Show simple item record

Ultrafast Microfluidic Immunoassays Towards Real-time Intervention of Cytokine Storms

dc.contributor.authorSong, Yujing
dc.date.accessioned2020-10-04T23:32:00Z
dc.date.availableNO_RESTRICTION
dc.date.available2020-10-04T23:32:00Z
dc.date.issued2020
dc.date.submitted2020
dc.identifier.urihttps://hdl.handle.net/2027.42/163129
dc.description.abstractBiomarker-guided precision medicine holds great promise to provide personalized therapy with a good understanding of the molecular or cellular data of an individual patient. However, implementing this approach in critical care uniquely faces enormous challenges as it requires obtaining “real-time” data with high sensitivity, reliability, and multiplex capacity near the patient’s bedside in the quickly evolving illness. Current immunodiagnostic platforms generally compromise assay sensitivity and specificity for speed or face significantly increased complexity and cost for highly multiplexed detection with low sample volume. This thesis introduces two novel ultrafast immunoassay platforms: one is a machine learning-based digital molecular counting assay, and the other is a label-free nano-plasmonic sensor integrated with an electrokinetic mixer. Both of them incorporate microfluidic approaches to pave the way for near-real-time interventions of cytokine storms. In the first part of the thesis, we present an innovative concept and the theoretical study that enables ultrafast measurement of multiple protein biomarkers (<1 min assay incubation) with comparable sensitivity to the gold standard ELISA method. The approach, which we term “pre-equilibrium digital enzyme-linked immunosorbent assay” (PEdELISA) incorporates the single-molecular counting of proteins at the early, pre-equilibrium state to achieve the combination of high speed and sensitivity. We experimentally demonstrated the assay’s application in near-real-time monitoring of patients receiving chimeric antigen receptor (CAR) T-cell therapy and for longitudinal serum cytokine measurements in a mouse sepsis model. In the second part, we report the further development of a machine learning-based PEdELISA microarray data analysis approach with a significantly extended multiplex capacity using the spatial-spectral microfluidic encoding technique. This unique approach, together with a convolutional neural network-based image analysis algorithm, remarkably reduced errors faced by the highly multiplexed digital immunoassay at low analyte concentrations. As a result, we demonstrated the longitudinal data collection of 14 serum cytokines in human patients receiving CAR-T cell therapy at concentrations < 10pg/mL with a sample volume < 10 µL and 5-min assay incubation. In the third part, we demonstrate the clinical application of a machine learning-based digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing module that can be operated inside a biosafety cabinet to minimize the exposure of technician to the virus infection and (ii) a compact fluorescence optical scanner for the potential near-bedside readout. The automated system has achieved high interassay precision (~10% CV) with high sensitivity (<0.4pg/mL). Our data revealed large subject-to-subject variability in patient responses to anti-inflammatory treatment for COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays. Lastly, an AC electroosmosis-enhanced localized surface plasmon resonance (ACE-LSPR) biosensing device was presented for rapid analysis of cytokine IL-1β among sepsis patients. The ACE-LSPR device is constructed using both bottom-up and top-down sensor fabrication methods, allowing the seamless integration of antibody-conjugated gold nanorod (AuNR) biosensor arrays with microelectrodes on the same microfluidic platform. Applying an AC voltage to microelectrodes while scanning the scattering light intensity variation of the AuNR biosensors results in significantly enhanced biosensing performance. The technologies developed have enabled new capabilities with broad application to advance precision medicine of life-threatening acute illnesses in critical care, which potentially will allow the clinical team to make individualized treatment decisions based on a set of time-resolved biomarker signatures.
dc.language.isoen_US
dc.subjectmicrofluidic digital immunoassay
dc.subjectmultiplex biomarker detection
dc.subjectmachine learning
dc.subjectlocalized surface plasmon resonance
dc.subjectcytokine release syndrome or cytokine storm
dc.subjectchimeric antigen receptor T cell therapy
dc.titleUltrafast Microfluidic Immunoassays Towards Real-time Intervention of Cytokine Storms
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberKurabayashi, Katsuo
dc.contributor.committeememberTewari, Muneesh
dc.contributor.committeememberFu, Jianping
dc.contributor.committeememberLi, Yongqing
dc.contributor.committeememberSinger, Benjamin Herschel
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163129/1/yujing_1.pdfen_US
dc.identifier.orcid0000-0003-1448-3069
dc.identifier.name-orcidSong, Yujing; 0000-0003-1448-3069en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.