Show simple item record

Magnetohydrodynamic With Embedded Particle‐In‐Cell Simulation of the Geospace Environment Modeling Dayside Kinetic Processes Challenge Event

dc.contributor.authorChen, Yuxi
dc.contributor.authorTóth, Gábor
dc.contributor.authorHietala, Heli
dc.contributor.authorVines, Sarah K.
dc.contributor.authorZou, Ying
dc.contributor.authorNishimura, Yukitoshi
dc.contributor.authorSilveira, Marcos V. D.
dc.contributor.authorGuo, Zhifang
dc.contributor.authorLin, Yu
dc.contributor.authorMarkidis, Stefano
dc.date.accessioned2020-11-04T15:59:22Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-11-04T15:59:22Z
dc.date.issued2020-11
dc.identifier.citationChen, Yuxi; Tóth, Gábor ; Hietala, Heli; Vines, Sarah K.; Zou, Ying; Nishimura, Yukitoshi; Silveira, Marcos V. D.; Guo, Zhifang; Lin, Yu; Markidis, Stefano (2020). "Magnetohydrodynamic With Embedded Particle‐In‐Cell Simulation of the Geospace Environment Modeling Dayside Kinetic Processes Challenge Event." Earth and Space Science 7(11): n/a-n/a.
dc.identifier.issn2333-5084
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/2027.42/163411
dc.description.abstractWe use the magnetohydrodynamic (MHD) with embedded particle‐in‐cell model (MHD‐EPIC) to study the Geospace Environment Modeling (GEM) dayside kinetic processes challenge event at 01:50–03:00 UT on 18 November 2015, when the magnetosphere was driven by a steady southward interplanetary magnetic field (IMF). In the MHD‐EPIC simulation, the dayside magnetopause is covered by a PIC code so that the dayside reconnection is properly handled. We compare the magnetic fields and the plasma profiles of the magnetopause crossing with the MMS3 spacecraft observations. Most variables match the observations well in the magnetosphere, in the magnetosheath, and also during the current sheet crossing. The MHD‐EPIC simulation produces flux ropes, and we demonstrate that some magnetic field and plasma features observed by the MMS3 spacecraft can be reproduced by a flux rope crossing event. We use an algorithm to automatically identify the reconnection sites from the simulation results. It turns out that there are usually multiple X‐lines at the magnetopause. By tracing the locations of the X‐lines, we find that the typical moving speed of the X‐line endpoints is about 70 km/s, which is higher than but still comparable with the ground‐based observations.Key PointsThe MHD‐EPIC simulation magnetic fields and plasma data match MMS3 observations well during the magnetopause crossingThere are usually multiple X‐lines at the magnetopause in the MHD‐EPIC simulationThe MHD‐EPIC simulation shows complex movement and spreading of the X‐lines
dc.publisherWiley Periodicals, Inc.
dc.titleMagnetohydrodynamic With Embedded Particle‐In‐Cell Simulation of the Geospace Environment Modeling Dayside Kinetic Processes Challenge Event
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelSpace Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163411/2/ess2655_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163411/1/ess2655.pdfen_US
dc.identifier.doi10.1029/2020EA001331
dc.identifier.sourceEarth and Space Science
dc.identifier.citedreferenceRaeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annales Geophysicae, 24, 381 – 392.
dc.identifier.citedreferenceKitamura, N., Hasegawa, H., Saito, Y., Shinohara, I., Yokota, S., Nagai, T., Pollock, C. J., Giles, B. L., Moore, T. E., Dorelli, J. C., Gershman, D. J., Avanov, L. A., Paterson, W. R., Coffey, V. N., Chandler, M. O., Sauvaud, J. A., Lavraud, B., Torbert, R. B., Russell, C. T., Strangeway, R. J., & Burch, J. L. ( 2016 ). Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations. Geophysical Research Letters, 43, 5581 – 5588. https://doi.org/10.1002/2016GL069095
dc.identifier.citedreferenceKomar, C. M., Fermo, R. L., & Cassak, P. A. ( 2015 ). Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations. Journal of Geophysical Research: Space Physics, 120, 276 – 294. https://doi.org/10.1002/2014JA020587
dc.identifier.citedreferenceLapenta, G., Brackbill, J. U., & Ricci, P. ( 2006 ). Kinetic approach to microscopic‐macroscopic coupling in space and laboratory plasmas. Physics of Plasmas, 13, 055904.
dc.identifier.citedreferenceLe, A., Daughton, W., Chen, L.‐J., & Egedal, J. ( 2017 ). Enhanced electron mixing and heating in 3‐D asymmetric reconnection at the Earth’s magnetopause. Geophysical Research Letters, 44, 2096 – 2104. https://doi.org/10.1002/2017GL072522
dc.identifier.citedreferenceLu, S., Angelopoulos, V., Artemyev, A. V., Pritchett, P. L., Liu, J., Runov, A., Tenerani, A., Shi, C., & Velli, M. ( 2019 ). Turbulence and particle acceleration in collisionless magnetic reconnection: Effects of temperature inhomogeneity across pre‐reconnection current sheet. The Astrophysical Journal, 878 ( 2 ), 109. https://doi.org/10.3847/1538‐4357/ab1f6b
dc.identifier.citedreferenceMalakit, K., Shay, M. A., Cassak, P. A., & Ruffolo, D. ( 2013 ). New electric field in asymmetric magnetic reconnection. Physical Review Letters, 111 ( 13 ), 135,001.
dc.identifier.citedreferenceMarkidis, S., Lapenta, G., & Rizwan‐Uddin ( 2010 ). Multi‐scale simulations of plasma with iPIC3D. Mathematics and Computers in Simulation, 80, 1509 – 1519. https://doi.org/10.1016/j.matcom.2009.08.038
dc.identifier.citedreferenceMoore, T. E., Fok, M.‐C., & Chandler, M. O. ( 2002 ). The dayside reconnection X line. Journal of Geophysical Research, 107 ( A10 ), 1332. https://doi.org/10.1029/2002JA009381
dc.identifier.citedreferenceMozer, F. S., Pritchett, P. L., Bonnell, J., Sundkvist, D., & Chang, M. T. ( 2008 ). Observations and simulations of asymmetric magnetic field reconnection. Journal of Geophysical Research, 113, A00C03. https://doi.org/10.1029/2008JA013535
dc.identifier.citedreferenceNakamura, T. K. M., Nakamura, R., Alexandrova, A., Kubota, Y., & Nagai, T. ( 2012 ). Hall magnetohydrodynamic effects for three‐dimensional magnetic reconnection with finite width along the direction of the current. Journal of Geophysical Research, 117, A03220. https://doi.org/10.1029/2011JA017006
dc.identifier.citedreferenceNishimura, Y., Wang, B., Zou, Y., Donovan, E. F., Angelopoulos, V., Moen, J. I., Clausen, L. B., & Nagatsuma, T. ( 2020 ). Transient solar wind‐magnetosphere‐ ionosphere interaction associated with foreshock and magnetosheath transients and localized magnetopause reconnection. AGU Monograph on Dayside Magnetosphere Interactions.
dc.identifier.citedreferencePhan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. O., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., & Magnes, W. ( 2018 ). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature, 557 ( 7704 ), 202 – 206. https://doi.org/10.1038/s41586‐018‐0091‐5
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284 – 309.
dc.identifier.citedreferencePrice, L., Swisdak, M., Drake, J. F., Cassak, P. A., Dahlin, J. T., & Ergun, R. E. ( 2016 ). The effects of turbulence on three‐dimensional magnetic reconnection at the magnetopause. Geophysical Research Letters, 43, 6020 – 6027. https://doi.org/10.1002/2016GL069578
dc.identifier.citedreferenceShay, M. A., Drake, J. F., Swisdak, M., Dorland, W., & Rogers, B. N. ( 2003 ). Inherently three dimensional magnetic reconnection: A mechanism for bursty bulk flows? Geophysical Research Letters, 30 ( 6 ), 1345. https://doi.org/10.1029/2002GL016267
dc.identifier.citedreferenceShay, M. A., Phan, T. D., Haggerty, C. C., Fujimoto, M., Drake, J. F., Malakit, K., Cassak, P. A., & Swisdak, M. ( 2016 ). Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection. Geophysical Research Letters, 43, 4145 – 4154. https://doi.org/10.1002/2016GL069034
dc.identifier.citedreferenceShepherd, L. S., & Cassak, P. A. ( 2012 ). Guide field dependence of 3D X‐line spreading during collisionless magnetic reconnection. Journal of Geophysical Research, 117, A10101. https://doi.org/10.1029/2012JA017867
dc.identifier.citedreferenceSibeck, D. G., Kuznetsova, M., Angelopoulos, V., Glaßmeier, K.‐H., & McFadden, J. P. ( 2008 ). Crater FTEs: Simulation results and THEMIS observations. Geophysical Research Letters, 35, L17S06. https://doi.org/10.1029/2008GL033568
dc.identifier.citedreferenceTan, B., Lin, Y., Perez, J. D., & Wang, X. Y. ( 2011 ). Global‐scale hybrid simulation of dayside magnetic reconnection under southward IMF: Structure and evolution of reconnection. Journal of Geophysical Research, 116, A02206. https://doi.org/10.1029/2010JA015580
dc.identifier.citedreferenceTóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., & Peng, I. B. ( 2017 ). Scaling the ion inertial length and its implications for modeling reconnection in global simulations. Journal of Geophysical Research: Space Physics, 122, 10,336 – 10,355. https://doi.org/10.1002/2017JA024189
dc.identifier.citedreferenceTóth, G., Ma, Y. J., & Gombosi, T. I. ( 2008 ). Hall magnetohydrodynamics on block adaptive grids. Journal of Computational Physics, 227, 6967 – 6984. https://doi.org/10.1016/j.jcp.2008.04.010
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., Zeeuw, D. L. D., Hansen, K. C., Kane, K. J., Manchester, W. B., Powell, K. G., Ridley, A. J., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, R. A., Sazykin, S., Chan, A., Yu, B., & Kóta, J. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., Zeeuw, D. L. D., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y.‐J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231, 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTrattner, K. J., Mulcock, J. S., Petrinec, S. M., & Fuselier, S. A. ( 2007 ). Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. Journal of Geophysical Research, 112, A08210. https://doi.org/10.1029/2007JA012270
dc.identifier.citedreferenceZou, Y., Walsh, B. M., Nishimura, Y., Angelopoulos, V., Ruohoniemi, J. M., McWilliams, K. A., & Nishitani, N. ( 2018 ). Spreading speed of magnetopause reconnection X‐lines using ground‐satellite coordination. Geophysical Research Letters, 45, 80 – 89. https://doi.org/10.1002/2017GL075765
dc.identifier.citedreferenceAdhikari, S., Shay, M. A., Parashar, T. N., Pyakurel, P. S., Matthaeus, W. H., Godzieba, D., Stawarz, J. E., Eastwood, J. P., & Dahlin, J. T. ( 2020 ). Reconnection from a turbulence perspective. Physics of Plasmas, 27 ( 4 ), 042305. https://doi.org/10.1063/1.5128376
dc.identifier.citedreferenceAkhavan‐Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U., Grandin, M., Le, G., Gershman, D. J., Eastwood, J. P., & Stawarz, J. E. ( 2020 ). Comparative analysis of the vlasiator simulations and MMS observations of multiple X‐line reconnection and flux transfer events. Journal of Geophysical Research: Space Physics, 125, e2019JA027410. https://doi.org/10.1029/2019JA027410
dc.identifier.citedreferenceAlexandrova, O., Lacombe, C., & Mangeney, A. ( 2008 ). Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Annales Geophysicae, 26 ( 11 ), 3585 – 3596. https://doi.org/10.5194/angeo‐26‐3585‐2008
dc.identifier.citedreferenceAlexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., & Robert, P. ( 2009 ). Universality of solar‐wind turbulent spectrum from MHD to electron scales. Physical Review Letters, 103, 165,003. https://doi.org/10.1103/PhysRevLett.103.165003
dc.identifier.citedreferenceBoldyrev, S., Horaites, K., Xia, Q., & Perez, J. C. ( 2013 ). Toward a theory of astrophysical plasma turbulence at subproton scales. The Astrophysical Journal, 777 ( 1 ), 41. https://doi.org/10.1088/0004‐637x/777/1/41
dc.identifier.citedreferenceBoldyrev, S., & Perez, J. C. ( 2012 ). Spectrum of kinetic‐Alfven turbulence. The Astrophysical Journal, 758 ( 2 ), L44. https://doi.org/10.1088/2041‐8205/758/2/l44
dc.identifier.citedreferenceBorovsky, J. E., Hesse, M., Birn, J., & Kuznetsova, M. M. ( 2008 ). What determines the reconnection rate at the dayside magnetosphere? Journal of Geophysical Research, 113, A07210. https://doi.org/10.1029/2007JA012645
dc.identifier.citedreferenceBreuillard, H., Matteini, L., Argall, M. R., Sahraoui, F., Andriopoulou, M., Contel, O. L., Retinò, A., Mirioni, L., Huang, S. Y., Gershman, D. J., Ergun, R. E., Wilder, F. D., Goodrich, K. A., Ahmadi, N., Yordanova, E., Vaivads, A., Turner, D. L., Khotyaintsev, Y. V., Graham, D. B., Lindqvist, P.‐A., Chasapis, A., Burch, J. L., Torbert, R. B., Russell, C. T., Magnes, W., Strangeway, R. J., Plaschke, F., Moore, T. E., Giles, B. L., Paterson, W. R., Pollock, C. J., Lavraud, B., Fuselier, S. A., & Cohen, I. J. ( 2018 ). New insights into the nature of turbulence in the Earth’s magnetosheath using magnetospheric multiscale mission data. The Astrophysical Journal, 859 ( 2 ), 127. https://doi.org/10.3847/1538‐4357/aabae8
dc.identifier.citedreferenceCassak, P. A., & Shay, M. A. ( 2007 ). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14, 102,114. https://doi.org/10.1063/1.2795630
dc.identifier.citedreferenceChen, C. H. K., Boldyrev, S., Xia, Q., & Perez, J. C. ( 2013 ). Nature of subproton scale turbulence in the solar wind. Physical Review Letters, 110, 225,002. https://doi.org/10.1103/PhysRevLett.110.225002
dc.identifier.citedreferenceChen, C. H. K., Leung, L., Boldyrev, S., Maruca, B. A., & Bale, S. D. ( 2014 ). Ion‐scale spectral break of solar wind turbulence at high and low beta. Geophysical Research Letters, 41, 8081 – 8088. https://doi.org/10.1002/2014GL062009
dc.identifier.citedreferenceChen, Y., & Tóth, G. ( 2019 ). Gauss’s law satisfying energy‐conserving semi‐implicit particle‐in‐cell method. Journal of Computational Physics, 386, 632. https://doi.org/10.1016/j.jcp.2019.02.032
dc.identifier.citedreferenceChen, Y., Tóth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J., Markidis, S., & Peng, B. ( 2017 ). Global three‐dimensional simulation of Earth’s dayside reconnection using a two‐way coupled magnetohydrodynamics with embedded particle‐in‐cell model: Initial results. Journal of Geophysical Research: Space Physics, 122, 10,318 – 10,335. https://doi.org/10.1002/2017JA024186
dc.identifier.citedreferenceDaldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya, J., Markidis, S., & Brackbill, J. U. ( 2014 ). Two‐way coupling of a global Hall magnetohydrodynamics model with a local implicit particle‐in‐cell model. Journal of Computational Physics, 268, 236. https://doi.org/10.1016/j.jcp.2014.03.009
dc.identifier.citedreferenceDaughton, W., Nakamura, T. K. M., Karimabadi, H., Roytershteyn, V., & Loring, B. ( 2014 ). Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Physics of Plasmas, 21 ( 5 ), 052,307. https://doi.org/10.1063/1.4875730
dc.identifier.citedreferenceDorelli, J. C., & Bhattacharjee, A. ( 2009 ). On the generation and topology of flux transfer events. Journal of Geophysical Research, 114, A06213. https://doi.org/10.1029/2008JA013410
dc.identifier.citedreferenceFedder, J. A., Slinker, S. P., Lyon, J. G., & Russell, C. T. ( 2002 ). Flux transfer events in global numerical simulations of the magnetosphere. Journal of Geophysical Research, 107 ( A5 ). https://doi.org/10.1029/2001JA000025
dc.identifier.citedreferenceGuo, Z., Lin, Y., Wang, X., Vines, S. K., Lee, S. H., & Chen, Y. ( 2020 ). Magnetopause reconnection as influenced by the dipole tilt under southward IMF conditions: Hybrid simulation and MMS observation. Journal of Geophysical Research: Space Physics, 125, e2020JA027795. https://doi.org/10.1029/2020JA027795
dc.identifier.citedreferenceHoilijoki, S., Ganse, U., Pfau‐Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., von Alfthan, S., & Palmroth, M. ( 2017 ). Reconnection rates and X line motion at the magnetopause: Global 2D‐3V hybrid‐Vlasov simulation results. Journal of Geophysical Research: Space Physics, 122, 2877 – 2888. https://doi.org/10.1002/2016JA023709
dc.identifier.citedreferenceHowes, G. G., TenBarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R., & Tatsuno, T. ( 2011 ). Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Physical Review Letters, 107, 035,004. https://doi.org/10.1103/PhysRevLett.107.035004
dc.identifier.citedreferenceHuba, J. D., & Rudakov, L. I. ( 2002 ). Three‐dimensional Hall magnetic reconnection. Physics of Plasmas, 9 ( 11 ), 4435 – 4438.
dc.identifier.citedreferenceKarimabadi, H., Krauss‐Varban, D., Huba, J. D., & Vu, H. X. ( 2004 ). On magnetic reconnection regimes and associated three‐dimensional asymmetries: Hybrid, Hall‐less hybrid, and Hall‐MHD simulations. Journal of Geophysical Research, 109, A09205. https://doi.org/10.1029/2004JA010478
dc.identifier.citedreferenceKarimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M., Sibeck, D., Tatineni, M., Majumdar, A., Loring, B., & Geveci, B. ( 2014 ). The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Physics of Plasmas, 21 ( 6 ), 062,308. https://doi.org/10.1063/1.4882875
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.