Show simple item record

Myocardial T1 and T2 quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T

dc.contributor.authorLiu, Yuchi
dc.contributor.authorHamilton, Jesse
dc.contributor.authorEck, Brendan
dc.contributor.authorGriswold, Mark
dc.contributor.authorSeiberlich, Nicole
dc.date.accessioned2020-11-04T15:58:34Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2020-11-04T15:58:34Z
dc.date.issued2021-01
dc.identifier.citationLiu, Yuchi; Hamilton, Jesse; Eck, Brendan; Griswold, Mark; Seiberlich, Nicole (2021). "Myocardial T1 and T2 quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T." Magnetic Resonance in Medicine 85(1): 103-119.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/163386
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwater–fat separation
dc.subject.otherT2 mapping
dc.subject.othercardiac MR fingerprinting
dc.subject.otherfat imaging
dc.subject.otherrosette trajectory
dc.subject.otherT1 mapping
dc.titleMyocardial T1 and T2 quantification and water–fat separation using cardiac MR fingerprinting with rosette trajectories at 3T and 1.5T
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163386/2/mrm28404_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163386/1/mrm28404.pdfen_US
dc.identifier.doi10.1002/mrm.28404
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceMandava S, Keerthivasan MB, Martin DR, Altbach MI, Bilgin A. Radial streak artifact reduction using phased array beamforming. Magn Reson Med. 2019; 81: 3915 ‐ 3923.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Ma D, et al. A comparison of 5‐heartbeat vs. 15‐heartbeat cardiac MR fingerprinting sequences in normal volunteers. Presented at the ISMRM Workshop on Magnetic Resonance Fingerprinting (MRF), Cleveland, OH, 2017.
dc.identifier.citedreferenceFessler JA, Sutton BP. Nonuniform fast Fourier transforms using min‐max interpolation. IEEE Trans Signal Process. 2003; 51: 560 ‐ 574.
dc.identifier.citedreferenceWalsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med. 2000; 43: 682 ‐ 690.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Ma D, et al. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018; 53: 40 ‐ 51.
dc.identifier.citedreferenceJordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol. 2013; 82: 734 ‐ 739.
dc.identifier.citedreferenceRakow‐Penner R, Daniel B, Yu H, Sawyer‐Glover A, Glover GH. Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging. 2006; 23: 87 ‐ 91.
dc.identifier.citedreferenceMcGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014; 33: 2311 ‐ 2322.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Ma D, et al. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction. NMR Biomed. 2018; 32: e4041.
dc.identifier.citedreferenceIrarrazabal P, Meyer CH, Nishimura DG, Macovski A. Inhomogeneity correction using an estimated linear field map. Magn Reson Med. 1996; 35: 278 ‐ 282.
dc.identifier.citedreferenceKeenan K, Stupic K, Russek S, et al. Multi‐site, multi‐vendor comparison of T1 measurement using ISMRM/NIST system phantom. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 2016. p. 3290.
dc.identifier.citedreferenceRussek S, Boss M, Jackson E, et al. Characterization of NIST/ISMRM MRI system phantom. In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012. p. 2456.
dc.identifier.citedreferenceJaubert O, Cruz G, Bustin A, Schneider T, Botnar RM, Prieto C. Toward 3D free‐breathing cardiac magnetic resonance fingerprinting. In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2019. p. 4385.
dc.identifier.citedreferenceHamilton JI, Griswold M, Seiberlich N. Combined cardiac CINE and T1, T2, and M0 mapping with MR fingerprinting. In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2019. p. 405.
dc.identifier.citedreferenceJaubert O, Cruz G, Bustin A, et al. Cardiac motion resolved Magnetic resonance fingerprinting with joint reconstruction: jMORE‐MRF. In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2019. p. 808.
dc.identifier.citedreferencePierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med. 2016; 75: 2481 ‐ 2492.
dc.identifier.citedreferenceZhao B, Setsompop K, Adalsteinsson E, et al. Improved magnetic resonance fingerprinting reconstruction with low‐rank and subspace modeling. Magn Reson Med. 2018; 79: 933 ‐ 942.
dc.identifier.citedreferenceAssländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med. 2018; 79: 83 ‐ 96.
dc.identifier.citedreferenceLima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med. 2019; 81: 3530 ‐ 3543.
dc.identifier.citedreferenceLarmour S, Chow K, Kellman P, Thompson RB. Characterization of T1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: quantitative fat‐fraction imaging with T1 mapping. Magn Reson Med. 2017; 77: 237 ‐ 249.
dc.identifier.citedreferenceEck B, Liu Y, Seiberlich N, Hamilton J. Influence of scan window duration on parameter maps from cardiac magnetic resonance fingerprinting. In Proceedings of the Society for Cardiovascular Magnetic Resonance (SCMR) 22nd Annual Scientific Sessions Meeting, Bellevue, Washington, 2019. p. 325.
dc.identifier.citedreferenceHamilton JI, Pahwa S, Adedigba J, et al. Simultaneous mapping of T1 and T2 using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T. J Magn Reson Imaging. 2020: e27187. https://doi.org/10.1002/jmri.27155
dc.identifier.citedreferenceHines CDG, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat‐water‐SPIO phantom. J Magn Reson Imaging. 2009; 30: 1215 ‐ 1222.
dc.identifier.citedreferenceHernando D, Liang ZP, Kellman P. Chemical shift‐based water/fat separation: a comparison of signal models. Magn Reson Med. 2010; 64: 811 ‐ 822.
dc.identifier.citedreferenceBley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010; 31: 4 ‐ 18.
dc.identifier.citedreferenceMeyer CH, Pauly JM, Macovskiand A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med. 1990; 15: 287 ‐ 304.
dc.identifier.citedreferenceDixon TW. Simple proton spectroscopic imaging. Radiology. 1984; 153: 189 ‐ 194.
dc.identifier.citedreferenceReeder SB, Markl M, Yu H, Hellinger JC, Herfkens RJ, Pelc NJ. Cardiac CINE imaging with IDEAL water‐fat separation and steady‐state free precession. J Magn Reson Imaging. 2005; 22: 44 ‐ 52.
dc.identifier.citedreferenceHernando D, Kellman P, Haldar JP, Liang ZP. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010; 63: 79 ‐ 90.
dc.identifier.citedreferenceKellman P, Hernando D, Shah S, et al. Multiecho Dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med. 2008; 61: 215 ‐ 221.
dc.identifier.citedreferenceHernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z‐P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008; 59: 571 ‐ 580.
dc.identifier.citedreferenceFarrelly C, Shah S, Davarpanah A, Keeling AN, Carr JC. ECG‐gated multiecho Dixon fat‐water separation in cardiac MRI: advantages over conventional fat‐saturated imaging. Am J Roentgenol. 2012; 199: W74 ‐ W83.
dc.identifier.citedreferenceNoll DC. Multishot rosette trajectories for spectrally selective MR imaging. IEEE Trans Med Imaging. 1997; 16: 372 ‐ 377.
dc.identifier.citedreferenceHu HH, Börnert P, Hernando D, et al. ISMRM workshop on fat‐water separation: insights, applications and progress in MRI. Magn Reson Med. 2012; 68: 378 ‐ 388.
dc.identifier.citedreferenceManning WJ, Li W, Boyle NG, Edelman RR. Fat‐suppressed breath‐hold magnetic resonance coronary angiography. Circulation. 1993; 87: 94 ‐ 104.
dc.identifier.citedreferenceBohnen S Radunski UK, Lund GK, et al. Performance of T1 and T2 mapping cardiovascular magnetic resonance to detect active myocarditis in patients with recent‐onset heart failure. Circ Cardiovasc Imaging. 2015; 8: e003073. https://doi.org/10.1161/CIRCIMAGING.114.003073
dc.identifier.citedreferencePuntmann VO, Nagel E. T1 and T2 mapping in nonischemic cardiomyopathies and agreement with endomyocardial biopsy. J Am Coll Cardiol. 2016; 68: 1923 ‐ 1924.
dc.identifier.citedreferenceTaylor AJ, Salerno M, Dharmakumar R, Jerosch‐Herold M. T1 mapping basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016; 9: 67 ‐ 81.
dc.identifier.citedreferencePatel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017; 10: 1180 ‐ 1193.
dc.identifier.citedreferenceBurt JR, Zimmerman SL, Kamel IR, Halushka M, Bluemke DA. Myocardial T1 mapping: techniques and potential applications. Radiographics. 2014; 34: 377 ‐ 395.
dc.identifier.citedreferenceHamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE. Mapping the future of cardiac MR imaging: case‐based review of T1 and T2 mapping techniques. Radiographics. 2014; 34: 1594 ‐ 1611.
dc.identifier.citedreferenceVerhaert D, Thavendiranathan P, Giri S, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011; 4: 269 ‐ 278.
dc.identifier.citedreferenceGiri S, Chung Y‐C, Merchant A, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009; 11: 56.
dc.identifier.citedreferencePark CH, Choi E‐Y, Kwon HM, et al. Quantitative T2 mapping for detecting myocardial edema after reperfusion of myocardial infarction: Validation and comparison with T2‐weighted images. Int J Cardiovasc Imaging. 2013; 29: 65 ‐ 72.
dc.identifier.citedreferenceCrouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014; 189: 109 ‐ 112.
dc.identifier.citedreferenceButler CR, Thompson R, Haykowsky M, Toma M, Paterson I. Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review. J Cardiovasc Magn Reson. 2009; 11: 7.
dc.identifier.citedreferenceButler CR, Savu AM, Bakal JA, et al. Correlation of cardiovascular magnetic resonance imaging findings and endomyocardial biopsy results in patients undergoing screening for heart transplant rejection. J Hear Lung Transplant. 2015; 34: 643 ‐ 650.
dc.identifier.citedreferenceBlume U, Lockie T, Stehning C, et al. Interleaved T1 and T2 relaxation time mapping for cardiac applications. J Magn Reson Imaging. 2009; 29: 480 ‐ 487.
dc.identifier.citedreferenceAkçakaya M, Weingärtner S, Basha TA, Roujol S, Bellm S, Nezafat R. Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2‐preparation. Magn Reson Med. 2016; 76: 888 ‐ 896.
dc.identifier.citedreferenceKvernby S, Warntjes MJB, Haraldsson H, Carlhäll CJ, Engvall J, Ebbers T. Simultaneous three‐dimensional myocardial T1 and T2 mapping in one breath hold with 3D‐QALAS. J Cardiovasc Magn Reson. 2014; 16: 102.
dc.identifier.citedreferenceSantini F, Kawel‐Boehm N, Greiser A, Bremerich J, Bieri O. Simultaneous T1 and T2 quantification of the myocardium using cardiac balanced‐SSFP inversion recovery with interleaved sampling acquisition (CABIRIA). Magn Reson Med. 2015; 74: 365 ‐ 371.
dc.identifier.citedreferenceNezafat M, Nakamori S, Basha TA, Fahmy AS, Hauser T, Botnar RM. Imaging sequence for joint myocardial T1 mapping and fat/water separation. Magn Reson Med. 2018; 81: 486 ‐ 494.
dc.identifier.citedreferenceMilotta G, Ginami G, Bustin A, Neji R, Prieto C, Botnar R. 3D whole‐heart high‐resolution motion compensated joint T1/T2 mapping. In Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Québec, Canada, 2019. p. 2003.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495: 187 ‐ 192.
dc.identifier.citedreferenceJiang Y, Ma D, Seiberlich N, Gulani V, Griswold M. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015; 74: 1621 ‐ 1631.
dc.identifier.citedreferenceHamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 2017; 77: 1446 ‐ 1458.
dc.identifier.citedreferenceCencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Buonincontri G. Magnetic resonance fingerprinting with dictionary—based fat and water separation (DBFW MRF): a multi—component approach. Magn Reson Med. 2019; 81: 3032 ‐ 3045.
dc.identifier.citedreferenceKoolstra K, Webb A, Koken P, Nehrke K, Börnert P. Water‐fat separation in spiral magnetic resonance fingerprinting using conjugate phase reconstruction. In Proceedings of the 26th Annual Meeting of ISMRM, Paris, France, 2018. p. 681.
dc.identifier.citedreferenceJaubert O, Cruz G, Bustin A, et al. Water–fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med. 2020; 83: 2107 ‐ 2123.
dc.identifier.citedreferenceOstenson J, Damon BM, Welch EB. MR fingerprinting with simultaneous T1, T2, and fat signal fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magn Reson Imaging. 2019; 60: 7 ‐ 19.
dc.identifier.citedreferenceMarty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med. 2020; 83: 621 ‐ 634.
dc.identifier.citedreferenceNolte T, Gross‐Weege N, Doneva M, et al. Spiral blurring correction with water–fat separation for magnetic resonance fingerprinting in the breast. Magn Reson Med. 2020; 83: 1192 ‐ 1207.
dc.identifier.citedreferenceLiu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac magnetic resonance fingerprinting: technical overview and initial results. JACC Cardiovasc Imaging. 2018; 11: 1837 ‐ 1853.
dc.identifier.citedreferenceSchirda CV, Tanase C, Boada FE. Rosette spectroscopic imaging: optimal parameters for alias‐free, high sensitivity spectroscopic imaging. J Magn Reson Imaging. 2009; 29: 1375 ‐ 1385.
dc.identifier.citedreferenceBucholz EK, Song J, Johnson GA, Hancu I. Multispectral imaging with three‐dimensional rosette trajectories. Magn Reson Med. 2008; 59: 581 ‐ 589.
dc.identifier.citedreferencePeltier SJ, Noll DC. Systematic noise compensation for simultaneous multislice acquisition using rosette trajectories (SMART). Magn Reson Med. 1999; 41: 1073 ‐ 1076.
dc.identifier.citedreferenceNoll DC, Peltier SJ, Boada FE. Simultaneous multislice acquisition using rosette trajectories (SMART): a new imaging method for functional MRI. Magn Reson Med. 1998; 39: 709 ‐ 716.
dc.identifier.citedreferenceTwieg DB. Parsing local signal evolution directly from a single‐shot MRI signal: a new approach for fMRI. Magn Reson Med. 2003; 50: 1043 ‐ 1052.
dc.identifier.citedreferenceHu C, Reeves S, Peters DC, Twieg D. An efficient reconstruction algorithm based on the alternating direction method of multipliers for joint estimation of R2∗ and off‐resonance in fMRI. IEEE Trans Med Imaging. 2017; 36: 1326 ‐ 1336.
dc.identifier.citedreferenceLee S, Noll D, Fessler JA. EXTended Rosette ACquisition Technique (EXTRACT): a dynamic R2* mapping method using extended rosette trajectory. In Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004. p. 2128.
dc.identifier.citedreferenceSchirda CV, Zhao T, Andronesi OC, et al. In vivo brain rosette spectroscopic imaging (RSI) with LASER excitation, constant gradient strength readout, and automated LCModel quantification for all voxels. Magn Reson Med. 2016; 76: 380 ‐ 390.
dc.identifier.citedreferenceLi Y, Yang R, Zhang C, Zhang J, Jia S, Zhou Z. Analysis of generalized rosette trajectory for compressed sensing MRI. Am Assoc Phys Med. 2015; 42: 5530 ‐ 5544.
dc.identifier.citedreferenceLustig M, Kim SJ, Pauly JM. A fast method for designing time‐optimal gradient waveforms for arbitrary k‐space trajectories. IEEE Trans Med Imaging. 2008; 27: 866 ‐ 873.
dc.identifier.citedreferenceVaziri S, Lustig M. The fastest arbitrary k‐space trajectories. In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012. p. 2284.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.