Show simple item record

FAK Promotes Early Osteoprogenitor Cell Proliferation by Enhancing mTORC1 Signaling

dc.contributor.authorQi, Shuqun
dc.contributor.authorSun, Xiumei
dc.contributor.authorChoi, Han Kyoung
dc.contributor.authorYao, Jinfeng
dc.contributor.authorWang, Li
dc.contributor.authorWu, Guomin
dc.contributor.authorHe, Yun
dc.contributor.authorPan, Jian
dc.contributor.authorGuan, Jun‐lin
dc.contributor.authorLiu, Fei
dc.date.accessioned2020-10-01T23:32:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:32:57Z
dc.date.issued2020-09
dc.identifier.citationQi, Shuqun; Sun, Xiumei; Choi, Han Kyoung; Yao, Jinfeng; Wang, Li; Wu, Guomin; He, Yun; Pan, Jian; Guan, Jun‐lin ; Liu, Fei (2020). "FAK Promotes Early Osteoprogenitor Cell Proliferation by Enhancing mTORC1 Signaling." Journal of Bone and Mineral Research 35(9): 1798-1811.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/162813
dc.description.abstractFocal adhesion kinase (FAK) has important functions in bone homeostasis but its role in early osteoprogenitor cells is unknown. We show herein that mice lacking FAK in Dermo1- expressing cells exhibited low bone mass and decreased osteoblast number. Mechanistically, FAK- deficient early osteoprogenitor cells had decreased proliferation and significantly reduced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, a central regulator of cell growth and proliferation. Furthermore, our data showed that the pharmacological inhibition of FAK kinase- dependent function alone was sufficient to decrease the proliferation and compromise the mineralization of early osteoprogenitor cells. In contrast to the Fak deletion in early osteoprogenitor cells, FAK loss in Col3.6 Cre- targeted osteoblasts did not cause bone loss, and Fak deletion in osteoblasts did not affect proliferation, differentiation, and mTORC1 signaling but increased the level of active proline- rich tyrosine kinase 2 (PYK2), which belongs to the same non- receptor tyrosine kinase family as FAK. Importantly, mTORC1 signaling in bone marrow stromal cells (BMSCs) was reduced if FAK kinase was inhibited at the early osteogenic differentiation stage. In contrast, mTORC1 signaling in BMSCs was not affected if FAK kinase was inhibited at a later osteogenic differentiation stage, in which, however, the concomitant inhibition of both FAK kinase and PYK2 kinase reduced mTORC1 signaling. In summary, our data suggest that FAK promotes early osteoprogenitor cell proliferation by enhancing mTORC1 signaling via its kinase- dependent function and the loss of FAK in osteoblasts can be compensated by the upregulated active PYK2. © 2020 American Society for Bone and Mineral Research.Schematic model of the differential roles of FAK in the cells of osteoblast lineage. The model depicts the mechanisms of FAK action at three distinct stages of osteoblast lineage in which the roles of FAK have been addressed by genetic and pharmacological approaches as well as the respective Cre transgenes used to target Fak, including Dermo1- Cre (this study), Osterix- Cre,(10) Col3.6- Cre (this study), and Col2.3- Cre.(9) Red - indicates that the loss of FAK in osteoblasts can be compensated by the upregulated active PYK2.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherOSTEOBLAST
dc.subject.otherPYK2
dc.subject.otherFAK
dc.subject.othermTORC1
dc.subject.otherOSTEOPROGENITOR
dc.titleFAK Promotes Early Osteoprogenitor Cell Proliferation by Enhancing mTORC1 Signaling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162813/3/jbmr4029-sup-0001-Supinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162813/2/jbmr4029_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162813/1/jbmr4029.pdfen_US
dc.identifier.doi10.1002/jbmr.4029
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceSulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014; 14 ( 9 ): 598 - 610.
dc.identifier.citedreferenceHay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004; 18 ( 16 ): 1926 - 45.
dc.identifier.citedreferenceElefteriou F, Yang X. Genetic mouse models for bone studies- - strengths and limitations. Bone. 2011; 49 ( 6 ): 1242 - 54.
dc.identifier.citedreferenceVanKoevering KK, Williams BO. Transgenic mouse strains for conditional gene deletion during skeletal development. IBMS Bonekey. 2008; 5 ( 5 ): 151 - 70.
dc.identifier.citedreferenceShekaran A, Shoemaker JT, Kavanaugh TE, et al. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone. 2014; 68: 131 - 41.
dc.identifier.citedreferenceGuan JL. Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life. 2010; 62 ( 4 ): 268 - 76.
dc.identifier.citedreferenceGuan JL. Focal adhesion kinase in integrin signaling. Matrix Biol. 1997; 16 ( 4 ): 195 - 200.
dc.identifier.citedreferenceCary LA, Guan JL. Focal adhesion kinase in integrin- mediated signaling. Front Biosci. 1999; 4: D102 - 13.
dc.identifier.citedreferenceLiu F, Woitge HW, Braut A, et al. Expression and activity of osteoblast- targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol. 2004; 48 ( 7 ): 645 - 53.
dc.identifier.citedreferenceYu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003; 130 ( 13 ): 3063 - 74.
dc.identifier.citedreferenceMadisen L, Zwingman TA, Sunkin SM, et al. A robust and high- throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010; 13 ( 1 ): 133 - 40.
dc.identifier.citedreferenceLiu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res. 2013; 28 ( 11 ): 2414 - 30.
dc.identifier.citedreferenceChandhoke TK, Huang YF, Liu F, et al. Osteopenia in transgenic mice with osteoblast- targeted expression of the inducible cAMP early repressor. Bone. 2008; 43 ( 1 ): 101 - 9.
dc.identifier.citedreferenceChoi HK, Yuan H, Fang F, et al. Tsc1 regulates the balance between osteoblast and adipocyte differentiation through autophagy/Notch1/beta- catenin Cascade. J Bone Miner Res. 2018; 33 ( 11 ): 2021 - 34.
dc.identifier.citedreferenceDempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013; 28 ( 1 ): 2 - 17.
dc.identifier.citedreferenceLuo M, Zhao X, Chen S, Liu S, Wicha MS, Guan JL. Distinct FAK activities determine progenitor and mammary stem cell characteristics. Cancer Res. 2013; 73 ( 17 ): 5591 - 602.
dc.identifier.citedreferenceSlack- Davis JK, Martin KH, Tilghman RW, et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem. 2007; 282 ( 20 ): 14845 - 52.
dc.identifier.citedreferenceGolubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed). 2014; 19: 687 - 706.
dc.identifier.citedreferenceFang F, Sun S, Wang L, et al. Neural crest- specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J Bone Miner Res. 2015; 30 ( 7 ): 1195 - 205.
dc.identifier.citedreferenceStokes JB, Adair SJ, Slack- Davis JK, et al. Inhibition of focal adhesion kinase by PF- 562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther. 2011; 10 ( 11 ): 2135 - 45.
dc.identifier.citedreferenceSonoda Y, Watanabe S, Matsumoto Y, Aizu- Yokota E, Kasahara T. FAK is the upstream signal protein of the phosphatidylinositol 3- kinase- Akt survival pathway in hydrogen peroxide- induced apoptosis of a human glioblastoma cell line. J Biol Chem. 1999; 274 ( 15 ): 10566 - 70.
dc.identifier.citedreferenceYamamoto D, Sonoda Y, Hasegawa M, Funakoshi- Tago M, Aizu- Yokota E, Kasahara T. FAK overexpression upregulates cyclin D3 and enhances cell proliferation via the PKC and PI3- kinase- Akt pathways. Cell Signal. 2003; 15 ( 6 ): 575 - 83.
dc.identifier.citedreferenceInoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002; 4 ( 9 ): 648 - 57.
dc.identifier.citedreferenceManning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex- 2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3- kinase/akt pathway. Mol Cell. 2002; 10 ( 1 ): 151 - 62.
dc.identifier.citedreferenceSkeen JE, Bhaskar PT, Chen CC, et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53- independent and mTORC1- dependent manner. Cancer Cell. 2006; 10 ( 4 ): 269 - 80.
dc.identifier.citedreferencePeng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 2003; 17 ( 11 ): 1352 - 65.
dc.identifier.citedreferenceNawroth R, Stellwagen F, Schulz WA, et al. S6K1 and 4E- BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One. 2011; 6 ( 11 ): e27509.
dc.identifier.citedreferenceBeggs HE, Schahin- Reed D, Zang K, et al. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron. 2003; 40 ( 3 ): 501 - 14.
dc.identifier.citedreferenceSchlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999; 71 ( 3- 4 ): 435 - 78.
dc.identifier.citedreferenceHsiao YH, Huang YT, Hung CY, Kuo TC, Luo FJ, Yuan TC. PYK2 via S6K1 regulates the function of androgen receptors and the growth of prostate cancer cells. Endocr Relat Cancer. 2016; 23 ( 8 ): 651 - 63.
dc.identifier.citedreferenceGuan JL, Shalloway D. Regulation of focal adhesion- associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature. 1992; 358 ( 6388 ): 690 - 2.
dc.identifier.citedreferenceLuo M, Guan JL. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett. 2010; 289 ( 2 ): 127 - 39.
dc.identifier.citedreferenceSchaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010; 123 ( Pt 7 ): 1007 - 13.
dc.identifier.citedreferenceZhao X, Peng X, Sun S, Park AY, Guan JL. Role of kinase- independent and - dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol. 2010; 189 ( 6 ): 955 - 65.
dc.identifier.citedreferenceShen TL, Park AY, Alcaraz A, et al. Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol. 2005; 169 ( 6 ): 941 - 52.
dc.identifier.citedreferenceLim ST, Chen XL, Lim Y, et al. Nuclear FAK promotes cell proliferation and survival through FERM- enhanced p53 degradation. Mol Cell. 2008; 29 ( 1 ): 9 - 22.
dc.identifier.citedreferencePerinpanayagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G. Early cell adhesion events differ between osteoporotic and non- osteoporotic osteoblasts. J Orthop Res. 2001; 19 ( 6 ): 993 - 1000.
dc.identifier.citedreferenceIlic D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK- deficient mice. Nature. 1995; 377 ( 6549 ): 539 - 44.
dc.identifier.citedreferenceKim JB, Leucht P, Luppen CA, et al. Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. Bone. 2007; 41 ( 1 ): 39 - 51.
dc.identifier.citedreferenceSun C, Yuan H, Wang L, et al. FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling. J Bone Miner Res. 2016; 31 ( 12 ): 2227 - 38.
dc.identifier.citedreferenceRajshankar D, Wang Y, McCulloch CA. Osteogenesis requires FAK- dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J. 2017; 31 ( 3 ): 937 - 53.
dc.identifier.citedreferenceLaplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 149 ( 2 ): 274 - 93.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.