Show simple item record

Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue

dc.contributor.authorHarris, Justin T.
dc.contributor.authorMcNeil, Anne J.
dc.date.accessioned2020-11-04T15:58:33Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-11-04T15:58:33Z
dc.date.issued2020-11-01
dc.identifier.citationHarris, Justin T.; McNeil, Anne J. (2020). "Localized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue." Journal of Polymer Science 58(21): 3042-3049.
dc.identifier.issn2642-4150
dc.identifier.issn2642-4169
dc.identifier.urihttps://hdl.handle.net/2027.42/163385
dc.description.abstractAccess to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. Hydrogels have been explored for remediation, but they often require long times to reach high levels of adsorption. To overcome this limitation, we developed a rapid, locally formed hydrogel that adsorbs dye during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and biodegradable resource. More specifically, we found that sulfated cellulose nanofibers or sulfated wood pulps, when mixed with a water‐soluble, cationic cellulose derivative, efficiently remove methylene blue (a cationic dye) within seconds. The maximum adsorption capacity was found to be 340 ± 40 mg methylene blue/g cellulose. As such, these localized hydrogels (and structural analogues) may be useful for remediating other pollutants.Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. In this work, locally formed hydrogels made from mixing anionic and cationic cellulose derivatives are developed, which rapidly adsorb cationic dye during the gel formation process. A maximum adsorption efficiency of 340 ± 40mg methylene blue/g cellulose was observed, rivaling comparable cellulose‐based gels reported. These localized hydrogels (and structural analogues) may be useful for remediating other pollutants.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherchemical modification
dc.subject.otherdye adsorption
dc.subject.otherhydrogel
dc.subject.othercellulose wood pulp
dc.subject.othercellulose nanofiber
dc.titleLocalized hydrogels based on cellulose nanofibers and wood pulp for rapid removal of methylene blue
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163385/2/pola29833.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163385/1/pola29833_am.pdfen_US
dc.identifier.doi10.1002/pol.20200590
dc.identifier.sourceJournal of Polymer Science
dc.identifier.citedreferenceM. Costalat, P. Alcouffe, L. David, T. Delair, Carbohydr. Polym. 2015, 134, 541.
dc.identifier.citedreferenceWe were able to obtain faster‐forming hydrogels (350 s) with higher concentrations of both S‐CNCs and QHECE (2.0% w/v each). With further optimization, hydrogels could be formed in 75 s with as little as 1.0% (w/v) S‐CNCs and 0.5% (w/v) QHECE (Supporting Information Video #1 and Figure S1 ).
dc.identifier.citedreferenceK. J. De France, T. Hoare, E. D. Cranston, Chem. Mater. 2017, 29, 4609.
dc.identifier.citedreferenceM. S. Reid, M. Villalobos, E. D. Cranston, Langmuir 2017, 33, 1583.
dc.identifier.citedreferenceD. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 2011, 50, 5438.
dc.identifier.citedreferenceD. Klemm, E. D. Cranston, D. Fischer, M. Gama, S. A. Kedzior, D. Kralisch, F. Kramer, T. Kondo, T. Lindström, S. Nietzsche, K. Petzold‐Welcke, F. Rauchfuß, Mater. Today 2018, 21, 720.
dc.identifier.citedreferenceF. H. A. Rodrigues, C. Spagnol, A. G. B. Pereira, A. F. Martins, A. R. Fajardo, A. F. Rubira, E. C. Muniz, J. Appl. Polym. Sci. 2014, 131, 1.
dc.identifier.citedreferenceS. Sousa, A. P. Costa, R. Simões, Composites, Part A 2019, 121, 273.
dc.identifier.citedreferenceJ. Luo, N. Semenikhin, H. Chang, R. J. Moon, S. Kumar, Carbohydr. Polym. 2018, 181, 247.
dc.identifier.citedreferenceS. Katz, R. P. Beatson, A. M. Scallan, Sven. Papperstidn. 1984, 87, R48.
dc.identifier.citedreferenceS. Pan, A. J. Ragauskas, Carbohydr. Polym. 2014, 111, 514.
dc.identifier.citedreferenceY. Wang, X. Wang, Y. Xie, K. Zhang, Cellulose 2018, 25, 3703.
dc.identifier.citedreferenceL. Zhu, J. Qin, X. Yin, L. Ji, Q. Lin, Z. Qin, Polym. Adv. Technol. 2014, 25, 168.
dc.identifier.citedreferenceS. Eyley, W. Thielemans, Nanoscale 2014, 6, 7764.
dc.identifier.citedreferenceD. Wang, H. Yu, X. Fan, J. Gu, S. Ye, J. Yao, Q. Ni, ACS Appl. Mater. Interfaces 2018, 10, 20755.
dc.identifier.citedreferenceJ. Fu, J. B. Schlenoff, J. Am. Chem. Soc. 2016, 138, 980.
dc.identifier.citedreferenceY. Zhou, S. Fu, L. Zhang, H. Zhan, Carbohydr. Polym. 2013, 97, 429.
dc.identifier.citedreferenceF. Jiang, D. M. Dinh, Y. Lo Hsieh, Carbohydr. Polym. 2017, 173, 286.
dc.identifier.citedreferenceH. Deng, J. Lu, G. Li, G. Zhang, X. Wang, Chem. Eng. J. 2011, 172, 326.
dc.identifier.citedreferenceRheological studies performed on these flocs were consistent with a weak, physical gel; however, this result may be an artifact due to the compression of the flocs during sample preparation (Supporting Information, pp. S32 – S37 ).
dc.identifier.citedreferenceH. Wang, C. Qian, M. Roman, Biomacromolecules 2011, 12, 3708.
dc.identifier.citedreferenceA. R. Disanto, J. G. Wagner, J. Pharm. Sci. 1972, 61, 1086.
dc.identifier.citedreferenceN. S. Maurya, A. K. Mittal, P. Cornel, E. Rother, Bioresour. Technol. 2006, 97, 512.
dc.identifier.citedreferenceJ. Hua, R. Meng, T. Wang, H. Gao, Z. Luo, Y. Jin, L. Liu, J. Yao, Fibers Polym. 2019, 20, 794.
dc.identifier.citedreferenceL. Xiao, C. Ching, Y. Ling, M. Nasiri, M. J. Klemes, T. M. Reineke, D. E. Helbling, W. R. Dichtel, Macromolecules 2019, 52, 3747.
dc.identifier.citedreferenceA. Boretti, L. Rosa, npj Clean Water 2019, 2. https://www.nature.com/articles/s41545-019-0039-9
dc.identifier.citedreferenceU.S.E.P.A., https://ofmpub.epa.gov/waters10/attains_nation_cy.control (accessed: April 24, 2020).
dc.identifier.citedreferenceK. A. Wani, N. K. Jangid, A. R. Bhat Eds., Impact of Textile Dyes on Public Health and the Environment, IGI Global, Pennsylvania 2020.
dc.identifier.citedreferenceS. Khan, A. Malik, in Environmental Deterioration and Human Health (Eds: A. Malik, E. Grohmann, R. Akhtar ), Springer, Dordrecht 2014, p. 55.
dc.identifier.citedreferenceM. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, A. Idris, Desalination 2011, 280, 1.
dc.identifier.citedreferenceN. B. Singh, G. Nagpal, S. Agrawal, Rachna, Environ. Technol. Innov. 2018, 11, 187.
dc.identifier.citedreferenceM. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Adv. Colloid Interface Sci. 2014, 209, 172.
dc.identifier.citedreferenceS. J. T. Pollard, G. D. Fowler, C. J. Sollars, R. Perry, Sci. Total Environ. 1992, 116, 31.
dc.identifier.citedreferenceA. H. Shalla, M. A. Bhat, Z. J. Yaseen, Environ. Chem. Eng. 2018, 6, 5938.
dc.identifier.citedreferenceV. Van Tran, D. Park, Y. C. Lee, Environ. Sci. Pollut. Res. 2018, 25, 24569.
dc.identifier.citedreferenceH. Wang, X. Ji, M. Ahmed, F. Huang, J. L. Sessler, J. Mater. Chem. A 2019, 7, 1394.
dc.identifier.citedreferenceM. S. de Luna, R. Altobelli, L. Gioiella, R. Castaldo, G. Scherillo, G. Filippone, J. Polym, Sci., Part B: Polym. Phys. 2017, 55, 1843.
dc.identifier.citedreferenceC. Chang, L. Zhang, Carbohydr. Polym. 2011, 84, 40.
dc.identifier.citedreferenceS. Hokkanen, A. Bhatnagar, M. Sillanpää, Water Res. 2016, 91, 156.
dc.identifier.citedreferenceH. Kang, R. Liu, Y. Huang, Macromol. Chem. Phys. 2016, 217, 1322.
dc.identifier.citedreferenceN. Mohammed, N. Grishkewich, K. C. Tam, Environ. Sci. Nano 2018, 5, 623.
dc.identifier.citedreferenceA. G. Varghese, S. A. Paul, M. S. Latha, Environ. Chem. Lett. 2019, 17, 867.
dc.identifier.citedreferenceN. Mohammed, N. Grishkewich, R. M. Berry, K. C. Tam, Cellulose 2015, 22, 3725.
dc.identifier.citedreferenceE. M. Wilts, J. Herzberger, T. E. Long, Polym. Int. 2018, 67, 799.
dc.identifier.citedreferenceJ. Berger, M. Reist, J. M. Mayer, O. Felt, R. Gurny, Eur. J. Pharm. Biopharm. 2004, 57, 35.
dc.identifier.citedreferenceS. D. Hujaya, G. S. Lorite, S. J. Vainio, H. Liimatainen, Acta Biomater. 2018, 75, 346.
dc.identifier.citedreferenceV. S. Meka, M. K. G. Sing, M. R. Pichika, S. R. Nali, V. R. M. Kolapalli, P. Kesharwani, Drug Discovery Today 2017, 22, 1697.
dc.identifier.citedreferenceT. Ingverud, E. Larsson, G. Hemmer, R. Rojas, M. Malkoch, A. Carlmark, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3415.
dc.identifier.citedreferenceH. Cui, Y. Yu, X. Li, Z. Sun, J. Ruan, Z. Wu, J. Qian, J. Yin, J. Mater. Chem. B 2019, 7, 7207.
dc.identifier.citedreferenceW. L. Ng, W. Y. Yeong, M. W. Naing, Int. J. Bioprint. 2016, 2, 53.
dc.identifier.citedreferenceY. Tang, C. L. Heaysman, S. Willis, A. L. Lewis, Expert Opin. Drug Deliv. 2011, 8, 1141.
dc.identifier.citedreferenceA. Lu, Y. Song, Y. Boluk, Carbohydr. Polym. 2014, 114, 57.
dc.identifier.citedreferenceA. Lu, Y. Wang, Y. Boluk, Carbohydr. Polym. 2014, 105, 214.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.