Show simple item record

A bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns

dc.contributor.authorSoto Gomez, Marybel
dc.contributor.authorLin, Qianshi
dc.contributor.authorSilva Leal, Eduardo
dc.contributor.authorGallaher, Timothy J.
dc.contributor.authorScherberich, David
dc.contributor.authorMennes, Constantijn B.
dc.contributor.authorSmith, Selena Y.
dc.contributor.authorGraham, Sean W.
dc.date.accessioned2020-10-01T23:32:46Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-10-01T23:32:46Z
dc.date.issued2020-10
dc.identifier.citationSoto Gomez, Marybel; Lin, Qianshi; Silva Leal, Eduardo; Gallaher, Timothy J.; Scherberich, David; Mennes, Constantijn B.; Smith, Selena Y.; Graham, Sean W. (2020). "A bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns." Cladistics 36(5): 481-504.
dc.identifier.issn0748-3007
dc.identifier.issn1096-0031
dc.identifier.urihttps://hdl.handle.net/2027.42/162810
dc.description.abstractWe used a bi‐organellar phylogenomic approach to address higher‐order relationships in Pandanales, including the first molecular phylogenetic study of the panama‐hat family, Cyclanthaceae. Our genus‐level study of plastid and mitochondrial gene sets includes a comprehensive sampling of photosynthetic lineages across the order, and provides a framework for investigating clade ages, biogeographic hypotheses and organellar molecular evolution. Using multiple inference methods and both organellar genomes, we recovered mostly congruent and strongly supported relationships within and between families, including the placement of fully mycoheterotrophic Triuridaceae. Cyclanthaceae and Pandanaceae plastomes have slow substitution rates, contributing to weakly supported plastid‐based relationships in Cyclanthaceae. While generally slowly evolving, mitochondrial genomes exhibit sporadic rate elevation across the order. However, we infer well‐supported relationships even for slower evolving mitochondrial lineages in Cyclanthaceae. Clade age estimates across photosynthetic lineages are largely consistent with previous studies, are well correlated between the two organellar genomes (with slightly younger inferences from mitochondrial data), and support several biogeographic hypotheses. We show that rapidly evolving non‐photosynthetic lineages may bias age estimates upwards at neighbouring photosynthetic nodes, even using a relaxed clock model. Finally, we uncovered new genome structural variants in photosynthetic taxa at plastid inverted repeat boundaries that show promise as interfamilial phylogenetic markers.
dc.publisherRoyal Botanic Gardens
dc.publisherWiley Periodicals, Inc.
dc.titleA bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/33/cla12417-sup-0025-TableS1.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/32/cla12417-sup-0017-FigS17.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/31/cla12417-sup-0004-FigS4.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/30/cla12417-sup-0019-FigS19.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/29/cla12417-sup-0020-FigS20.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/28/cla12417_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/27/cla12417-sup-0005-FigS5.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/26/cla12417-sup-0012-FigS12.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/25/cla12417-sup-0007-FigS7.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/24/cla12417-sup-0022-FigS22.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/23/cla12417-sup-0029-TableS5.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/22/cla12417-sup-0010-FigS10.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/21/cla12417-sup-0011-FigS11.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/20/cla12417-sup-0014-FigS14.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/19/cla12417-sup-0002-FigS2.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/18/cla12417-sup-0001-FigS1.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/17/cla12417.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/16/cla12417-sup-0030-TableS6.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/15/cla12417-sup-0021-FigS21.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/14/cla12417-sup-0023-FigS23.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/13/cla12417-sup-0009-FigS9.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/12/cla12417-sup-0031-TableS7.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/11/cla12417-sup-0006-FigS6.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/10/cla12417-sup-0003-FigS3.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/9/cla12417-sup-0024-FigS24.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/8/cla12417-sup-0008-FigS8.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/7/cla12417-sup-0028-TableS4.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/6/cla12417-sup-0016-FigS16.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/5/cla12417-sup-0013-FigS13.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/4/cla12417-sup-0018-FigS18.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/3/cla12417-sup-0026-TableS2.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/2/cla12417-sup-0015-FigS15.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162810/1/cla12417-sup-0027-TableS3.pdfen_US
dc.identifier.doi10.1111/cla.12417
dc.identifier.sourceCladistics
dc.identifier.citedreferencePalmer, J.D., Adams, K.L., Cho, Y., Parkinson, C.L., Qiu, Y.‐L. and Song, K., 2000. Dynamic evolution of plant mitochondrial genomes: Mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. USA, 97, 6960 – 6966.
dc.identifier.citedreferenceSkippington, E., Barkman, T.J., Rice, D.W. and Palmer, J.D., 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA, 112, E3515 – E3524.
dc.identifier.citedreferenceSloan, D.B., Barr, C.M., Olson, M.S., Keller, S.R. and Taylor, D.R., 2008. Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol. Biol. Evol., 25, 243 – 246.
dc.identifier.citedreferenceSmith, S.Y., 2013. The fossil record of noncommelinid monocots. In: Wilkin, P. and Mayo, S.J. (Eds.) Early Events in Monocot Evolution. Cambridge University Press, Cambridge, pp. 29 – 59.
dc.identifier.citedreferenceSmith, S.A. and Donoghue, M.J., 2008. Rates of molecular evolution are linked to life history in flowering in plants. Science, 322, 86 – 89.
dc.identifier.citedreferenceSoltis, P.S. and Soltis, D.E., 2003. Applying the bootstrap in phylogeny reconstruction. Stat. Sci., 18, 256 – 267.
dc.identifier.citedreferenceStamatakis, A., 2006. RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688 – 2690.
dc.identifier.citedreferenceSteane, D.A., 2005. Complete nucleotide sequence of the chloroplast genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Res., 12, 215 – 220.
dc.identifier.citedreferenceSteane, D.A., Scotland, R.W., Mabberley, D.J. and Olmstead, R.G., 1999. Molecular systematics of Clerodendrum (Lamiaceae): ITS sequences and total evidence. Am. J. Bot., 86, 98 – 107.
dc.identifier.citedreferenceSteele, P.R., Hertweck, K.L., Mayfield, D., McKain, M.R., Leebens‐Mack, J. and Pires, J.C., 2012. Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am. J. Bot., 99, 330 – 348.
dc.identifier.citedreferenceStone, B.C., Huynh, K.‐L. and Poppendieck, H.‐H., 1998. Pandanaceae. In: Kubitzki, K. (Ed.) The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 397 – 404.
dc.identifier.citedreferenceSwofford, D.L., 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, MA.
dc.identifier.citedreferenceThiers, B. Continuously Updated. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ [accessed 19 March 2019].
dc.identifier.citedreferenceTsudzuki, J., Nakashima, K., Tsudzuki, T., Hiratsuka, J., Shibata, M., Wakasugi, T. and Sugiura, M., 1992. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol. Gen. Genet., 232, 206 – 214.
dc.identifier.citedreferenceUeda, M., Nishikawa, T., Fujimoto, M., Takanashi, H., Arimura, S.‐I., Tsutsumi, N. and Kadowaki, K.‐I., 2008. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol. Biol. Evol., 28, 1566 – 1575.
dc.identifier.citedreferenceUntergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M. and Rozen, S.G., 2012. Primer3 ‐ new capabilities and interfaces. Nucleic Acids Res., 40, e115.
dc.identifier.citedreferenceVaidya, G., Lohman, D.J. and Meier, R., 2011. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics, 27, 171 – 180.
dc.identifier.citedreferenceWang, R.‐J., Cheng, C.‐L., Chang, C.‐C., Wu, C.‐L., Su, T.‐M. and Chaw, S.‐M., 2008. Dynamics and evolution of the inverted repeat‐large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol., 8, 36.
dc.identifier.citedreferenceWebb, C.O., Ackerly, D.D. and Kembel, S.W., 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098 – 2100.
dc.identifier.citedreferenceWicke, S., Schneeweiss, G.M., dePamphilis, C.W., Müller, K.F. and Quandt, D., 2011. The evolution of the plastid chromosome in land plants: gene conent, gene order, gene function. Plant Mol. Biol., 76, 273 – 297.
dc.identifier.citedreferenceWolfe, K.H., Li, W.‐H. and Sharp, P.M., 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA, 84, 9054 – 9058.
dc.identifier.citedreferenceYang, Z., 2006. Computational Molecular Evolution. Oxford University Press, Oxford.
dc.identifier.citedreferenceZhu, A., Guo, W., Jain, K. and Mower, J.P., 2014. Unprecedented heterogeneity in the synonymous substitution rate within a plant genome. Mol. Biol. Evol., 31, 1228 – 1236.
dc.identifier.citedreferenceZhu, A., Guo, W., Gupta, S., Fan, W. and Mower, J.P., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol., 209, 1747 – 1756.
dc.identifier.citedreferenceCallmander, M.W., Chassot, P., Küpfer, P. and Lowry, P.P. II, 2003. Recognition of Martellidendron, a new genus of Pandanaceae, and its biogeographic implications. Taxon, 52, 747 – 762.
dc.identifier.citedreferenceCamacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T.L., 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.
dc.identifier.citedreferenceAlcantara, S., Ree, R.H. and Mello‐Silva, R., 2018. Accelerated diversification and functional trait evolution in Velloziaceae reveal new insights into the origins of the campos rupestres ’ exceptional floristic richness. Ann. Bot., 122, 165 – 180.
dc.identifier.citedreferenceAngiosperm Phylogeny Group, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc., 141, 399 – 436.
dc.identifier.citedreferenceAngiosperm Phylogeny Group, 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc., 161, 105 – 121.
dc.identifier.citedreferenceAngiosperm Phylogeny Group, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 181, 1 – 20.
dc.identifier.citedreferenceBakker, F.T., Breman, F. and Merckx, V., 2006. DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae. Taxon, 55, 887 – 896.
dc.identifier.citedreferenceBarrett, C.F., Baker, W.J., Comer, J.R., Conran, J.G., Lahmeyer, S.C., Leebens‐Mack, J.H., Li, J., Lim, G.S., Mayfield‐Jones, D.R., Perez, L., Medina, J., Pires, J.C., Santos, C., Stevenson, D.W., Zomlefer, W.B. and Davis, J.I., 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol., 209, 855 – 870.
dc.identifier.citedreferenceBeaulieu, J.M., O’Meara, B.C., Crane, P. and Donoghue, M.J., 2015. Heterogeneous rates of molecular evolution and diversification could explain the Triassic age estimate for angiosperms. Syst. Biol., 64, 869 – 878.
dc.identifier.citedreferenceBehnke, H.‐D., Treutlein, J., Wink, M., Kramer, K., Schneider, C. and Kao, P.C., 2000. Systematics and evolution of Velloziaceae, with special reference to sieve‐element plastids and rbcL sequence data. Bot. J. Linn. Soc., 134, 93 – 129.
dc.identifier.citedreferenceBehnke, H.‐D., Hummel, E., Hillmer, S., Sauer‐Gürth, H., Gonzales, J. and Wink, M., 2013. A revision of African Velloziaceae based on leaf anatomy characters and rbcL nucleotide sequences. Bot. J. Linn. Soc., 172, 22 – 94.
dc.identifier.citedreferenceBell, C.D., Soltis, D.E. and Soltis, P.S., 2010. The age and diversification of the angiosperms re‐visted. Am. J. Bot., 97, 1296 – 1303.
dc.identifier.citedreferenceBell, D., Lin, Q., Gerelle, W.K., Joya, S., Chang, Y., Taylor, Z.N., Rothfels, C.J., Larsson, A., Villarreal, J.C., Li, F.‐W., Pokorny, L., Szövényi, P., Crandall‐Stotler, B., DeGironimo, L., Floyd, S.K., Beerling, D.J., Deyholos, M.K., von Konrat, M., Ellis, S., Shaw, A.J., Chen, T., Wong, G.K.‐S., Stevenson, D.W., Palmer, J.D. and Graham, S.W., 2020. Organellomic data sets confirm a cryptic consensus on (unrooted) land‐plant relationships and provide new insights into bryophyte molecular evolution. Am. J. Bot., 107, 1 – 25.
dc.identifier.citedreferenceBouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.‐H., Xie, D., Suchard, M.A., Rambaut, A. and Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 10, e1003537.
dc.identifier.citedreferenceBousquet, J., Strauss, S.H., Doerksen, A.H. and Price, R.A., 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc. Natl. Acad. Sci. USA, 89, 7844 – 7848.
dc.identifier.citedreferenceCaddick, L.R., Rudall, P.J., Wilkin, P., Hedderson, T.A.J. and Chase, M.W., 2002. Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot. J. Linn. Soc., 138, 123 – 144.
dc.identifier.citedreferenceChase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.‐L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D., Manhart, J.R., Sytsma, K.J., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, D., Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K.‐J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.‐Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H. Jr, Graham, S.W., Barrett, S.C.H., Dayanandan, S. and Albert, V.A., 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbc L. Ann. Mo. Bot. Gard., 80, 528 – 580.
dc.identifier.citedreferenceChase, M.W., Duvall, M.R., Hills, H.G., Conran, J.G., Cox, A.V., Eguiarte, L.E., Hartwell, J., Fay, M.F., Caddick, L.R., Cameron, K.M. and Hoot, S., 1995. Molecular phylogenetics of Lilianae. In: Rudall, P.J., Cribb, P.J., Cutler, D.F. and Humphries, C.J. (Eds.) Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew, Richmond, pp. 109 – 137.
dc.identifier.citedreferenceChase, M.W., Soltis, D.E., Soltis, P.S., Rudall, P.J., Fay, M.F., Hahn, W.H., Sullivan, S., Joseph, J., Molvray, M., Kores, P.J., Givnish, T.J., Sytsma, K.J. and Pires, J.C., 2000. Higher‐level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson, K.L. and Morisson, D.A. (Eds.) Monocots: Systematics and Evolution. CSIRO Publishing, Melbourne, Vic., pp. 3 – 16.
dc.identifier.citedreferenceChase, M.W., Fay, M.F., Devey, D.S., Maurin, O., Rønsted, N., Davies, T.J., Pillon, Y., Petersen, G., Seberg, O., Tamura, M.N., Asmussen, C.B., Hilu, K., Borsch, T., Davis, J.I., Stevenson, D.W., Pires, J.C., Givnish, T.J., Sytsma, K.J., McPherson, M.A., Graham, S.W. and Rai, H.S., 2006. Multigene analyses of monocot relationships: a summary. Aliso, 22, 63 – 75.
dc.identifier.citedreferenceCheek, M., 2003. Kupeaeae, a new tribe of Triuridaceae from Africa. Kew Bull., 58, 939 – 949.
dc.identifier.citedreferenceCho, Y., Mower, J.P., Qiu, Y.‐L. and Palmer, J.D., 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc. Natl. Acad. Sci. USA, 101, 17741 – 17746.
dc.identifier.citedreferenceCollinson, M.E., Boulter, M.C. and Holmes, P.L., 1993. 45, Magnoliophyta (‘Angiospermae’). In: Benton, M.J. (Ed.) The Fossil Record 2. Chapman and Hall, London, UK, pp. 809 – 841.
dc.identifier.citedreferenceCronquist, A., 1988. The Evolution and Classification of Flowering Plants, 2nd edn. New York Botanical Garden, New York.
dc.identifier.citedreferenceDahlgren, R.M.T. and Clifford, H.T., 1982. The Monocotyledons: A Comparative Study. Academic Press, New York.
dc.identifier.citedreferenceDahlgren, R.M.T. and Rasmussen, F.N., 1983. Monocotyledon evolution: characters and phylogenetic estimation. In: Hecht, M.K., Wallace, B. and Prance, G.T. (Eds.) Evolutionary Biology. Plenum Press, New York, Vol. 16, pp. 255 – 395.
dc.identifier.citedreferenceDahlgren, R.M.T., Clifford, H.T. and Yeo, P.F., 1985. The Families of the Monocotyledons: Structure, Evolution and Taxonomy, Springer‐Verlag, Berlin Heidelberg.
dc.identifier.citedreferenceDavis, J.I. and Soreng, R.J., 2010. Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae). Am. J. Bot., 97, 874 – 892.
dc.identifier.citedreferenceDavis, J.I., Stevenson, D.W., Petersen, G., Seberg, O., Campbell, L.M., Freudenstein, J.V., Goldman, D.H., Hardy, C.R., Michelangeli, F.A., Simmons, M.P., Specht, C.D., Vergara‐Silva, F. and Gandolfo, M., 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Bot., 29, 467 – 510.
dc.identifier.citedreferenceDe la Torre, A.R., Li, Z., Van de Peer, Y. and Ingvarsson, P.K., 2017. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol., 34, 1363 – 1377.
dc.identifier.citedreferenceDong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., Cheng, T., Guo, J. and Zhou, S., 2015. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep., 5, 8348.
dc.identifier.citedreferenceDornburg, A., Brandley, M.C., McGowen, M.R. and Near, T.J., 2011. Relaxed clock and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea). Mol. Biol. Evol., 29, 721 – 736.
dc.identifier.citedreferenceDownie, S.R. and Jansen, R.K., 2015. A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions. Syst. Bot., 40, 336 – 351.
dc.identifier.citedreferenceDownie, S.R. and Palmer, J.D., 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis, P.S., Soltis, D.E. and Doyle, J.J. (Eds.) Molecular Systematics of Plants. Springer, Boston, pp. 14 – 35.
dc.identifier.citedreferenceDoyle, J.J., Doyle, J.L. and Palmer, J.D., 1995. Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst. Bot., 20, 272 – 294.
dc.identifier.citedreferenceDrouin, G., Daoud, H. and Xia, J., 2008. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol., 49, 827 – 831.
dc.identifier.citedreferenceDrummond, A.J. and Suchard, M.A., 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol., 8, 114.
dc.identifier.citedreferenceDrummond, A.J., Suchard, M.A., Xie, D. and Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol., 29, 1969 – 1973.
dc.identifier.citedreferenceEdgar, R.C. ( 2004a ) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32, 1792 – 1797.
dc.identifier.citedreferenceEguchi, S. and Tamura, M.N., 2016. Evolutionary timescale of monocots determined by the fossilized birth‐death model using a large number of fossil records. Evolution, 70, 1136 – 1144.
dc.identifier.citedreferenceEriksson, R., 1989. Chorigyne, a new genus of the Cyclanthaceae from Central America. Nord. J. Bot., 9, 31 – 45.
dc.identifier.citedreferenceEriksson, R., 1994. Phylogeny of the Cyclanthaceae. Plant Syst. Evol., 190, 31 – 47.
dc.identifier.citedreferenceEyre‐Walker, A. and Gaut, B.S., 1997. Correlated rates of synonymous site evolution across plant genomes. Mol. Biol. Evol., 14, 455 – 460.
dc.identifier.citedreferenceFelsenstein, J., 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool., 27, 401 – 410.
dc.identifier.citedreferenceFelsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783 – 791.
dc.identifier.citedreferenceFoster, C.S.P., Sauquet, H., Van Der Merwe, M., McPherson, H., Rossetto, M. and Ho, S.Y.W., 2017. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol., 66, 338 – 351.
dc.identifier.citedreferenceGallaher, T., Callmander, M.W., Buerki, S. and Keeley, S.C., 2015. A long distance dispersal hypothesis for the Pandanaceae and the origins of the Pandanus tectorius complex. Mol. Phylogenet. Evol., 83, 20 – 32.
dc.identifier.citedreferenceGaut, B.S., Morton, B.R., McCaig, B.C. and Clegg, M.T., 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA, 93, 10274 – 10279.
dc.identifier.citedreferenceGivnish, T.J., Zuluaga, A., Marques, I., Lam, V.K.Y., Soto Gomez, M., Iles, W.J.D., Ames, M., Spalink, D., Moeller, J.R., Briggs, B.G., Lyon, S.P., Stevenson, D.W., Zomlefer, W. and Graham, S.W., 2016. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics, 32, 581 – 605.
dc.identifier.citedreferenceGivnish, T.J., Zuluaga, A., Spalink, D., Soto Gomez, M., Lam, V.K.Y., Saarela, J.M., Sass, C., Iles, W.J.D., Lima de Sousa, D.J., Leebens‐Mack, J., Pires, J.C., Zomlefer, W.B., Gandolfo, M.A., Davis, J.I., Stevenson, D.W., dePamphilis, C., Specht, C.D., Graham, S.W., Barrett, C.F. and Ané, C., 2018. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi‐gene analyses, and a functional model for the origin of monocots. Am. J. Bot., 105, 1 – 23.
dc.identifier.citedreferenceGovaerts, R., 2019. World Checklist of Velloziaceae. Facilitated by the Royal Botanic Gardens, Kew. http://wcsp.science.kew.org/ [accessed 22 July 2019].
dc.identifier.citedreferenceGraham, S.W., Reeves, P.A., Burns, A.C.E. and Olmstead, R.G., 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci., 161, S83 – S96.
dc.identifier.citedreferenceGray, M.W. ( 2009 ) RNA editing in plant mitochondria: 20 years later. IUBMB Life, 61, 1101 – 1104.
dc.identifier.citedreferenceGraham, S.W., Zgurski, J.M., McPherson, M.A., Cherniawsky, D.M., Saarela, J.M., Horne, E.S.C., Smith, S.Y., Wong, W.A., O’Brien, H.E., Biron, V.L., Pires, J.C., Olmstead, R.G., Chase, M.W. and Rai, H.S., 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. Aliso, 22, 3 – 20.
dc.identifier.citedreferenceGraham, S.W., Lam, V.K.Y. and Merckx, V.S.F.T., 2017. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytol., 214, 48 – 55.
dc.identifier.citedreferenceGualberto, J.M. and Newton, K.J., 2017. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annu. Rev. Plant Biol., 68, 225 – 252.
dc.identifier.citedreferenceGuisinger, M.M., Chumley, T.W., Kuehl, J.V., Boore, J.L. and Jansen, R.K., 2010. Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J. Mol. Evol., 70, 149 – 166.
dc.identifier.citedreferenceGuisinger, M.M., Kuehl, J.V., Boore, J.L. and Jansen, R.K., 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol. Biol. Evol., 28, 583 – 600.
dc.identifier.citedreferenceHammel, B.E. and Wilder, G.J., 1989. Dianthoveus: a new genus of Cyclanthaceae. Ann. Mo. Bot. Gard., 76, 112 – 123.
dc.identifier.citedreferenceHansen, D.R., Dastidar, S.G., Cai, Z., Penaflor, C., Kuehl, J.V., Boore, J.L. and Jansen, R.K., 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early‐diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol. Phylogenet. Evol., 45, 547 – 563.
dc.identifier.citedreferenceHarling, G., 1958. Monograph of the Cyclanthaceae. Acta Horti. Berg., 18, 1 – 428.
dc.identifier.citedreferenceHarling, G., Wilder, G.J. and Eriksson, R., 1998. Cyclanthaceae. In: Kubitzki, K. (Ed.) The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 202 – 215.
dc.identifier.citedreferenceHarismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S. and Frazer, K.A. ( 2009 ) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol., 10, R32.
dc.identifier.citedreferenceHarris, M.E., Meyer, G., Vandergon, T. and Oberholzer Vandergon, V., 2013. Loss of the acetyl‐CoA carboxylase ( accD ) gene in Poales. Plant Mol. Biol. Rep., 31, 21 – 31.
dc.identifier.citedreferenceHavird, J.C., Noe, G.R., Link, L., Torres, A., Logan, D.C., Sloan, D.B. and Chicco, A.J., 2019. Do angiosperms with highly divergent mitochondrial genomes have altered mitochondrial function? Mitochondrion, 49, 1 – 11.
dc.identifier.citedreferenceHendy, M.D. and Penny, D., 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool., 38, 297 – 309.
dc.identifier.citedreferenceHerendeen, P.S. and Crane, P.R., 1995. The fossil history of the monocotyledons. In: Rudall, P.J., Cribb, P.J., Cutler, D.F. and Humphries, C.J. (Eds.) Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew, Richmond, pp. 1 – 21.
dc.identifier.citedreferenceHertweck, K.L., Kinney, M.S., Stuart, S.A., Maurin, O., Mathews, S., Chase, M.W., Gandolfo, M.A. and Pires, J.C., 2015. Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot. J. Linn. Soc., 178, 375 – 393.
dc.identifier.citedreferenceIles, W.J.D., Smith, S.Y., Gandolfo, M.A. and Graham, S.W., 2015. Monocot fossils suitable for molecular dating analyses. Bot. J. Linn. Soc., 178, 346 – 374.
dc.identifier.citedreferenceJanssen, T. and Bremer, K., 2004. The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc., 146, 385 – 398.
dc.identifier.citedreferenceKao, P.‐C. and Kubitzki, K., 1998. Acanthochlamydaceae. In: Kubitzki, K. (Ed.) The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 55 – 58.
dc.identifier.citedreferenceKatoh, K., Misawa, K., Kuma, K. and Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res., 30, 3059 – 3066.
dc.identifier.citedreferenceKelchner, S.A., 2000. The evolution of non‐coding chloroplast DNA and its application in plant systematics. Ann. Mo. Bot. Gard., 87, 482 – 498.
dc.identifier.citedreferenceKim, Y.‐D. and Jansen, R.K., 1994. Characterization and phylogenetic distribution of a chloroplast DNA rearrangement in the Berberidaceae. Plant Syst. Evol., 193, 107 – 114.
dc.identifier.citedreferenceKolodner, R. and Tewari, K.K., 1979. Inverted repeats in chloroplast DNA from higher plants. Proc. Natl. Acad. Sci. USA, 76, 41 – 45.
dc.identifier.citedreferenceKorall, P., Schuettpelz, E. and Pryer, K.M., 2010. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution, 64, 2786 – 2792.
dc.identifier.citedreferenceKoressaar, T. and Remm, M., 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics, 23, 1289 – 1291.
dc.identifier.citedreferenceKubitzki, K. ( 1998a ) Pentastemonaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 404 – 406.
dc.identifier.citedreferenceKubitzki, K. ( 1998b ) Stemonaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 422 – 425.
dc.identifier.citedreferenceKubitzki, K. ( 1998c ) Velloziaceae. In: Kubitzki, K. (Ed.), The Families and Genera of Vascular Plants, Vol. III, Flowering Plants. Monocotyledons: Lilianae (except Orchidaceae). Springer‐Verlag, Berlin, Heidelberg, pp. 459 – 467.
dc.identifier.citedreferenceLam, V.K.Y., Soto Gomez, M. and Graham, S.W., 2015. The highly reduced plastome of mycoheterotrophic Sciaphila (Triuridaceae) is colinear with its green relatives and is under strong purifying selection. Genome Biol. Evol., 7, 2220 – 2236.
dc.identifier.citedreferenceLam, V.K.Y., Merckx, V.S.F.T. and Graham, S.W., 2016. A few‐gene plastid phylogenetic framework for mycoheterotrophic monocots. Am. J. Bot., 103, 692 – 708.
dc.identifier.citedreferenceLam, V.K.Y., Darby, H., Merckx, V.S.F.T., Lim, G., Yukawa, T., Neubig, K.M., Abbott, J.R., Beatty, G.E., Provan, J., Soto Gomez, M. and Graham, S.W., 2018. Phylogenomic inference in extremis: a case study with mycoheterotroph plastomes. Am. J. Bot., 105, 480 – 494.
dc.identifier.citedreferenceLanfear, R., Ho, S.Y.W., Davies, J., Moles, A.T., Aarssen, L., Swenson, N.G., Warman, L., Zanne, A.E. and Allen, A.P., 2013. Taller plants have lower rates of molecular evolution. Nat. Commun., 4, 1879.
dc.identifier.citedreferenceLanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. and Calcott, B., 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 34, 772 – 773.
dc.identifier.citedreferenceLaroche, J., Li, P., Maggia, L. and Bousquet, J., 1997. Molecular evolution of angiosperm mitochondrial introns and exons. Proc. Natl. Acad. Sci. USA, 94, 5722 – 5727.
dc.identifier.citedreferenceLarsson, A., 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30, 3276 – 3278.
dc.identifier.citedreferenceLemaire, B., Huysmans, S., Smets, E. and Merckx, V., 2011. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J. Plant Res., 124, 561 – 576.
dc.identifier.citedreferenceLu, Q., Ye, W., Lu, R., Xu, W. and Qiu, Y., 2018. Phylogenomic and comparative analyses of complete plastomes of Croomia and Stemona (Stemonaceae). Int. J. Mol. Sci., 19, 2383.
dc.identifier.citedreferenceMabberley, D.J., 2008. Mabberley’s Plant‐Book: A Portable Dictionary of Plants, their Classifications and Uses, 3rd edn. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceMaddison, W.P. and Maddison, D.R., 2015. Mesquite: a modular system for evolutionary analysis. Version 3.04 http://mesquiteproject.org.
dc.identifier.citedreferenceMagallón, S., Hilu, K.W. and Quandt, D., 2013. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot., 100, 556 – 573.
dc.identifier.citedreferenceMagallón, S., Gómez‐Acevedo, S., Sánchez‐Reyes, L.L. and Hernández‐Hernández, T., 2015. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytol., 207, 437 – 453.
dc.identifier.citedreferenceMartin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M. and Kowallik, K.V., 1998. Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 393, 162 – 165.
dc.identifier.citedreferenceMcKain, M.R., McNeal, J.R., Kellar, P.R., Eguiarte, L.E., Pires, J.C. and Leebens‐Mack, J., 2016. Timing of rapid diversification and convergent origins of active pollination within Agavoideae (Asparagaceae). Am. J. Bot., 103, 1717 – 1729.
dc.identifier.citedreferenceMcLoughlin, S., 2001. The breakup history of Gondwana and its impact on pre‐Cenozoic floristic provincialism. Aust. J. Bot., 49, 271 – 300.
dc.identifier.citedreferenceMcPherson, M.A., Fay, M.F., Chase, M.W. and Graham, S.W., 2004. Parallel loss of a slowly evolving intron from two closely related families in Asparagales. Syst. Bot., 29, 296 – 307.
dc.identifier.citedreferenceMello‐Silva, R., 2005. Morphological analysis, phylogenies and classification in Velloziaceae. Bot. J. Linn. Soc., 148, 157 – 173.
dc.identifier.citedreferenceMello‐Silva, R., Santos, D.Y.A.C., Salatino, M.L.F., Motta, L.B., Cattai, M.B., Sasaki, D., Lovo, J., Pita, P.B., Rocini, C., Rodrigues, C.D.N., Zarrei, M. and Chase, M.W., 2011. Five vicarious genera from Gondwana: the Velloziaceae as shown by molecules and morphology. Ann. Bot., 108, 87 – 102.
dc.identifier.citedreferenceMenezes, N.L., Mello‐Silva, R. and Mayo, S.J., 1993. A cladistic analysis of the Velloziaceae. Kew Bull., 49, 71 – 92.
dc.identifier.citedreferenceMennes, C.B., Smets, E.F., Moses, S.N. and Merckx, V.S.F.T., 2013. New insights in the long‐debated evolutionary history of Triuridaceae (Pandanales). Mol. Phylogenet. Evol., 69, 994 – 1004.
dc.identifier.citedreferenceMerckx, V., Bakker, F.T., Huysmans, S. and Smets, E., 2009. Bias and conflict in phylogenetic inference of myco‐heterotrophic plants: a case study in Thismiaceae. Cladistics, 25, 64 – 77.
dc.identifier.citedreferenceMiller, M.A., Pfeiffer, W. and Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, USA, pp. 1 – 8.
dc.identifier.citedreferenceMower, J.P., Touzet, P., Gummow, J.S., Delph, L.F. and Palmer, J.D., 2007. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol. Biol., 7, 135.
dc.identifier.citedreferenceMulcahy, D.G., Noonan, B.P., Moss, T., Townsend, T.M., Reeder, T.W., Sites, J.W. Jr and Wiens, J.J., 2012. Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol. Phylogenet. Evol., 65, 974 – 991.
dc.identifier.citedreferenceOhyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H. and Ozeki, H., 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 322, 572 – 574.
dc.identifier.citedreferencePalmer, J.D., 1991. Plastid chromosomes: structure and evolution. In: Bogorad, L. and Vasil, I.K. (Eds.) The Molecular Biology of Plastids. Cell Culture and Somatic Genetics of Plants. San Diego, CA: Academic Press, Vol. 7A, pp. 5 – 53.
dc.identifier.citedreferencePalmer, J.D. and Herbon, L.A., 1988. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol., 28, 87 – 97.
dc.identifier.citedreferenceEdgar, R.C. ( 2004b ) MUSCLE: a multiple sequence alignment with reduced time and space complexity. BMC Bioinformatics, 5, 113.
dc.identifier.citedreferenceParkinson, C.L., Mower, J.P., Qiu, Y.‐L., Shirk, A.J., Song, K., Young, N.D., dePamphilis, C.W. and Palmer, J.D., 2005. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol. Biol., 12, 1 – 12.
dc.identifier.citedreferencePetersen, G., Zervas, A., Pedersen, H.A.E. and Seberg, O., 2018. Genome reports: Contracted genes and dwarfed plastome in mycoheterotrophic Sciaphila thaidanica (Triuridaceae, Pandanales). Genome Biol. Evol., 10, 976 – 981.
dc.identifier.citedreferencePlunkett, G.M. and Downie, S.R., 2000. Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst. Bot., 25, 648 – 667.
dc.identifier.citedreferenceRambaut, A., Drummond, A.J., Xie, D., Baele, G. and Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol., 67, 901 – 904.
dc.identifier.citedreferenceRaubeson, L.A. and Jansen, R.K., 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science, 255, 1697 – 1699.
dc.identifier.citedreferenceRaubeson, L.A. and Jansen, R.K., 2005. Chloroplast genomes of plants. In: Henry, R.J. (Ed.) Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants. CABI Publishing, Wallingford, pp. 45 – 68.
dc.identifier.citedreferenceRoss, T.G., Barrett, C.F., Soto Gomez, M., Lam, V.K.Y., Henriquez, C.L., Les, D.H., Davis, J.I., Cuenca, A., Petersen, G., Seberg, O., Thadeo, M., Givnish, T.J., Conran, J., Stevenson, D.W. and Graham, S.W., 2015. Plastid phylogenomics and molecular evolution of Alismatales. Cladistics, 1 – 19.
dc.identifier.citedreferenceRudall, P.J. and Bateman, R.M., 2006. Morphological phylogenetic analysis of Pandanales: testing contrasting hypotheses of floral evolution. Syst. Bot., 31, 223 – 238.
dc.identifier.citedreferenceRudall, P.J., Cunniff, J., Wilkin, P. and Caddick, L.R., 2005. Evolution of dimery, pentamery and the monocarpellary condition in the monocot family Stemonaceae (Pandanales). Taxon, 54, 701 – 711.
dc.identifier.citedreferenceSajo, M.G., Lombardi, J.A., Forzza, R.C. and Rudall, P.J., 2014. Comparative anatomy of reproductive structures in Cyclanthaceae (Pandanales). Int. J. Plant Sci., 175, 814 – 827.
dc.identifier.citedreferenceSalatino, A., Salatino, M.L.F., Mello‐Silva, R., van Sluys, M.‐A., Giannasi, D.E. and Price, R.A., 2001. Phylogenetic inference in Velloziaceae using chloroplast t rnL‐F sequences. Syst. Bot., 26, 92 – 103.
dc.identifier.citedreferenceSilvestro, D. and Michalak, I., 2012. raxmlGUI: a graphical front‐end for RAxML. Org. Divers. Evol., 12, 335 – 337.
dc.identifier.citedreferenceSilvestro, D., Cascales‐Miñana, B., Bacon, C.D. and Antonelli, A., 2015. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol., 207, 425 – 436.
dc.identifier.citedreferenceSimmons, M.P. and Ochoterena, H., 2000. Gaps as characters in sequence‐based phylogenetic analyses. Syst. Biol., 49, 369 – 381.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.