Show simple item record

GATA2 functions in adrenal chromaffin cells

dc.contributor.authorWatanabe‐asaka, Tomomi
dc.contributor.authorHayashi, Moyuru
dc.contributor.authorEngel, James Douglas
dc.contributor.authorKawai, Yoshiko
dc.contributor.authorMoriguchi, Takashi
dc.date.accessioned2020-10-01T23:31:49Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:49Z
dc.date.issued2020-09
dc.identifier.citationWatanabe‐asaka, Tomomi ; Hayashi, Moyuru; Engel, James Douglas; Kawai, Yoshiko; Moriguchi, Takashi (2020). "GATA2 functions in adrenal chromaffin cells." Genes to Cells 25(9): 607-614.
dc.identifier.issn1356-9597
dc.identifier.issn1365-2443
dc.identifier.urihttps://hdl.handle.net/2027.42/162786
dc.description.abstractCatecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss- of- function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest- specific Wnt1- Cre transgenic mice (Gata2 NC- CKO). The vast majority of Gata2 NC- CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine- producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC- CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC- CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.GATA2 is specifically expressed in adrenal chromaffin cells in which GATA2 plays a role for catecholamine biosynthesis.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneural crest
dc.subject.otherGata2
dc.subject.otherchromaffin cells
dc.subject.othercatecholamine
dc.titleGATA2 functions in adrenal chromaffin cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162786/2/gtc12795_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162786/1/gtc12795.pdfen_US
dc.identifier.doi10.1111/gtc.12795
dc.identifier.sourceGenes to Cells
dc.identifier.citedreferenceTsai, F.- Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., - ¦ Orkin, S. H. ( 1994 ). An early haematopoietic defect in mice lacking the transcription factor GATA- 2. Nature, 371, 221 - 226. https://doi.org/10.1038/371221a0
dc.identifier.citedreferenceBoeva, V., Louis- Brennetot, C., Peltier, A., Durand, S., Pierre- Eugène, C., Raynal, V., - ¦ Janoueix- Lerosey, I. ( 2017 ). Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nature Genetics, 49, 1408 - 1413. https://doi.org/10.1038/ng.3921
dc.identifier.citedreferenceChai, Y., Jiang, X., Ito, Y., Bringas, P. Jr, Han, J., Rowitch, D. H., - ¦ Sucov, H. M. ( 2000 ). Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development, 127, 1671 - 1679.
dc.identifier.citedreferenceGeorge, K. M., Leonard, M. W., Roth, M. E., Lieuw, K. H., Kioussis, D., Grosveld, F., & Engel, J. D. ( 1994 ). Embryonic expression and cloning of the murine GATA- 3 gene. Development, 120, 2673 - 2686.
dc.identifier.citedreferenceGoridis, C., & Rohrer, H. ( 2002 ). Specification of catecholaminergic and serotonergic neurons. Nature Reviews Neuroscience, 3, 531 - 541. https://doi.org/10.1038/nrn871
dc.identifier.citedreferenceHikke van Doorninck, J., van der Wees, J., Karis, A., Goedknegt, E., Coesmans, M., Rutteman, M., - ¦ De Zeeuw, C. I. ( 1999 ). GATA- 3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. Journal of Neuroscience, 19, RC12. https://doi.org/10.1523/JNEUROSCI.19- 12- j0002.1999
dc.identifier.citedreferenceKo, L. J., & Engel, J. D. ( 1993 ). DNA- binding specificities of the GATA transcription factor family. Molecular and Cellular Biology, 13, 4011 - 4022. https://doi.org/10.1128/MCB.13.7.4011
dc.identifier.citedreferenceKobayashi, K., Morita, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I., - ¦ Nagatsu, T. ( 1995 ). Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. Journal of Biological Chemistry, 270, 27235 - 27243. https://doi.org/10.1074/jbc.270.45.27235
dc.identifier.citedreferenceLakshmanan, G., Lieuw, K. H., Lim, K. C., Gu, Y., Grosveld, F., Engel, J. D., & Karis, A. ( 1999 ). Localization of distant urogenital system- , central nervous system- , and endocardium- specific transcriptional regulatory elements in the GATA- 3 locus. Molecular and Cellular Biology, 19, 1558 - 1568. https://doi.org/10.1128/mcb.19.2.1558
dc.identifier.citedreferenceLim, K.- C., Hosoya, T., Brandt, W., Ku, C.- J., Hosoya- Ohmura, S., Camper, S. A., - ¦ Engel, J. D. ( 2012 ). Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Invest, 122, 3705 - 3717. https://doi.org/10.1172/JCI61619
dc.identifier.citedreferenceLim, K. C., Lakshmanan, G., Crawford, S. E., Gu, Y., Grosveld, F., & Engel, J. D. ( 2000 ). Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genetics, 25, 209 - 212. https://doi.org/10.1038/76080
dc.identifier.citedreferenceMartin, J. L., Begun, J., McLeish, M. J., Caine, J. M., & Grunewald, G. L. ( 2001 ). Getting the adrenaline going: Crystal structure of the adrenaline- synthesizing enzyme PNMT. Structure, 10, 977 - 985. https://doi.org/10.1016/S0969- 2126(01)00662- 1
dc.identifier.citedreferenceMoriguchi, T., Takako, N., Hamada, M., Maeda, A., Fujioka, Y., Kuroha, T., & Engel, JD ( 2006 ). Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development, 133, 3871 - 3881. https://doi.org/10.1242/dev.02553
dc.identifier.citedreferencePandolfi, P. P., Roth, M. E., Karis, A., Leonard, M. W., Dzierzak, E., Grosveld, F. G., - ¦ Lindenbaum, M. H. ( 1995 ). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genetics, 11, 40 - 44. https://doi.org/10.1038/ng0995- 40
dc.identifier.citedreferenceRahman, M. K., Nagatsu, T., & Kato, T. ( 1981 ). Aromatic L- amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L- DOPA and L- 5- hydroxytryptophan as substrates. Biochemical Pharmacology, 30, 645 - 649. https://doi.org/10.1016/0006- 2952(81)90139- 8
dc.identifier.citedreferenceSoriano, P. ( 1999 ). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genetics, 21, 70 - 71. https://doi.org/10.1038/5007
dc.identifier.citedreferenceSuzuki, N., Ohneda, O., Minegishi, N., Nishikawa, M., Ohta, T., Takahashi, S., - ¦ Yamamoto, M. ( 2006 ). Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the USA, 103, 2202 - 2207. https://doi.org/10.1073/pnas.0508928103
dc.identifier.citedreferenceThomas, S. A., Matsumoto, A. M., & Palmiter, R. D. ( 1995 ). Noradrenaline is essential for mouse fetal development. Nature, 374, 643 - 646. https://doi.org/10.1038/374643a0
dc.identifier.citedreferenceTsarovina, K., Pattyn, A., Stubbusch, J., Muller, F., van der Wees, J., Schneider, C., - ¦ Rohrer, H. ( 2004 ). Essential role of Gata transcription factors in sympathetic neuron development. Development, 131, 4775 - 4786. https://doi.org/10.1242/dev.01370
dc.identifier.citedreferenceUnsicker, K., Huber, K., Schütz, G., & Kalcheim, C. ( 2005 ). The chromaffin cell and its development. Neurochemical Research, 30, 921 - 925. https://doi.org/10.1007/s11064- 005- 6966- 5
dc.identifier.citedreferenceWilson, Y. M., Richards, K. L., Ford- Perriss, M. L., Panthier, J. J., & Murphy, M. ( 2004 ). Neural crest cell lineage segregation in the mouse neural tube. Development, 131, 6153 - 6162. https://doi.org/10.1242/dev.01533
dc.identifier.citedreferenceYamamoto, M., Ko, L. J., Leonard, M. W., Beug, H., Orkin, S. H., & Engel, J. D. ( 1990 ). Activity and tissue- specific expression of the transcription factor NF- E1 multigene family. Genes & Development, 4, 1650 - 1662. https://doi.org/10.1101/gad.4.10.1650
dc.identifier.citedreferenceZhou, Q. Y., Quaife, C. J., & Palmiter, R. D. ( 1995 ). Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature, 374, 640 - 643. https://doi.org/10.1038/374640a0
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.