Show simple item record

Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance

dc.contributor.authorHou, Bo
dc.contributor.authorKim, Byung‐sung
dc.contributor.authorLee, Harrison Ka Hin
dc.contributor.authorCho, Yuljae
dc.contributor.authorGiraud, Paul
dc.contributor.authorLiu, Mengxia
dc.contributor.authorZhang, Jingchao
dc.contributor.authorDavies, Matthew L.
dc.contributor.authorDurrant, James R.
dc.contributor.authorTsoi, Wing Chung
dc.contributor.authorLi, Zhe
dc.contributor.authorDimitrov, Stoichko D.
dc.contributor.authorSohn, Jung Inn
dc.contributor.authorCha, SeungNam
dc.contributor.authorKim, Jong Min
dc.date.accessioned2020-10-01T23:31:59Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:59Z
dc.date.issued2020-09
dc.identifier.citationHou, Bo; Kim, Byung‐sung ; Lee, Harrison Ka Hin; Cho, Yuljae; Giraud, Paul; Liu, Mengxia; Zhang, Jingchao; Davies, Matthew L.; Durrant, James R.; Tsoi, Wing Chung; Li, Zhe; Dimitrov, Stoichko D.; Sohn, Jung Inn; Cha, SeungNam; Kim, Jong Min (2020). "Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance." Advanced Functional Materials 30(39): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/162790
dc.description.abstractColloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light- matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom- up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density- of- state and inorganic natures. This report is designed to address this long- standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi- photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 à  1019 cm- 3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.Quantum dots (QDs) solar cells (9.55% efficiency) for indoors (19.5% at 2000 lux) and concentration (11.6% at 1.5 Suns) photovoltaics are demonstrated. This work finds above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi- photon absorption and these excitons are not limited to diffusion by Auger recombination up to 1.5 à  1019 cm- 3 densities.
dc.publisherWiley Periodicals, Inc.
dc.publisherImperial College Press
dc.subject.othermulti- photon absorption
dc.subject.otherconcentration photovoltaics
dc.subject.otherindoor solar cells
dc.subject.otherultrafast transient absorption spectroscopy
dc.subject.otherPbS quantum dots
dc.titleMultiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162790/3/adfm202004563_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162790/2/adfm202004563.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162790/1/adfm202004563-sup-0001-SuppMat.pdfen_US
dc.identifier.doi10.1002/adfm.202004563
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceJ. Nelson, Phys. Rev. B 2003, 67, 155209.
dc.identifier.citedreferenceV. Adinolfi, E. H. Sargent, Nature 2017, 542, 324.
dc.identifier.citedreferenceB. Hou, Y. Cho, B. S. Kim, J. Hong, J. B. Park, S. J. Ahn, J. I. Sohn, S. Cha, J. M. Kim, ACS Energy Lett. 2016, 1, 834.
dc.identifier.citedreferenceM. Liu, O. Voznyy, R. Sabatini, F. P. Garcia de Arquer, R. Munir, A. H. Balawi, X. Lan, F. Fan, G. Walters, A. R. Kirmani, S. Hoogland, F. Laquai, A. Amassian, E. H. Sargent, Nat. Mater. 2017, 16, 258.
dc.identifier.citedreferenceB. Sun, O. Ouellette, F. P. García de Arquer, O. Voznyy, Y. Kim, M. Wei, A. H. Proppe, M. I. Saidaminov, J. Xu, M. Liu, P. Li, J. Z. Fan, J. W. Jo, H. Tan, F. Tan, S. Hoogland, Z. H. Lu, S. O. Kelley, E. H. Sargent, Nat. Commun. 2018, 9, 4003.
dc.identifier.citedreferenceM. J. Speirs, D. N. Dirin, M. Abdu- Aguye, D. M. Balazs, M. V. Kovalenko, M. A. Loi, Energy Environ. Sci. 2016, 9, 2916.
dc.identifier.citedreferenceJ. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero- Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 2018, 13, 456.
dc.identifier.citedreferenceM.- J. Choi, F. P. García de Arquer, A. H. Proppe, A. Seifitokaldani, J. Choi, J. Kim, S.- W. Baek, M. Liu, B. Sun, M. Biondi, B. Scheffel, G. Walters, D.- H. Nam, J. W. Jo, O. Ouellette, O. Voznyy, S. Hoogland, S. O. Kelley, Y. S. Jung, E. H. Sargent, Nat. Commun. 2020, 11, 103.
dc.identifier.citedreferenceS.- W. Baek, S. Jun, B. Kim, A. H. Proppe, O. Ouellette, O. Voznyy, C. Kim, J. Kim, G. Walters, J. H. Song, S. Jeong, H. R. Byun, M. S. Jeong, S. Hoogland, F. P. García de Arquer, S. O. Kelley, J.- Y. Lee, E. H. Sargent, Nat. Energy 2019, 4, 969.
dc.identifier.citedreferencea) A. J. Nozik, Phys. E 2002, 14, 115; b) P. V. Kamat, J. Phys. Chem. Lett. 2013, 4, 908; c) B. Hou, Isr. J. Chem. 2019, 59, 637.
dc.identifier.citedreferenceA. H. Proppe, J. Xu, R. P. Sabatini, J. Z. Fan, B. Sun, S. Hoogland, S. O. Kelley, O. Voznyy, E. H. Sargent, Nano Lett. 2018, 18, 7052.
dc.identifier.citedreferenceG. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr, E. H. Sargent, Chem. Rev. 2015, 115, 12732.
dc.identifier.citedreferenceM. T. Trinh, A. J. Houtepen, J. M. Schins, T. Hanrath, J. Piris, W. Knulst, A. P. L. M. Goossens, L. D. A. Siebbeles, Nano Lett. 2008, 8, 1713.
dc.identifier.citedreferencea) M. C. Beard, J. C. Johnson, J. M. Luther, A. J. Nozik, Philos. Trans. R. Soc., A 2015, 373, 20140412; b) N. S. Makarov, P. C. Lau, C. Olson, K. A. Velizhanin, K. M. Solntsev, K. Kieu, S. Kilina, S. Tretiak, R. A. Norwood, N. Peyghambarian, J. W. Perry, ACS Nano 2014, 8, 12572; c) C. M. Cirloganu, L. A. Padilha, Q. Lin, N. S. Makarov, K. A. Velizhanin, H. Luo, I. Robel, J. M. Pietryga, V. I. Klimov, Nat. Commun. 2014, 5, 4148; d) G. Nair, L.- Y. Chang, S. M. Geyer, M. G. Bawendi, Nano Lett. 2011, 11, 2145; e) R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 2004, 92, 186601; f) R. G. Ispasoiu, Y. Jin, J. Lee, F. Papadimitrakopoulos, T. Goodson, Nano Lett. 2002, 2, 127.
dc.identifier.citedreferenceL. A. Padilha, G. Nootz, P. D. Olszak, S. Webster, D. J. Hagan, E. W. Van Stryland, L. Levina, V. Sukhovatkin, L. Brzozowski, E. H. Sargent, Nano Lett. 2011, 11, 1227.
dc.identifier.citedreferenceY. Yan, R. W. Crisp, J. Gu, B. D. Chernomordik, G. F. Pach, A. R. Marshall, J. A. Turner, M. C. Beard, Nat. Energy 2017, 2, 17052
dc.identifier.citedreferenceB. Hou, Y. Cho, B.- S. Kim, D. Ahn, S. Lee, J. B. Park, Y.- W. Lee, J. Hong, H. Im, S. M. Morris, J. I. Sohn, S. Cha, J. M. Kim, J. Mater. Chem. C 2017, 5, 3692.
dc.identifier.citedreferenceY. Wang, Z. Liu, N. Huo, F. Li, M. Gu, X. Ling, Y. Zhang, K. Lu, L. Han, H. Fang, A. G. Shulga, Y. Xue, S. Zhou, F. Yang, X. Tang, J. Zheng, M. Antonietta Loi, G. Konstantatos, W. Ma, Nat. Commun. 2019, 10, 5136.
dc.identifier.citedreferenceM. A. Green, S. P. Bremner, Nat. Mater. 2017, 16, 23.
dc.identifier.citedreferencea) M. C. Beard, J. M. Luther, O. E. Semonin, A. J. Nozik, Acc. Chem. Res. 2013, 46, 1252; b) I. Kang, F. W. Wise, J. Opt. Soc. Am. B 1997, 14, 1632.
dc.identifier.citedreferenceR. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros, Nano Lett. 2005, 5, 865.
dc.identifier.citedreferencea) S. D. Dimitrov, M. Azzouzi, J. Wu, J. Yao, Y. Dong, P. S. Tuladhar, B. C. Schroeder, E. R. Bittner, I. McCulloch, J. Nelson, J. R. Durrant, J. Am. Chem. Soc. 2019, 141, 4634; b) S. D. Dimitrov, S. Wheeler, D. Niedzialek, B. C. Schroeder, H. Utzat, J. M. Frost, J. Yao, A. Gillett, P. S. Tuladhar, I. McCulloch, J. Nelson, J. R. Durrant, Nat. Commun. 2015, 6, 6501.
dc.identifier.citedreferenceR. H. Gilmore, E. M. Y. Lee, M. C. Weidman, A. P. Willard, W. A. Tisdale, Nano Lett. 2017, 17, 893.
dc.identifier.citedreferencea) B.- S. Kim, J. Hong, B. Hou, Y. Cho, J. I. Sohn, S. Cha, J. M. Kim, Appl. Phys. Lett. 2016, 109, 063901; b) D. Bederak, D. M. Balazs, N. V. Sukharevska, A. G. Shulga, M. Abdu- Aguye, D. N. Dirin, M. V. Kovalenko, M. A. Loi, ACS Appl. Nano Mater. 2018, 1, 6882.
dc.identifier.citedreferenceB. Kundu, A. J. Pal, J. Phys. Chem. C 2018, 122, 11570.
dc.identifier.citedreferenceC.- H. M. Chuang, P. R. Brown, V. BuloviÄ , M. G. Bawendi, Nat. Mater. 2014, 13, 796.
dc.identifier.citedreferenceM. E. Schmidt, S. A. Blanton, M. A. Hines, P. Guyot- Sionnest, Phys. Rev. B 1996, 53, 12629.
dc.identifier.citedreferenceH. K. H. Lee, Z. Li, J. R. Durrant, W. C. Tsoi, Appl. Phys. Lett. 2016, 108, 253301.
dc.identifier.citedreferenceA. Nasiri, S. A. Zabalawi, G. Mandic, IEEE Trans. Ind. Electron. 2009, 56, 4502.
dc.identifier.citedreferenceJ. W. Matiko, N. J. Grabham, S. P. Beeby, M. J. Tudor, Meas. Sci. Technol. 2014, 25, 012002.
dc.identifier.citedreferenceM. A. Husain, A. Tariq, S. Hameed, M. S. B. Arif, A. Jain, Green Energy Environ. 2017, 2, 5.
dc.identifier.citedreferenceM. T. Hörantner, H. J. Snaith, Energy Environ. Sci. 2017, 10, 1983.
dc.identifier.citedreferenceS. Ekgasit, N. Kaewmanee, P. Jangtawee, C. Thammacharoen, M. Donphoongpri, ACS Appl. Mater. Interfaces 2016, 8, 20474.
dc.identifier.citedreferenceM. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl- Ebinger, A. W. H. Ho- Baillie, Prog. Photovoltaics. 2017, 25, 668.
dc.identifier.citedreferenceA. Sacco, M. Gerosa, S. Bianco, L. Mercatelli, R. Fontana, L. Pezzati, M. Quaglio, C. F. Pirri, A. O. M. Tucci, Sol. Energy 2016, 125, 307.
dc.identifier.citedreferenceS. D. Dimitrov, Z. Huang, F. Deledalle, C. B. Nielsen, B. C. Schroeder, R. S. Ashraf, S. Shoaee, I. McCulloch, J. R. Durrant, Energy Environ. Sci. 2014, 7, 1037.
dc.identifier.citedreferenceS. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.
dc.identifier.citedreferencea) M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.- E. Moser, M. Grätzel, A. Hagfeldt, Nat. Photonics 2017, 11, 372; b) D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
dc.identifier.citedreferenceA. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, Science 2016, 352.
dc.identifier.citedreferenceZ. Wang, Q. Lin, B. Wenger, M. G. Christoforo, Y.- H. Lin, M. T. Klug, M. B. Johnston, L. M. Herz, H. J. Snaith, Nat. Energy 2018, 3, 855.
dc.identifier.citedreferenceF. Meinardi, S. Ehrenberg, L. Dhamo, F. Carulli, M. Mauri, F. Bruni, R. Simonutti, U. Kortshagen, S. Brovelli, Nat. Photonics 2017, 11, 177.
dc.identifier.citedreferenceJ. Nelson, The Physics of Solar Cells, Imperial College Press, London 2003.
dc.identifier.citedreferencea) T.- H. Kim, D.- Y. Chung, J. Ku, I. Song, S. Sul, D.- H. Kim, K.- S. Cho, B. L. Choi, J. Min Kim, S. Hwang, K. Kim, Nat. Commun. 2013, 4, 2637; b) T.- H. Kim, K.- S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.- Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, K. Kim, Nat. Photonics 2011, 5, 176; c) K.- S. Cho, E. K. Lee, W.- J. Joo, E. Jang, T.- H. Kim, S. J. Lee, S.- J. Kwon, J. Y. Han, B.- K. Kim, B. L. Choi, J. M. Kim, Nat. Photonics 2009, 3, 341.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.