Show simple item record

Genome‐Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose

dc.contributor.authorChitre, Apurva S.
dc.contributor.authorPolesskaya, Oksana
dc.contributor.authorHoll, Katie
dc.contributor.authorGao, Jianjun
dc.contributor.authorCheng, Riyan
dc.contributor.authorBimschleger, Hannah
dc.contributor.authorGarcia Martinez, Angel
dc.contributor.authorGeorge, Tony
dc.contributor.authorGileta, Alexander F.
dc.contributor.authorHan, Wenyan
dc.contributor.authorHorvath, Aidan
dc.contributor.authorHughson, Alesa
dc.contributor.authorIshiwari, Keita
dc.contributor.authorKing, Christopher P.
dc.contributor.authorLamparelli, Alexander
dc.contributor.authorVersaggi, Cassandra L.
dc.contributor.authorMartin, Connor
dc.contributor.authorSt. Pierre, Celine L.
dc.contributor.authorTripi, Jordan A.
dc.contributor.authorWang, Tengfei
dc.contributor.authorChen, Hao
dc.contributor.authorFlagel, Shelly B.
dc.contributor.authorMeyer, Paul
dc.contributor.authorRichards, Jerry
dc.contributor.authorRobinson, Terry E.
dc.contributor.authorPalmer, Abraham A.
dc.contributor.authorSolberg Woods, Leah C.
dc.date.accessioned2020-10-01T23:31:37Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-10-01T23:31:37Z
dc.date.issued2020-10
dc.identifier.citationChitre, Apurva S.; Polesskaya, Oksana; Holl, Katie; Gao, Jianjun; Cheng, Riyan; Bimschleger, Hannah; Garcia Martinez, Angel; George, Tony; Gileta, Alexander F.; Han, Wenyan; Horvath, Aidan; Hughson, Alesa; Ishiwari, Keita; King, Christopher P.; Lamparelli, Alexander; Versaggi, Cassandra L.; Martin, Connor; St. Pierre, Celine L.; Tripi, Jordan A.; Wang, Tengfei; Chen, Hao; Flagel, Shelly B.; Meyer, Paul; Richards, Jerry; Robinson, Terry E.; Palmer, Abraham A.; Solberg Woods, Leah C. (2020). "Genome‐Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose." Obesity 28(10): 1964-1973.
dc.identifier.issn1930-7381
dc.identifier.issn1930-739X
dc.identifier.urihttps://hdl.handle.net/2027.42/162781
dc.publisherWiley Periodicals, Inc.
dc.titleGenome‐Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162781/3/oby22927-sup-0001-Suppinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162781/2/oby22927_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162781/1/oby22927.pdfen_US
dc.identifier.doi10.1002/oby.22927
dc.identifier.sourceObesity
dc.identifier.citedreferenceRamdas S, Ozel AB, Treutelaar MK, et al. Extended regions of suspected mis‐assembly in the rat reference genome. Sci Data 2019; 6: 39. doi: 10.1038/s41597‐019‐0041‐6
dc.identifier.citedreferenceHales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007‐2008 to 2015‐2016. JAMA 2018; 319: 1723 ‐ 1725.
dc.identifier.citedreferenceMaes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997; 27: 325 ‐ 351.
dc.identifier.citedreferenceLoos RJ. The genetics of adiposity. Curr Opin Genet Dev 2018; 50: 86 ‐ 95.
dc.identifier.citedreferenceHansen C, Spuhler K. Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin Exp Res 1984; 8: 477 ‐ 479.
dc.identifier.citedreferenceSolberg Woods LC, Palmer AA. Using heterogeneous stocks for fine‐mapping genetically complex traits. Methods Mol Biol 2019; 2018: 233 ‐ 247.
dc.identifier.citedreferenceBaud A, Hermsen R, Guryev V, et al.; Rat Genome Sequencing and Mapping Consortium. Combined sequence‐based and genetic mapping analysis of complex traits in outbred rats. Nat Genet 2013; 45: 767 ‐ 775.
dc.identifier.citedreferenceKeele GR, Prokop JW, He H, et al. Genetic fine‐mapping and identification of candidate genes and variants for adiposity traits in outbred rats. Obesity (Silver Spring) 2018; 26: 213 ‐ 222.
dc.identifier.citedreferenceParker CC, Gopalakrishnan S, Carbonetto P, et al. Genome‐wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet 2016; 48: 919 ‐ 926.
dc.identifier.citedreferenceGileta AF, Gao J, Chitre AS, et al. Adapting genotyping‐by‐sequencing and variant calling for heterogeneous stock rats. G3 (Bethesda) 2020;10:2195-2205.
dc.identifier.citedreferenceChang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second‐generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015; 4: 7. doi: 10.1186/s13742‐015‐0047‐8
dc.identifier.citedreferencePruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome‐wide association scan results. Bioinformatics 2010; 26: 2336 ‐ 2337.
dc.identifier.citedreferenceYang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome‐wide complex trait analysis. Am J Hum Genet 2011; 88: 76 ‐ 82.
dc.identifier.citedreferenceLee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single‐nucleotide polymorphism‐derived genomic relationships and restricted maximum likelihood. Bioinformatics 2012; 28: 2540 ‐ 2542.
dc.identifier.citedreferenceWang S‐B, Feng J‐Y, Ren W‐L, et al. Improving power and accuracy of genome‐wide association studies via a multi‐locus mixed linear model methodology. Sci Rep 2016; 6: 19444. doi: 10.1038/srep19444
dc.identifier.citedreferenceCheng R, Parker CC, Abney M, Palmer AA. Practical considerations regarding the use of genotype and pedigree data to model relatedness in the context of genome‐wide association studies. G3 (Bethesda) 2013; 3: 1861 ‐ 1867.
dc.identifier.citedreferenceGonzales NM, Seo J, Hernandez Cordero AI, et al. Genome wide association analysis in a mouse advanced intercross line. Nat Commun 2018; 9: 5162. doi: 10.1038/s41467‐018‐07642‐8
dc.identifier.citedreferenceCheng R, Palmer AA. A simulation study of permutation, bootstrap, and gene dropping for assessing statistical significance in the case of unequal relatedness. Genetics 2013; 193: 1015 ‐ 1018.
dc.identifier.citedreference, Maller JB, McVean G, Byrnes J, et al.; Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 2012; 44: 1294 ‐ 1301.
dc.identifier.citedreferenceSvenson KL, Gatti DM, Valdar W, et al. High‐resolution genetic mapping using the Mouse Diversity outbred population. Genetics 2012; 190: 437 ‐ 447.
dc.identifier.citedreferenceYalcin B, Flint J, Mott R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 2005; 171: 673 ‐ 681.
dc.identifier.citedreferenceWang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011; 378: 815 ‐ 825.
dc.identifier.citedreferenceCingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly (Austin) 2012; 6: 80 ‐ 92.
dc.identifier.citedreferenceMamiya PC, Hennesy Z, Zhou R, Wagner GC. Changes in attack behavior and activity in EphA5 knockout mice. Brain Res 2008; 1205: 91 ‐ 99.
dc.identifier.citedreferenceEnnequin G, Boisseau N, Caillaud K, et al. Neuregulin 1 affects leptin levels, food intake and weight gain in normal‐weight, but not obese, db/db mice. Diabetes Metab 2015; 41: 168 ‐ 172.
dc.identifier.citedreferenceZhang P, Kuang H, He Y, et al. NRG1‐Fc improves metabolic health via dual hepatic and central action. JCI Insight 2018; 3; e98522. doi: 10.1172/jci.insight.98522
dc.identifier.citedreferenceLee M, Kwon DY, Kim M‐S, Choi CR, Park M‐Y, Kim A‐J. Genome‐wide association study for the interaction between BMR and BMI in obese Korean women including overweight. Nutr Res Pract 2016; 10: 115 ‐ 124.
dc.identifier.citedreferenceLawrence CB, Celsi F, Brennand J, Luckman SM. Alternative role for prolactin‐releasing peptide in the regulation of food intake. Nat Neurosci. 2000; 3: 645 ‐ 646. doi: 10.1038/76597
dc.identifier.citedreferenceGu W, Geddes BJ, Zhang C, Foley KP, Stricker‐Krongrad A. The prolactin‐releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J Mol Neurosci. 2004; 22: 93 ‐ 104. doi: 10.1385/jmn:22:1‐2:93
dc.identifier.citedreferenceNordman S, Abulaiti A, Hilding A, et al. Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men. Int J Obes (Lond) 2008; 32: 407 ‐ 412.
dc.identifier.citedreferenceSpeliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937 ‐ 948.
dc.identifier.citedreferenceGrarup N, Moltke I, Andersen MK, et al. Loss‐of‐function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet 2018; 50: 172 ‐ 174.
dc.identifier.citedreferenceKobayashi H, Yamazaki S, Takashima S, et al. Ablation of Rnf213 retards progression of diabetes in the Akita mouse. Biochem Biophys Res Commun. 2013; 432: 519 525. doi: 10.1016/j.bbrc.2013.02.015
dc.identifier.citedreferenceYang J, Wu X, Wu X, et al. The multiple roles of XBP1 in regulation of glucose and lipid metabolism. Curr Protein Pept Sci 2017; 18: 630 ‐ 635.
dc.identifier.citedreferenceHernandez Cordero AI, Gonzales NM, Parker CC, et al. Genome‐wide associations reveal human‐mouse genetic convergence and novel modifiers of myogenesis, CPNE1 and STC2. Am J Hum Genetics 2019; 105: 1222 ‐ 1236.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.