Show simple item record

Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events

dc.contributor.authorTsui, Martin Tsz‐ki
dc.contributor.authorUzun, Habibullah
dc.contributor.authorRuecker, Alexander
dc.contributor.authorMajidzadeh, Hamed
dc.contributor.authorUlus, Yener
dc.contributor.authorZhang, Hongyuan
dc.contributor.authorBao, Shaowu
dc.contributor.authorBlum, Joel D.
dc.contributor.authorKaranfil, Tanju
dc.contributor.authorChow, Alex T.
dc.date.accessioned2020-10-01T23:33:07Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:33:07Z
dc.date.issued2020-09
dc.identifier.citationTsui, Martin Tsz‐ki ; Uzun, Habibullah; Ruecker, Alexander; Majidzadeh, Hamed; Ulus, Yener; Zhang, Hongyuan; Bao, Shaowu; Blum, Joel D.; Karanfil, Tanju; Chow, Alex T. (2020). "Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events." Limnology and Oceanography 65(9): 2158-2169.
dc.identifier.issn0024-3590
dc.identifier.issn1939-5590
dc.identifier.urihttps://hdl.handle.net/2027.42/162818
dc.description.abstractTorrential rain and extreme flooding caused by Atlantic hurricanes mobilize a large pool of organic matter (OM) from coastal forested watersheds in the southeastern United- States. However, the mobilization of toxic metals such as mercury (Hg) that are associated with this vast pool of OM are rarely measured. This study aims to assess the variations of total Hg (THg) and methylmercury (MeHg) levels and the isotopic compositions of Hg in a blackwater river (Waccamaw River, SC, U.S.A.) during two recent extreme flooding events induced by Hurricane Joaquin (October 2015) and Hurricane Matthew (October 2016). We show that extreme flooding considerably increased filtered THg and MeHg concentrations associated with aromatic dissolved organic matter. During a 2- month sampling window each year (October- November), we estimate that about 27% (2015) and 78% (2016) of the average amount of Hg deposited atmospherically during these 2 months was exported via the river. The isotopic composition of Hg in the river waters was changed only slightly by the substantial inputs of runoff from surrounding landscapes, in which mass- dependent fractionation (as δ202Hg) decreased from - 1.47 to - 1.67- ° and mass- independent fractionation (as - 199Hg) decreased from - 0.15 to - 0.37- °. The slight variations in Hg isotopic composition during such extreme flooding events imply that sources of Hg in the river are nearly unchanged even under the very high wet deposition of Hg derived from the intensive rainfall. The majority of Hg exported by the river (74- 85%) is estimated to have been derived from dry deposition to the watersheds. An increase in frequency and intensity of Atlantic hurricanes is expected in the next few decades due to further warming of ocean surface waters. We predict that increased hurricanes will mobilize more dry- deposited Hg and in- situ produced MeHg from these coastal watersheds where MeHg can be extensively bioaccumulated and biomagnified in the downstream aquatic food webs.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleConcentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162818/2/lno11445.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162818/1/lno11445_am.pdfen_US
dc.identifier.doi10.1002/lno.11445
dc.identifier.sourceLimnology and Oceanography
dc.identifier.citedreferenceSimpson, M. J., F. Jazaei, and T. P. Clement. 2013. How long does it take for aquifer recharge or aquifer discharge processes to reach steady state? J. Hydrol. 501: 241 - 248. doi: 10.1016/j.jhydrol.2013.08.005
dc.identifier.citedreferenceKongchum, M., I. Devai, R. D. DeLaune, and A. Jugsujinda. 2006. Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain. Chemosphere 63: 1300 - 1303. doi: 10.1016/j.chemosphere.2005.09.024
dc.identifier.citedreferenceLavoie, R. A., T. D. Jardine, M. M. Chumchal, K. A. Kidd, and L. M. Campbell. 2013. Biomagnification of mercury in aquatic food webs: A worldwide meta- analysis. Environ. Sci. Technol. 47: 13385 - 13394. doi: 10.1021/es403103t
dc.identifier.citedreferenceLavoie, R. A., M. Amyot, and J.- F. Lapierre. 2019. Global meta- analysis on the relationship between mercury and dissolved organic carbon in freshwater environments. J. Geophys. Res. Biogeosci. 124: 1508 - 1523. doi: 10.1029/2018JG004896
dc.identifier.citedreferenceMajidzadeh, M., and others. 2017. Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry 136: 293 - 309. doi: 10.1007/s10533-017-0394-x
dc.identifier.citedreferenceMorris, D. P., H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller, and C. Queimalinos. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40: 1381 - 1391. doi: 10.4319/lo.1995.40.8.1381
dc.identifier.citedreferenceObrist, D., and others. 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547: 201 - 204. doi: 10.1038/nature22997
dc.identifier.citedreferencePhillips, J. D., and M. C. Slattery. 2007. Downstream trends in discharge, slope, and stream power in a lower coastal plain river. J. Hydrol. 334: 290 - 303. doi: 10.1016/j.jhydrol.2006.10.018
dc.identifier.citedreferenceRavichandran, M. 2004. Interactions between mercury and dissolved organic matter - a review. Chemosphere 55: 319 - 331. doi: 10.1016/j.chemosphere.2003.11.011
dc.identifier.citedreferenceRisch, M. R., J. F. DeWild, D. P. Krabbenhoft, R. K. Kolka, and L. Zhang. 2012. Litterfall mercury dry deposition in the eastern USA. Environ. Pollut. 161: 284 - 290. doi: 10.1016/j.envpol.2011.06.005
dc.identifier.citedreferenceSchuster, P. F., R. G. Striegl, G. R. Aiken, D. P. Krabbenhoft, J. F. Dewild, K. Butler, B. Kamark, and M. Dornblaser. 2011. Mercury export from the Yukon River basin and potential response to a changing climate. Environ. Sci. Technol. 45: 9262 - 9267. doi: 10.1021/es202068b
dc.identifier.citedreferenceSherman, L. S., J. D. Blum, G. J. Keeler, J. D. Demers, and J. T. Dvonch. 2012. Investigation of local mercury deposition from a coal- fired power plant using mercury isotopes. Environ. Sci. Technol. 46: 382 - 390. doi: 10.1021/es202793c
dc.identifier.citedreferenceSherman, L. S., and J. D. Blum. 2013. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci. Total Environ. 448: 163 - 175. doi: 10.1016/j.scitotenv.2012.09.038
dc.identifier.citedreferenceSmock, L. A., A. B. Wright, and A. C. Benke. 2005. Atlantic coast of rivers of the southeastern United States. In A. C. Benke and C. E. Cushing [eds.], Rivers of North America. Elsevier p. 72 - 122.
dc.identifier.citedreferenceSouth Carolina Department of Health and Environmental Control (SCDHEC). 2018. South Carolina fish consumption advisories Columbia, SC.
dc.identifier.citedreferenceTsui, M. T. K., and J. C. Finlay. 2011. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environ. Sci. Technol. 45: 5981 - 5987. doi: 10.1021/es200332f
dc.identifier.citedreferenceTsui, M. T. K., J. D. Blum, S. Y. Kwon, J. C. Finlay, S. J. Balogh, and Y. H. Nollet. 2013. Photodegradation of methylmercury in stream ecosystems. Limnol. Oceanogr. 58: 13 - 22. doi: 10.4319/lo.2013.58.1.0013
dc.identifier.citedreferenceTsui, M. T. K., E. M. Adams, A. K. Jackson, D. C. Evers, J. D. Blum, and S. J. Balogh. 2018. Understanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions. Environ. Toxicol. Chem. 37: 166 - 174. doi: 10.1002/etc.3941
dc.identifier.citedreferenceTsui, M. T. K., and others. 2019. Controls of methylmercury bioaccumulation in forest floor food webs. Environ. Sci. Technol. 53: 2434 - 2440. doi: 10.1021/acs.est.8b06053
dc.identifier.citedreferenceTsui, M. T. K., J. D. Blum, and S. Y. Kwon. 2020. Review of stable mercury isotopes in ecology and biogeochemistry. Sci. Total Environ. 716: 135386 doi: 10.1016/j.scitotenv.2019.135386
dc.identifier.citedreferenceUSEPA. 2010. Guidance for implementing the January 2001 methylmercury water quality criterion. Office of Water. EPA- 823- R- 10- 001. U.S. Environmental Protection Agency.
dc.identifier.citedreferenceWeishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and M. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37: 4702 - 4708. doi: 10.1021/es030360x
dc.identifier.citedreferenceWoerndle, G. E., M. T. K. Tsui, S. D. Sebestyen, J. D. Blum, X. Nie, and R. K. Kolka. 2018. New insights on ecosystem mercury cycling revealed by Hg isotopic measurements in water flowing from a headwater peatland catchment. Environ. Sci. Technol. 52: 1854 - 1861. doi: 10.1021/acs.est.7b04449
dc.identifier.citedreferenceZheng, W., and H. Hintelmann. 2010. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J. Phys. Chem. A 114: 4238 - 4245. doi: 10.1021/jp910353y
dc.identifier.citedreferenceGhosh, S., E. A. Schauble, G. L. Couloume, J. D. Blum, and B. A. Bergquist. 2013. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid- vapor evaporation experiments. Chem. Geol. 336: 5 - 12. doi: 10.1016/j.chemgeo.2012.01.008
dc.identifier.citedreferenceGuentzel, J. L. 2009. Wetland influences on mercury transport and bioaccumulation in South Carolina. Sci. Total Environ. 407: 1344 - 1353. doi: 10.1016/j.scitotenv.2008.09.030
dc.identifier.citedreferenceBalogh, S. J., E. B. Swain, and Y. H. Nollet. 2008. Characteristics of mercury speciation in Minnesota rivers and streams. Environ. Pollut. 154: 3 - 11. doi: 10.1016/j.envpol.2007.11.014
dc.identifier.citedreferenceBender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held. 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327: 454 - 458. doi: 10.1126/science.1180568
dc.identifier.citedreferenceBergquist, B. A., and J. D. Blum. 2007. Mass- dependent and - independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318: 417 - 420. doi: 10.1126/science.1148050
dc.identifier.citedreferenceBloom, N. S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 49: 1010 - 1017. doi: 10.1139/f92-113
dc.identifier.citedreferenceBlum, J. D., and M. W. Johnson. 2017. Recent developments in mercury stable isotope analysis. Rev. Mineral. Geochem. 82: 733 - 757. doi: 10.2138/rmg.2017.82.17
dc.identifier.citedreferenceBradley, P. M., C. A. Journey, F. H. Chapelle, M. A. Lowery, and P. A. Conrads. 2010. Flood hydrology and methylmercury availability in coastal plain rivers. Environ. Sci. Technol. 44: 9285 - 9290. doi: 10.1021/es102917j
dc.identifier.citedreferenceBravo, A. G., and others. 2018. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe. Water Res. 144: 172 - 182. doi: 10.1016/j.watres.2018.06.064
dc.identifier.citedreferenceBrigham, M. E., D. A. Wentz, G. R. Aiken, and D. P. Krabbenhoft. 2009. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ. Sci. Technol. 43: 2720 - 2725. doi: 10.1021/es802694n
dc.identifier.citedreferenceBrumbaugh, W. G., D. P. Krabbenhoft, D. R. Helsel, J. G. Wiener, and K. R. Echols. 2001. A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: Bioaccumulation in fish. USGS/BRD/BSR- 2001- 0009. U.S. Geological Survey.
dc.identifier.citedreferenceChen, J., H. Hintelmann, X. Feng, and B. Dimock. 2012. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta 90: 33 - 46. doi: 10.1016/j.gca.2012.05.005
dc.identifier.citedreferenceChow, A. T., J. Dai, W. H. Conner, D. R. Hitchcock, and J. J. Wang. 2013. Dissolved organic matter and nutrient dynamics of a coastal freshwater forested wetland in Winyah Bay, South Carolina. Biogeochemistry 112: 571 - 587. doi: 10.1007/s10533-012-9750-z
dc.identifier.citedreferenceDemers, J. D., J. D. Blum, and D. R. Zak. 2013. Mercury isotopes in a forested ecosystem: Implications for air- surface exchange dynamics and the global mercury cycle. Global Biogeochem. Cycles 27: 222 - 238. doi: 10.1002/gbc.20021
dc.identifier.citedreferenceDonovan, P. M., J. D. Blum, D. Yee, G. E. Gehrke, and M. B. Singer. 2013. An isotopic record of mercury in San Francisco Bay sediment. Chem. Geol. 349/350: 87 - 98. doi: 10.1016/j.chemgeo.2013.04.017
dc.identifier.citedreferenceEnrico, M., G. Le Roux, N. Marusczak, L. E. Heimbürger, A. Claustres, X. Fu, R. Sun, and J. E. Sonke. 2016. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ. Sci. Technol. 50: 2405 - 2412. doi: 10.1021/acs.est.5b06058
dc.identifier.citedreferenceFeaster, T. D., J. M. Shelton, and J. C. Robbins. 2015. Preliminary peak stage and streamflow data at selected USGS streamgaging stations for the South Carolina flood of October 2015, p. 19. U.S. Geological Survey Open- file Report 2015- 1201. doi: 10.3133/ofr20151201
dc.identifier.citedreferenceGuentzel, J. L., and Y. Tsukamoto. 2001. Processes influencing mercury speciation and bioconcentration in the North Inlet- Winyah Bay Estuary, South Carolina, USA. Mar. Pollut. Bull. 42: 615 - 619. doi: 10.1016/S0025-326X(01)00090-X
dc.identifier.citedreferenceHall, B. D., G. R. Aiken, D. P. Krabbenhoft, M. Marvin- DiPasquale, and C. M. Swarzenski. 2008. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environ. Pollut. 154: 124 - 134. doi: 10.1016/j.envpol.2007.12.017
dc.identifier.citedreferenceJazaei, F., M. J. Simpson, and T. P. Clement. 2017. Understanding time scales of diffusive fluxes and the implication for steady state and steady shape conditions. Geophys. Res. Lett. 44: 174 - 180. doi: 10.1002/2016GL071914
dc.identifier.citedreferenceJiskra, M., J. G. Wiederhold, U. Skyllberg, R. M. Kronberg, I. Hajdas, and R. Kretzschmar. 2015. Mercury deposition and re- emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 49: 7188 - 7196. doi: 10.1021/acs.est.5b00742
dc.identifier.citedreferenceJiskra, M., J. G. Wiederhold, U. Skyllberg, R.- M. Kronberg, and R. Kretzschmar. 2017. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes. Environ. Sci. Process. Impacts 19: 1235 - 1248. doi: 10.1039/C7EM00245A
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.