Show simple item record

Hybrid nonlinear observer for battery state- of- charge estimation using nonmonotonic force measurements

dc.contributor.authorMovahedi, Hamidreza
dc.contributor.authorFigueroa‐santos, Miriam A.
dc.contributor.authorSiegel, Jason B.
dc.contributor.authorStefanopoulou, Anna G.
dc.contributor.authorRajamani, Rajesh
dc.date.accessioned2020-10-01T23:31:41Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:41Z
dc.date.issued2020-09
dc.identifier.citationMovahedi, Hamidreza ; Figueroa‐santos, Miriam A. ; Siegel, Jason B.; Stefanopoulou, Anna G.; Rajamani, Rajesh (2020). "Hybrid nonlinear observer for battery state- of- charge estimation using nonmonotonic force measurements." Advanced Control for Applications: Engineering and Industrial Systems 2(3): n/a-n/a.
dc.identifier.issn2578-0727
dc.identifier.issn2578-0727
dc.identifier.urihttps://hdl.handle.net/2027.42/162783
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherSOC estimation
dc.subject.othernonlinear observer
dc.subject.otherlithium- ion batteries
dc.subject.otherforce sensor
dc.subject.otherhybrid observer
dc.titleHybrid nonlinear observer for battery state- of- charge estimation using nonmonotonic force measurements
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162783/4/adc238.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162783/3/adc238-sup-0001-supinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162783/2/adc238_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162783/1/adc238-sup-0002-supinfo.pdfen_US
dc.identifier.doi10.1002/adc2.38
dc.identifier.sourceAdvanced Control for Applications: Engineering and Industrial Systems
dc.identifier.citedreferenceHu X, Li S, Peng H. A comparative study of equivalent circuit models for li- ion batteries. J Power Sources. 2012; 198: 359 - 367.
dc.identifier.citedreferenceXiong R, He H, Sun F, Zhao K. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans Veh Tech. 2013; 62: 108 - 117.
dc.identifier.citedreferenceWang Y, Fang H, Zhou L, Wada T. Revisiting the state- of- charge estimation for lithium- ion batteries - a methodical investigation of the EKF approach. IEEE Control Syst. 2017; 37 ( 4 ): 73 - 96.
dc.identifier.citedreferenceMohan S, Kim Y, Siegel JB, Samad NA, Stefanopoulou AG. A phenomenological model of bulk force in a li- ion battery pack and its application to state of charge estimation. J Electrochem Soc. 2014; 161 ( 14 ): A2222 - A2231.
dc.identifier.citedreferenceMohan S, Kim Y, Stefanopoulou AG. On improving battery state of charge estimation using bulk force measurements. Paper presented at: Proceedings of the ASME 2015 Dynamic Systems and Control Conference; October 2015.
dc.identifier.citedreferenceJones EMC, Silberstein MN, White SR, Sottos NR. In situ measurements of strains in composite battery electrodes during electrochemical cycling. Exp Mech. 2014; 54 ( 6 ): 971 - 985.
dc.identifier.citedreferenceCannarella J, Leng CZ, Arnold CB. On the coupling between stress and voltage in lithium- ion pouch cells. Energy Harvest Storage Mater Dev Appl V. 2014; 9115: 91150K.
dc.identifier.citedreferenceOh K- Y, Siegel JB, Secondo L, et al. Rate dependence of swelling in lithium- ion cells. J Power Sources. 2014; 267: 197 - 202.
dc.identifier.citedreferenceSamad NA, Kim Y, Siegel JB, Stefanopoulou AG. Battery capacity fading estimation using a force- based incremental capacity analysis. J Electrochem Soc. 2016; 163 ( 8 ): A1584 - A1594.
dc.identifier.citedreferenceMalik R, Abdellahi A, Ceder G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc. 2013; 160 ( 5 ): A3179 - A3197.
dc.identifier.citedreferenceArcak M, Kokotovic P. Nonlinear observers: a circle criterion design and robustness analysis. Automatica. 2001; 37: 1923 - 1930.
dc.identifier.citedreferencePhanomchoeng G, Rajamani R, Piyabongkarn D. Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation. IEEE Trans Automat Control. 2011; 56 ( 5 ): 1163 - 1170.
dc.identifier.citedreferenceBoizot N, Busvelle E, Gauthier J. An adaptive high- gain observer for nonlinear systems. Automatica. 2010; 46 ( 9 ): 1483 - 1488.
dc.identifier.citedreferenceWang Y, Madson R, Rajamani R. Magnetic sensor based simultaneous state and parameter estimation using a nonlinear observer. Int J Control. 2019; 92 ( 11 ): 2639 - 2646.
dc.identifier.citedreferencePlett GL. Extended Kalman filtering for battery management systems of LiPB- based HEV battery packs: Part 1 background. J Power Sources. 2004; 134 ( 2 ): 277 - 292.
dc.identifier.citedreferenceFang H, Wang Y, Sahinoglu Z, Wada T, Hara S. State of charge estimation for lithium- ion batteries: an adaptive approach. Control Eng Pract. 2014; 25: 45 - 54.
dc.identifier.citedreferencePerez HE, Moura SJ. Sensitivity- based interval PDE observer for battery SOC estimation. Paper presented at: Proceedings of the 2015 American Control Conference (ACC); 2015:323- 328; IEEE.
dc.identifier.citedreferencePerez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and validation of an integrated electro- thermal cylindrical lfp battery model. Paper presented at: Proceedings of the ASME Conference; Vol. 3, 2012:41- 50.
dc.identifier.citedreferenceWang H, Huang Y, Khajepour A. Cyber- physical control for energy management of off- road vehicles with hybrid energy storage systems. IEEE/ASME Trans Mechatron. 2018; 23 ( 6 ): 2609 - 2618.
dc.identifier.citedreferencePlett GL. Battery Management Systems. Vol 1. Norwood, MA: Artech House Publishers; 2015.
dc.identifier.citedreferenceUnited States Council for Automotive Research LLC Usabc electric vehicle battery test procedures manual, Appendix J - detailed procedure. Report of the United States Council for Automotive Research LLC A/HRC/27/37; 1995.
dc.identifier.citedreferenceMohtat P, Lee S, Siegel JB, Stefanopoulou AG. Towards better estimability of electrode- specific state of health: decoding the cell expansion. J Power Sources. 2019; 427: 101 - 111.
dc.identifier.citedreferenceRajamani R, Jeon W, Movahedi H, Zemouche A. On the need for switched- gain observers for non- monotonic nonlinear systems. Automatica. 2020; 114 ( 108814 ).
dc.identifier.citedreferenceLee S, Mohtat P, Siegel JB, Stefanopoulou A. Beyond estimating battery state of health: identifiability of individual electrode capacity and utilization. Paper presented at: Proceedings of the 2018 American Control Conference; 2018; Milwaukee, Wisconsin.
dc.identifier.citedreferenceChung D, Elgqvist E, Santhanagopalan S. "Automotive Lithium- Ion Battery Supply Chain and US Competitiveness Considerations" No. NREL/PR- 6A50- 63354. Clean Energy Manufacturing Analysis Center (CEMAC); 2015.
dc.identifier.citedreferenceHannan MA, Lipu MSH, Hussain A, Mohamed A. A review of lithium- ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev. 2017; 78: 834 - 854.
dc.identifier.citedreferenceLu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium- ion battery management in electric vehicles. J Power Sources. 2013; 226: 272 - 288.
dc.identifier.citedreferencePolóni T, Figueroa- Santos MA, Siegel JB, Stefanopoulouet AG. Integration of non- monotonic cell swelling characteristic for state- of- charge estimation. Paper presented at: Proceedings of the 2018American Control Conference (ACC); 2018:2306- 2311; IEEE.
dc.identifier.citedreferenceChen Z, Fu Y, Mi CC. State of charge estimation of lithium ion batteries in electric drive vehicles using extended Kalman filtering. IEEE Trans Veh Tech. 2013; 62: 1020 - 1030.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.