Show simple item record

Dispersive Fast Magnetosonic Waves and Shock‐Driven Compressible Turbulence in the Inner Heliosheath

dc.contributor.authorZieger, Bertalan
dc.contributor.authorOpher, Merav
dc.contributor.authorTóth, Gábor
dc.contributor.authorFlorinski, Vladimir
dc.date.accessioned2020-11-04T15:58:10Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T15:58:10Z
dc.date.issued2020-10
dc.identifier.citationZieger, Bertalan; Opher, Merav; Tóth, Gábor ; Florinski, Vladimir (2020). "Dispersive Fast Magnetosonic Waves and Shock‐Driven Compressible Turbulence in the Inner Heliosheath." Journal of Geophysical Research: Space Physics 125(10): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163373
dc.description.abstractThe solar wind in the inner heliosheath beyond the termination shock (TS) is a nonequilibrium collisionless plasma consisting of thermal solar wind ions, suprathermal pickup ions, and electrons. In such multi‐ion plasma, two fast magnetosonic wave modes exist, the low‐frequency fast mode and the high‐frequency fast mode. Both fast modes are dispersive on fluid and ion scales, which results in nonlinear dispersive shock waves. We present high‐resolution three‐fluid simulations of the TS and the inner heliosheath up to a few astronomical units (AU) downstream of the TS. We show that downstream propagating nonlinear fast magnetosonic waves grow until they steepen into shocklets, overturn, and start to propagate backward in the frame of the downstream propagating wave. The counterpropagating nonlinear waves result in 2‐D fast magnetosonic turbulence, which is driven by the ion‐ion hybrid resonance instability. Energy is transferred from small scales to large scales in the inverse cascade range, and enstrophy is transferred from large scales to small scales in the direct cascade range. We validate our three‐fluid simulations with in situ high‐resolution Voyager 2 magnetic field observations in the inner heliosheath. Our simulations reproduce the observed magnetic turbulence spectrum with a spectral slope of −5/3 in frequency domain. However, the fluid‐scale turbulence spectrum is not a Kolmogorov spectrum in wave number domain because Taylor’s hypothesis breaks down in the inner heliosheath. The magnetic structure functions of the simulated and observed turbulence follow the Kolmogorov‐Kraichnan scaling, which implies self‐similarity.Key PointsNonlinear dispersive fast magnetosonic waves produce 2‐D compressible turbulence downstream of the termination shockTaylor’s hypothesis breaks down in the subfast magnetosonic solar wind in the inner heliosheathThe magnetic turbulence spectrum observed by Voyager 2 in the inner heliosheath is reproduced by self‐consistent three‐fluid MHD simulation
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othertermination shock
dc.subject.otherthree‐fluid MHD
dc.subject.otherfast magnetosonic waves
dc.subject.otherinner heliosheath
dc.subject.othercompressible turbulence
dc.subject.otherdispersive shock waves
dc.titleDispersive Fast Magnetosonic Waves and Shock‐Driven Compressible Turbulence in the Inner Heliosheath
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163373/2/jgra56004_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163373/1/jgra56004.pdfen_US
dc.identifier.doi10.1029/2020JA028393
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceTaylor, G. I. ( 1938 ). The spectrum of turbulence. Proceedings of the Royal Society, 164 ( 919 ), 476 – 490. https://doi.org/10.1098/rspa.1938.0032
dc.identifier.citedreferenceFahr, H. J., Chashei, I. V., & Verscharen, D. ( 2014 ). Traveling solar‐wind bulk‐velocity fluctuations and their effects on electron heating in the heliosphere. Astronomy & Astrophysics, 571, A78. https://doi.org/10.1051/0004‐6361/201424421
dc.identifier.citedreferenceFahr, H.‐J., Sylla, A., Fichtner, H., & Scherer, K. ( 2016 ). On the evolution of the κ distribution of protons in the inner heliosheath. Journal of Geophysical Research: Space Physics, 121, 8203 – 8214. https://doi.org/10.1002/2016JA022561
dc.identifier.citedreferenceFraternale, F., Pogorelov, N. V., Richardson, J. D., & Tordella, D. ( 2019 ). Magnetic turbulence spectra and intermittency in the heliosheath and in the local interstellar medium. Astrophysical Journal, 872 ( 1 ), 40. https://doi.org/10.3847/1538‐4357/aafd30
dc.identifier.citedreferenceGlocer, A., Tóth, G., Ma, Y., Gombosi, T., Zhang, J. C., & Kistler, L. M. ( 2009 ). Multifluid block‐adaptive‐tree solar wind roe‐type upwind scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results. Journal of Geophysical Research, 114, A12203. https://doi.org/10.1029/2009JA014418
dc.identifier.citedreferenceHoefer, M. A. ( 2014 ). Shock waves in dispersive Eulerian fluids. Journal of Nonlinear Science, 24 ( 3 ), 525 – 577. https://doi.org/10.1007/s00332‐014‐9199‐4
dc.identifier.citedreferenceIsenberg, P. A. ( 1986 ). Interaction of the solar wind with interstellar neutral hydrogen: Three‐fluid model. Journal of Geophysical Research, 91 ( A9 ), 9965 – 9972. https://doi.org/10.1029/JA091iA09p09965
dc.identifier.citedreferenceKraichnan, R. H. ( 1967 ). Inertial ranges in two‐dimensional turbulence. Physics of Fluids, 10 ( 7 ), 1417 – 1423. https://doi.org/10.1063/1.1762301
dc.identifier.citedreferenceMcComas, D. J., Zirnstein, E. J., Bzowski, M., Elliott, H. A., Randol, B., Schwadron, N. A., Sokół, J. M., Szalay, J. R., Olkin, C., Spencer, J., Stern, A., & Weaver, H. ( 2017 ). Interstellar pickup ion observations to 38 au. Astrophysical Journal Supplement Series, 233 ( 1 ), 8. https://doi.org/10.3847/1538‐4365/aa91d2
dc.identifier.citedreferenceMcKenzie, J. F., Marsch, E., Baumgaertel, K., & Sauer, K. ( 1993 ). Wave and stability properties of multi‐ion plasmas with applications to winds and flows. Annales Geophysicae, 11 ( 5 ), 341 – 353.
dc.identifier.citedreferenceOpher, M., Loeb, A., Drake, J., & Toth, G. ( 2020 ). A small and round heliosphere suggested by magnetohydrodynamic modelling of pick‐up ions. Nature Astronomy, 4, 675 – 683. https://doi.org/10.1038/s41550‐020‐1036‐0
dc.identifier.citedreferenceRandol, B. M., McComas, D. J., & Schwadron, N. A. ( 2013 ). Interstellar Pick‐up Ions Observed between 11 and 22 AU by New Horizons. Astrophysical Journal, 768 ( 2 ), 120. https://doi.org/10.1088/0004‐637X/768/2/120
dc.identifier.citedreferenceRichardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., & Lazarus, A. J. ( 2008 ). Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454 ( 7200 ), 63 – 66. https://doi.org/10.1038/nature07024
dc.identifier.citedreferenceScherer, K., Fahr, H. J., Fichtner, H., Sylla, A., Richardson, J. D., & Lazar, M. ( 2018 ). Uncertainties in the heliosheath ion temperatures. Annales Geophysicae, 36 ( 1 ), 37 – 46. https://doi.org/10.5194/angeo‐36‐37‐2018
dc.identifier.citedreferenceStone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., & Webber, W. R. ( 2005 ). Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309 ( 5743 ), 2017 – 2020. https://doi.org/10.1126/science.1117684
dc.identifier.citedreferenceStone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., & Webber, W. R. ( 2008 ). An asymmetric solar wind termination shock. Nature, 454 ( 7200 ), 71 – 74. https://doi.org/10.1038/nature07022
dc.identifier.citedreferenceToida, M., & Aota, Y. ( 2013 ). Finite beta effects on low‐ and high‐frequency magnetosonic waves in a two‐ion‐species plasma. Physics of Plasmas, 20 ( 8 ), 82,301. https://doi.org/10.1063/1.4817169
dc.identifier.citedreferenceUsmanov, A. V., & Goldstein, M. L. ( 2006 ). A three‐dimensional MHD solar wind model with pickup protons. Journal of Geophysical Research, 111, A07101. https://doi.org/10.1029/2005JA011533
dc.identifier.citedreferenceUsmanov, A. V., Goldstein, M. L., & Matthaeus, W. H. ( 2014 ). Three‐fluid, three‐dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophysical Journal, 788 ( 1 ), 43. https://doi.org/10.1088/0004‐637X/788/1/43
dc.identifier.citedreferenceWhang, Y. C. ( 1998 ). Solar wind in the distant heliosphere. Journal of Geophysical Research, 103 ( A8 ), 17,419 – 17,428. https://doi.org/10.1029/98JA01524
dc.identifier.citedreferenceYang, Z., Liu, Y. D., Richardson, J. D., Lu, Q., Huang, C., & Wang, R. ( 2015 ). Impact of pickup ions on the shock front nonstationarity and energy dissipation of the heliospheric termination shock: Two‐dimensional full particle simulations and comparison with Voyager 2 observations. Astrophysical Journal, 809 ( 1 ), 28. https://doi.org/10.1088/0004‐637X/809/1/28
dc.identifier.citedreferenceZank, G. P., Heerikhuisen, J., Pogorelov, N. V., Burrows, R., & McComas, D. ( 2010 ). Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations. Astrophysical Journal, 708 ( 2 ), 1092 – 1106. https://doi.org/10.1088/0004‐637X/708/2/1092
dc.identifier.citedreferenceZank, G. P., Hunana, P., Mostafavi, P., & Goldstein, M. L. ( 2014 ). Pickup ion mediated plasmas. I. Basic model and linear waves in the solar wind and local interstellar medium. Astrophysical Journal, 797 ( 2 ), 87. https://doi.org/10.1088/0004‐637X/797/2/87
dc.identifier.citedreferenceZieger, B., Opher, M., Schwadron, N. A., McComas, D. J., & Tóth, G. ( 2013 ). A slow bow shock ahead of the heliosphere. Geophysical Research Letters, 40, 2923 – 2928. https://doi.org/10.1002/grl.50576
dc.identifier.citedreferenceZieger, B., Opher, M., Tóth, G., Decker, R. B., & Richardson, J. D. ( 2015 ). Constraining the pickup ion abundance and temperature through the multifluid reconstruction of the Voyager 2 termination shock crossing. Journal of Geophysical Research: Space Physics, 120, 7130 – 7153. https://doi.org/10.1002/2015JA021437
dc.identifier.citedreferenceBalogh, A., & Treumann, R. A. ( 2013 ). Physics of collisionless shocks. New York: Springer. https://doi.org/10.1007/978‐1‐4614‐6099‐2
dc.identifier.citedreferenceBiskamp, D. ( 1973 ). Collisionless shock waves in plasmas. Nuclear Fusion, 13, 719 – 740. https://doi.org/10.1088/0029‐5515/13/5/010
dc.identifier.citedreferenceBurlaga, L. F., & Ness, N. F. ( 2009 ). Compressible “turbulence” observed in the heliosheath by Voyager 2. Astrophysical Journal, 703 ( 1 ), 311 – 324. https://doi.org/10.1088/0004‐637X/703/1/311
dc.identifier.citedreferenceBurlaga, L. F., Ness, N. F., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., & Richardson, J. D. ( 2008 ). Magnetic fields at the solar wind termination shock. Nature, 454 ( 7200 ), 75 – 77. https://doi.org/10.1038/nature07029
dc.identifier.citedreferenceBurlaga, L. F., Ness, N. F., & Acuna, M. H. ( 2007 ). Linear magnetic holes in a unipolar region of the heliosheath observed by Voyager 1. Journal of Geophysical Research, 112, A07106. https://doi.org/10.1029/2007JA012292
dc.identifier.citedreferenceBurlaga, L. F., Ness, N. F., Richardson, J. D., Decker, R. B., & Krimigis, S. M. ( 2016 ). Heliosheath magnetic field and plasma observed by Voyager 2 during 2012 in the rising phase of solar cycle 24. Astrophysical Journal, 818 ( 2 ), 147. https://doi.org/10.3847/0004‐637X/818/2/147
dc.identifier.citedreferenceChalov, S. V., & Fahr, H. J. ( 2013 ). The role of solar wind electrons at the solar wind termination shock. Monthly Notices of the Royal Astronomical Society, 433, L40 – L43. https://doi.org/10.1093/mnrasl/slt052
dc.identifier.citedreferenceChashei, I. V., & Fahr, H. J. ( 2014 ). On solar‐wind electron heating at large solar distances. Solar Physics, 289 ( 4 ), 1359 – 1370. https://doi.org/10.1007/s11207‐013‐0403‐8
dc.identifier.citedreferenceCoroniti, F. V. ( 1970 ). Dissipation discontinuities in hydromagnetic shock waves. Journal of Plasma Physics, 4 ( 2 ), 265 – 282. https://doi.org/10.1017/S0022377800004992
dc.identifier.citedreferenceDubinin, E. M., Sauer, K., & McKenzie, J. F. ( 2006 ). Nonlinear 1‐D stationary flows in multi‐ion plasmas‐sonic and critical loci‐solitary and “oscillatory” waves. Annales Geophysicae, 24 ( 11 ), 3041 – 3057. https://doi.org/10.5194/angeo‐24‐3041‐2006
dc.identifier.citedreferenceEdmiston, J. P., & Kennel, C. F. ( 1984 ). A parametric survey of the first critical Mach number for a fast MHD shock. Journal of Plasma Physics, 32 ( 3 ), 429 – 441. https://doi.org/10.1017/S002237780000218X
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.