarov, Small 2018, 14, 1802537; c) T. Huang, S. Gobeil, X. Wang, V. Misko, F. Nori, W. De Malsche, J. Fassbender, D. Makarov, G. Cuniberti, L. Baraban, Langmuir 2020, https://doi.org/10.1021/acs.langmuir.0c00012.
dc.identifier.citedreferenceY. Han, N. Ha, A. Alsayed, A. Yodh, Phys. Rev. E 2008, 77, 041406.
dc.identifier.citedreferenceN. N. Medvedev, A. Geiger, W. Brostow, J. Chem. Phys. 1990, 93, 8337.
dc.identifier.citedreferenceR. Golestanian, Phys. Rev. Lett. 2009, 102, 188305.
dc.identifier.citedreferenceK. Dietrich, G. Volpe, M. N. Sulaiman, D. Renggli, I. Buttinoni, L. Isa, Phys. Rev. Lett. 2018, 120, 268004.
dc.identifier.citedreferenceS. A. Moskalenko, D. Snoke, Bose‐Einstein Condensation of Excitons and Biexcitons: And Coherent Nonlinear Optics with Excitons, Cambridge University Press, Cambridge 2000.
dc.identifier.citedreferenceG. Junot, G. Briand, R. Ledesma‐Alonso, O. Dauchot, Phys. Rev. Lett. 2017, 119, 028002.
dc.identifier.citedreferencea) S. Ramananarivo, E. Ducrot, J. Palacci, Nat. Commun. 2019, 10, 3380; b) A. Altemose, A. J. Harris, A. Sen, ChemSystemsChem 2019, 1, e1900021.
dc.identifier.citedreferenceJ.‐Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, K. W. Eliceiri, Methods 2017, 115, 80.
dc.identifier.citedreferencea) P. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 2013, 110, 268301; b) W. Yang, V. R. Misko, F. Marchesoni, F. Nori, J. Phys.: Condens. Matter 2018, 30, 264004.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.