Show simple item record

Domain-specific Architectures for Data-intensive Applications

dc.contributor.authorAddisie, Abraham Lamesgin
dc.date.accessioned2020-10-04T23:34:23Z
dc.date.availableNO_RESTRICTION
dc.date.available2020-10-04T23:34:23Z
dc.date.issued2020
dc.date.submitted2020
dc.identifier.urihttps://hdl.handle.net/2027.42/163186
dc.description.abstractGraphs' versatile ability to represent diverse relationships, make them effective for a wide range of applications. For instance, search engines use graph-based applications to provide high-quality search results. Medical centers use them to aid in patient diagnosis. Most recently, graphs are also being employed to support the management of viral pandemics. Looking forward, they are showing promise of being critical in unlocking several other opportunities, including combating the spread of fake content in social networks, detecting and preventing fraudulent online transactions in a timely fashion, and in ensuring collision avoidance in autonomous vehicle navigation, to name a few. Unfortunately, all these applications require more computational power than what can be provided by conventional computing systems. The key reason is that graph applications present large working sets that fail to fit in the small on-chip storage of existing computing systems, while at the same time they access data in seemingly unpredictable patterns, thus cannot draw benefit from traditional on-chip storage. In this dissertation, we set out to address the performance limitations of existing computing systems so to enable emerging graph applications like those described above. To achieve this, we identified three key strategies: 1) specializing memory architecture, 2) processing data near its storage, and 3) message coalescing in the network. Based on these strategies, this dissertation develops several solutions: OMEGA, which employs specialized on-chip storage units, with co-located specialized compute engines to accelerate the computation; MessageFusion, which coalesces messages in the interconnect; and Centaur, providing an architecture that optimizes the processing of infrequently-accessed data. Overall, these solutions provide 2x in performance improvements, with negligible hardware overheads, across a wide range of applications. Finally, we demonstrate the applicability of our strategies to other data-intensive domains, by exploring an acceleration solution for MapReduce applications, which achieves a 4x performance speedup, also with negligible area and power overheads.
dc.language.isoen_US
dc.subjectdomain-specific architectures
dc.subjectdata-intensive applications
dc.titleDomain-specific Architectures for Data-intensive Applications
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineComputer Science & Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberBertacco, Valeria M
dc.contributor.committeememberLu, Wei
dc.contributor.committeememberAustin, Todd M
dc.contributor.committeememberDas, Reetuparna
dc.subject.hlbsecondlevelComputer Science
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163186/1/abrahad_1.pdfen_US
dc.identifier.orcid0000-0001-6285-1714
dc.identifier.name-orcidAddisie, Abraham Lamesgin; 0000-0001-6285-1714en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.