Show simple item record

A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979- 2019 Measurements

dc.contributor.authorAa, Ercha
dc.contributor.authorErickson, Philip J.
dc.contributor.authorZhang, Shun‐rong
dc.contributor.authorZou, Shasha
dc.contributor.authorCoster, Anthea J.
dc.contributor.authorGoncharenko, Larisa P.
dc.contributor.authorFoster, John C.
dc.date.accessioned2020-11-04T15:59:35Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T15:59:35Z
dc.date.issued2020-10
dc.identifier.citationAa, Ercha; Erickson, Philip J.; Zhang, Shun‐rong ; Zou, Shasha; Coster, Anthea J.; Goncharenko, Larisa P.; Foster, John C. (2020). "A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979- 2019 Measurements." Journal of Geophysical Research: Space Physics 125(10): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163417
dc.description.abstractThis work conducts a statistical study of the subauroral polarization stream (SAPS) feature in the North American sector using Millstone Hill incoherent scatter radar measurements from 1979 to 2019, which provides a comprehensive SAPS climatology using a significantly larger database of radar observations than was used in seminal earlier works. Key features of SAPS and associated electron density (Ne), ion temperature (Ti), and electron temperature (Te) are investigated using a superposed epoch analysis method. The characteristics of these parameters are investigated with respect to magnetic local time, season, geomagnetic activity, solar activity, and interplanetary magnetic field (IMF) orientation, respectively. The main results are as follows: (1) Conditions for SAPS are more favorable for dusk than near midnight, for winter compared to summer, for active geomagnetic periods compared to quiet time, for solar minimum compared to solar maximum, and for IMF conditions with negative By and negative Bz. (2) SAPS is usually associated with a midlatitude trough of 15- 20% depletion in the background density. The SAPS- related trough is more pronounced in the postmidnight sector and near the equinoxes. (3) Subauroral ion and electron temperatures exhibit a 3- 8% (50- 120 K) enhancement in SAPS regions, which tend to have higher percentage enhancement during geomagnetically active periods and at midnight. Ion temperature enhancements are more favored during low solar activity periods, while the electron temperature enhancement remains almost constant as a function of the solar cycle. (4) The electron thermal content, Te- à - Ne, in the SAPS associated region is strongly dependent on 1/Ne, with Te exhibiting a negative correlation with respect to Ne.Key PointsKey features of North American SAPS and associated Ne, Ti, and Te were analyzed using four decade Millstone Hill IS radar measurementsNorth American SAPS climatology in terms of MLT, season, geomagnetic activity, solar activity, and IMF condition was comprehensively studiedBoth ion and electron temperatures exhibit moderate enhancement around SAPS, with similar geomagnetic but different solar activity dependence
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSAPS
dc.subject.othermagnetosphere- ionosphere coupling
dc.subject.othermain trough
dc.subject.otherMillstone Hill ISR
dc.titleA Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979- 2019 Measurements
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163417/2/jgra56052_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163417/1/jgra56052.pdfen_US
dc.identifier.doi10.1029/2020JA028584
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRussell, C. T., & McPherron, R. L. ( 1973 ). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78 ( 1 ), 92. https://doi.org/10.1029/JA078i001p00092
dc.identifier.citedreferenceWang, H., & Lühr, H. ( 2013 ). Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods. Annales Geophysicae, 31 ( 9 ), 1521 - 1534. https://doi.org/10.5194/angeo- 31- 1521- 2013
dc.identifier.citedreferenceWang, H., Lühr, H., Häusler, K., & Ritter, P. ( 2011 ). Effect of subauroral polarization streams on the thermosphere: A statistical study. Journal of Geophysical Research, 116, A03312. https://doi.org/10.1029/2010JA016236
dc.identifier.citedreferenceWang, H., Lühr, H., & Ma, S. ( 2012 ). The relation between subauroral polarization streams, westward ion fluxes, and zonal wind: Seasonal and hemispheric variations. Journal of Geophysical Research, 117, A04323. https://doi.org/10.1029/2011JA017378
dc.identifier.citedreferenceWang, H., Ridley, A. J., Lühr, H., Liemohn, M. W., & Ma, S. Y. ( 2008 ). Statistical study of the subauroral polarization stream: Its dependence on the cross- polar cap potential and subauroral conductance. Journal of Geophysical Research, 113, A12311. https://doi.org/10.1029/2008JA013529
dc.identifier.citedreferenceWang, W., Talaat, E. R., Burns, A., Emery, B., Hsieh, S., Lei, J., & Xu, J. ( 2012 ). Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. Journal of Geophysical Research, 117, A07301. https://doi.org/10.1029/2012JA017656
dc.identifier.citedreferenceWang, Z., Zou, S., Shepherd, S. G., Liang, J., Gjerloev, J. W., Ruohoniemi, J. M., Kunduri, B., & Wygant, J. R. ( 2019 ). Multi- instrument observations of mesoscale enhancement of subauroral polarization stream associated with an injection. Journal of Geophysical Research: Space Physics, 124, 1770 - 1784. https://doi.org/10.1029/2019JA026535
dc.identifier.citedreferenceWatanabe, S., Oyama, K.- I., & Abe, T. ( 1989 ). Electron temperature structure around mid latitude ionospheric trough. Planetary and Space Science, 37 ( 11 ), 1453 - 1460. https://doi.org/10.1016/0032- 0633(89)90115- 3
dc.identifier.citedreferenceWeimer, D. R. ( 1995 ). Models of high- latitude electric potentials derived with a least error fit of spherical harmonic coefficients. Journal of Geophysical Research, 100 ( A10 ), 19,595 - 19,608. https://doi.org/10.1029/95JA01755
dc.identifier.citedreferenceWerner, S., & Prölss, G. W. ( 1997 ). The position of the ionospheric trough as a function of local time and magnetic activity. Advances in Space Research, 20 ( 9 ), 1717 - 1722. https://doi.org/10.1016/S0273- 1177(97)00578- 4
dc.identifier.citedreferenceYeh, H. C., & Foster, J. C. ( 1990 ). Storm time heavy ion outflow at mid- latitude. Journal of Geophysical Research, 95 ( A6 ), 7881 - 7891. https://doi.org/10.1029/JA095iA06p07881
dc.identifier.citedreferenceYeh, H. C., Foster, J. C., Rich, F. J., & Swider, W. ( 1991 ). Storm time electric field penetration observed at mid- latitude. Journal of Geophysical Research, 96 ( A4 ), 5707 - 5721. https://doi.org/10.1029/90JA02751
dc.identifier.citedreferenceYu, Y., Jordanova, V., Zou, S., Heelis, R., Ruohoniemi, M., & Wygant, J. ( 2015 ). Modeling subauroral polarization streams during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 120, 1738 - 1750. https://doi.org/10.1002/2014JA020371
dc.identifier.citedreferenceYuan, Z., Xiong, Y., Qiao, Z., Li, H., Huang, S., Wang, D., Deng, X., Raita, T., & Wang, J. ( 2016 ). A subauroral polarization stream driven by field- aligned currents associated with precipitating energetic ions caused by EMIC waves: A case study. Journal of Geophysical Research: Space Physics, 121, 1696 - 1705. https://doi.org/10.1002/2015JA021804
dc.identifier.citedreferenceZhang, S.- R., Erickson, P. J., Foster, J. C., Holt, J. M., Coster, A. J., Makela, J. J., Noto, J., Meriwether, J. W., Harding, B. J., Riccobono, J., & Kerr, R. B. ( 2015 ). Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophysical Research Letters, 42, 5132 - 5140. https://doi.org/10.1002/2015GL064836
dc.identifier.citedreferenceZhang, S.- R., Erickson, P. J., Zhang, Y., Wang, W., Huang, C., Coster, A. J., Holt, J. M., Foster, J. F., Sulzer, M., & Kerr, R. ( 2017 ). Observations of ion- neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research: Space Physics, 122, 1314 - 1337. https://doi.org/10.1002/2016JA023307
dc.identifier.citedreferenceZhang, X., He, F., Wang, W., & Chen, B. ( 2015 ). Hemispheric asymmetry of subauroral ion drifts: Statistical results. Journal of Geophysical Research: Space Physics, 120, 4544 - 4554. https://doi.org/10.1002/2015JA021016
dc.identifier.citedreferenceZhang, S.- R., & Holt, J. M. ( 2004 ). Ionospheric plasma temperatures during 1976- 2001 over Millstone Hill. Advances in Space Research, 33 ( 6 ), 963 - 969. https://doi.org/10.1016/j.asr.2003.07.012
dc.identifier.citedreferenceZhang, S.- R., & Holt, J. M. ( 2007 ). Ionospheric climatology and variability from long- term and multiple incoherent scatter radar observations: Climatology in eastern American sector. Journal of Geophysical Research, 112, A06328. https://doi.org/10.1029/2006JA012206
dc.identifier.citedreferenceZhang, S.- R., Holt, J. M., Erickson, P. J., Goncharenko, L. P., Nicolls, M. J., McCready, M., & Kelly, J. ( 2016 ). Ionospheric ion temperature climate and upper atmospheric long- term cooling. Journal of Geophysical Research: Space Physics, 121, 8951 - 8968. https://doi.org/10.1002/2016JA022971
dc.identifier.citedreferenceZhang, S.- R., Holt, J. M., Zalucha, A. M., & Amory- Mazaudier, C. ( 2004 ). Midlatitude ionospheric plasma temperature climatology and empirical model based on Saint Santin incoherent scatter radar data from 1966 to 1987. Journal of Geophysical Research, 109, A11311. https://doi.org/10.1029/2004JA010709
dc.identifier.citedreferenceZhang, Q., Liu, Y., Zhang, Q.- H., Xing, Z., Wang, Y., & Ma, Y. ( 2020 ). Statistical study of ion upflow associated with subauroral polarization streams (SAPS) at substorm time. Journal of Geophysical Research: Space Physics, 125, e2019JA027163. https://doi.org/10.1029/2019JA027163
dc.identifier.citedreferenceZheng, Y., Brandt, P. C., Lui, A. T. Y., & Fok, M.- C. ( 2008 ). On ionospheric trough conductance and subauroral polarization streams: Simulation results. Journal of Geophysical Research, 113, A04209. https://doi.org/10.1029/2007JA012532
dc.identifier.citedreferenceZou, S., Lyons, L. R., Nicolls, M. J., Heinselman, C. J., & Mende, S. B. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research, 114, A12301. https://doi.org/10.1029/2009JA014259
dc.identifier.citedreferenceZou, S., Lyons, L. R., Wang, C. P., Boudouridis, A., Ruohoniemi, J. M., Anderson, P. C., Dyson, P. L., & Devlin, J. C. ( 2009 ). On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. Journal of Geophysical Research, 114, A01205. https://doi.org/10.1029/2008JA013449
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm- enhanced density plumes: Role of the convection flow and field- aligned ion flow. Journal of Geophysical Research: Space Physics, 119, 8543 - 8559. https://doi.org/10.1002/2014JA020408
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi- instrument observations of SED during 24- 25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 - 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceAa, E., Zou, S., Erickson, P. J., Zhang, S.- R., & Liu, S. ( 2020 ). Statistical analysis of the main ionospheric trough using swarm in situ measurements. Journal of Geophysical Research: Space Physics, 125, e2019JA027583. https://doi.org/10.1029/2019JA027583
dc.identifier.citedreferenceAfonin, V. V., Bassolo, V. S., Smilauer, J., & Lemaire, J. F. ( 1997 ). Motion and erosion of the nightside plasmapause region and of the associated subauroral electron temperature enhancement: Cosmos 900 observations. Journal of Geophysical Research, 102 ( A2 ), 2093 - 2104. https://doi.org/10.1029/96JA02497
dc.identifier.citedreferenceAnderson, P. C. ( 2004 ). Subauroral electric fields and magnetospheric convection during the April, 2002 geomagnetic storms. Geophysical Research Letters, 31, L11801. https://doi.org/10.1029/2004GL019588
dc.identifier.citedreferenceAnderson, P. C., Carpenter, D. L., Tsuruda, K., Mukai, T., & Rich, F. J. ( 2001 ). Multisatellite observations of rapid subauroral ion drifts (SAID). Journal of Geophysical Research, 106 ( A12 ), 29,585 - 29,600. https://doi.org/10.1029/2001JA000128
dc.identifier.citedreferenceAnderson, P. C., Hanson, W. B., Heelis, R. A., Craven, J. D., Baker, D. N., & Frank, L. A. ( 1993 ). A proposed production model of rapid subauroal ion drifts and their relationship to substorm evolution. Journal of Geophysical Research, 98 ( A4 ), 6069 - 6078. https://doi.org/10.1029/92JA01975
dc.identifier.citedreferenceAnderson, P. C., Heelis, R. A., & Hanson, W. B. ( 1991 ). The ionospheric signatures of rapid subauroral ion drifts. Journal of Geophysical Research, 96 ( A4 ), 5785 - 5792. https://doi.org/10.1029/90JA02651
dc.identifier.citedreferenceBuonsanto, M. J., Foster, J. C., & Sipler, D. P. ( 1992 ). Observations from Millstone Hill during the geomagnetic disturbances of March and April 1990. Journal of Geophysical Research, 97 ( A2 ), 1225 - 1243. https://doi.org/10.1029/91JA02428
dc.identifier.citedreferenceCaliff, S., Li, X., Wolf, R. A., Zhao, H., Jaynes, A. N., Wilder, F. D., Malaspina, D. M., & Redmon, R. ( 2016 ). Large- amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams. Journal of Geophysical Research: Space Physics, 121, 5294 - 5306. https://doi.org/10.1002/2015JA022252
dc.identifier.citedreferenceCarbary, J. F. ( 2005 ). A Kp- based model of auroral boundaries. Space Weather, 3, S10001. https://doi.org/10.1029/2005SW000162
dc.identifier.citedreferenceClausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Greenwald, R. A., Thomas, E. G., Shepherd, S. G., Talaat, E. R., Bristow, W. A., Zheng, Y., Coster, A. J., & Sazykin, S. ( 2012 ). Large- scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations. Journal of Geophysical Research, 117, A05306. https://doi.org/10.1029/2011JA017232
dc.identifier.citedreferenceCollis, P. N., & Haggstrom, I. ( 1988 ). Plasma convection and auroral precipitation processes associated with the main ionospheric trough at high latitudes. Journal of Atmospheric and Terrestrial Physics, 50, 389 - 404. https://doi.org/10.1016/0021- 9169(88)90024- 4
dc.identifier.citedreferenceDe Keyser, J. ( 1999 ). Formation and evolution of subauroral ion drifts in the course of a substorm. Journal of Geophysical Research, 104 ( A6 ), 12,339 - 12,350. https://doi.org/10.1029/1999JA900109
dc.identifier.citedreferenceEbihara, Y., Nishitani, N., Kikuchi, T., Ogawa, T., Hosokawa, K., Fok, M. C., & Thomsen, M. F. ( 2009 ). Dynamical property of storm time subauroral rapid flows as a manifestation of complex structures of the plasma pressure in the inner magnetosphere. Journal of Geophysical Research, 114, A01306. https://doi.org/10.1029/2008JA013614
dc.identifier.citedreferenceErickson, P. J., Beroz, F., & Miskin, M. Z. ( 2011 ). Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar. Journal of Geophysical Research, 116, A00J21. https://doi.org/10.1029/2010JA015738
dc.identifier.citedreferenceErickson, P. J., Foster, J. C., & Holt, J. M. ( 2002 ). Inferred electric field variability in the polarization jet from Millstone Hill E region coherent scatter observations. Radio Science, 37 ( 2 ), 1027. https://doi.org/10.1029/2000RS002531
dc.identifier.citedreferenceErickson, P. J., Goncharenko, L. P., Nicolls, M. J., Ruohoniemi, M., & Kelley, M. C. ( 2010 ). Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm. Journal of Atmospheric and Solar- Terrestrial Physics, 72 ( 4 ), 292 - 301. https://doi.org/10.1016/j.jastp.2009.04.001
dc.identifier.citedreferenceErickson, P. J., Matsui, H., Foster, J. C., Torbert, R. B., Ergun, R. E., Khotyaintsev, Y. V., Lindqvist, P. A., Argall, M. R., Farrugia, C. J., Paulson, K. W., Strangeway, R. J., & Magnes, W. ( 2016 ). Multipoint MMS observations of fine- scale SAPS structure in the inner magnetosphere. Geophysical Research Letters, 43, 7294 - 7300. https://doi.org/10.1002/2016GL069174
dc.identifier.citedreferenceEvans, J. V. ( 1970 ). Midlatitude ionospheric temperatures during three magnetic storms in 1965. Journal of Geophysical Research, 75 ( 25 ), 4803. https://doi.org/10.1029/JA075i025p04803
dc.identifier.citedreferenceEvans, J. V. ( 1973 ). Seasonal and sunspot cycle variations of F Region electron temperatures and protonospheric heat fluxes. Journal of Geophysical Research, 78 ( 13 ), 2344. https://doi.org/10.1029/JA078i013p02344
dc.identifier.citedreferenceFörster, M., Rentz, S., Köhler, W., Liu, H., & Haaland, S. E. ( 2008 ). IMF dependence of high- latitude thermospheric wind pattern derived from CHAMP cross- track measurements. Annales Geophysicae, 26 ( 6 ), 1581 - 1595. https://doi.org/10.5194/angeo- 26- 1581- 2008
dc.identifier.citedreferenceFerdousi, B., Nishimura, Y., Maruyama, N., & Lyons, L. R. ( 2019 ). Subauroral neutral wind driving and its feedback to SAPS during the 17 March 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 124, 2323 - 2337. https://doi.org/10.1029/2018JA026193
dc.identifier.citedreferenceFok, M. C., Kozyra, J. U., & Brace, L. H. ( 1991 ). Solar cycle variation in the subauroral electron temperature enhancement: Comparison of AE- C and DE 2 satellite observations. Journal of Geophysical Research, 96 ( A2 ), 1861 - 1866. https://doi.org/10.1029/90JA02377
dc.identifier.citedreferenceFok, M. C., Kozyra, J. U., Warren, M. F., & Brace, L. H. ( 1991 ). Seasonal variations in the subauroral electron temperature enhancement. Journal of Geophysical Research, 96 ( A6 ), 9773 - 9780. https://doi.org/10.1029/91JA00791
dc.identifier.citedreferenceFoster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 - 1690. https://doi.org/10.1029/92JA02032
dc.identifier.citedreferenceFoster, J. C., & Burke, W. J. ( 2002 ). SAPS: A new categorization for sub- auroral electric fields. EOS Transactions, 83 ( 36 ), 393. https://doi.org/10.1029/2002EO000289
dc.identifier.citedreferenceFoster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A., & Rich, F. J. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928
dc.identifier.citedreferenceFoster, J. C., Erickson, P. J., Coster, A. J., Thaller, S., Tao, J., Wygant, J. R., & Bonnell, J. W. ( 2014 ). Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophysical Research Letters, 41, 762 - 768. https://doi.org/10.1002/2013GL059124
dc.identifier.citedreferenceFoster, J. C., Rideout, W., Sandel, B., Forrester, W. T., & Rich, F. J. ( 2007 ). On the relationship of SAPS to storm- enhanced density. Journal of Atmospheric and Solar- Terrestrial Physics, 69 ( 3 ), 303 - 313. https://doi.org/10.1016/j.jastp.2006.07.021
dc.identifier.citedreferenceFoster, J. C., & Vo, H. B. ( 2002 ). Average characteristics and activity dependence of the subauroral polarization stream. Journal of Geophysical Research, 107 ( A12 ), 1475. https://doi.org/10.1029/2002JA009409
dc.identifier.citedreferenceGalperin, Y., Ponomarov, Y., & Zosinova, A. ( 1974 ). Plasma convection in polar ionosphere. Annales de Geophysique, 30, 1 - 7.
dc.identifier.citedreferenceGkioulidou, M., Wang, C.- P., Lyons, L. R., & Wolf, R. A. ( 2009 ). Formation of the Harang reversal and its dependence on plasma sheet conditions: Rice convection model simulations. Journal of Geophysical Research: Space Physics, 114, A07204. https://doi.org/10.1029/2008JA013955
dc.identifier.citedreferenceGoldstein, J., Burch, J. L., Sandel, B. R., Mende, S. B., Brandt, P. C., & Hairston, M. R. ( 2005 ). Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. Journal of Geophysical Research, 110, A03205. https://doi.org/10.1029/2004JA010712
dc.identifier.citedreferenceGoldstein, J., Sandel, B. R., Thomsen, M. F., SpasojeviÄ , M., & Reiff, P. H. ( 2004 ). Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes. Journal of Geophysical Research, 109, A03202. https://doi.org/10.1029/2003JA010281
dc.identifier.citedreferenceGoncharenko, L. P., Foster, J. C., Coster, A. J., Huang, C., Aponte, N., & Paxton, L. J. ( 2007 ). Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and Solar- Terrestrial Physics, 69 ( 10- 11 ), 1253 - 1272. https://doi.org/10.1016/j.jastp.2006.09.011
dc.identifier.citedreferenceGoncharenko, L., Salah, J., Crowley, G., Paxton, L. J., Zhang, Y., Coster, A., Rideout, W., Huang, C., Zhang, S., Reinisch, B., & Taran, V. ( 2006 ). Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y. Journal of Geophysical Research, 111, A03303. https://doi.org/10.1029/2004JA010683
dc.identifier.citedreferenceGussenhoven, M. S., Hardy, D. A., & Burke, W. J. ( 1981 ). DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to magnetospheric electric fields. Journal of Geophysical Research, 86 ( A2 ), 768 - 778. https://doi.org/10.1029/JA086iA02p00768
dc.identifier.citedreferenceGussenhoven, M. S., Hardy, D. A., & Heinemann, N. ( 1983 ). Systematics of the equatorward diffuse auroral boundary. Journal of Geophysical Research, 88 ( A7 ), 5692 - 5708. https://doi.org/10.1029/JA088iA07p05692
dc.identifier.citedreferenceGussenhoven, M. S., Hardy, D. A., & Heinemann, N. ( 1987 ). The equatorward boundary of auroral ion precipitation. Journal of Geophysical Research, 92 ( A4 ), 3273 - 3283. https://doi.org/10.1029/JA092iA04p03273
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., & Brautigam, D. ( 1989 ). A statistical model of auroral ion precipitation. Journal of Geophysical Research, 94 ( A1 ), 370 - 392. https://doi.org/10.1029/JA094iA01p00370
dc.identifier.citedreferenceHardy, D. A., Gussenhoven, M. S., Raistrick, R., & McNeil, W. J. ( 1987 ). Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. Journal of Geophysical Research, 92 ( A11 ), 12,275 - 12,294. https://doi.org/10.1029/JA092iA11p12275
dc.identifier.citedreferenceHardy, D. A., Holeman, E. G., Burke, W. J., Gentile, L. C., & Bounar, K. H. ( 2008 ). Probability distributions of electron precipitation at high magnetic latitudes. Journal of Geophysical Research, 113, A06305. https://doi.org/10.1029/2007JA012746
dc.identifier.citedreferenceHe, F., Zhang, X., & Chen, B. ( 2014 ). Solar cycle, seasonal, and diurnal variations of subauroral ion drifts: Statistical results. Journal of Geophysical Research: Space Physics, 119, 5076 - 5086. https://doi.org/10.1002/2014JA019807
dc.identifier.citedreferenceHe, F., Zhang, X., Wang, W., Liu, L., Ren, Z., Yue, X., Hu, L., Wan, W., & Wang, H. ( 2018 ). Large- scale structure of subauroral polarization streams during the main phase of a severe geomagnetic storm. Journal of Geophysical Research: Space Physics, 123, 2964 - 2973. https://doi.org/10.1002/2018JA025234
dc.identifier.citedreferenceHe, F., Zhang, X., Wang, W., & Wan, W. ( 2017 ). Different evolution patterns of subauroral polarization streams (SAPS) during intense storms and quiet time substorms. Geophysical Research Letters, 44, 10,796 - 10,804. https://doi.org/10.1002/2017GL075449
dc.identifier.citedreferenceHeelis, R. A. ( 1984 ). The effects of interplanetary magnetic field orientation on dayside high- latitude ionospheric convection. Journal of Geophysical Research, 89 ( A5 ), 2873 - 2880. https://doi.org/10.1029/JA089iA05p02873
dc.identifier.citedreferenceHeelis, R. A., Bailey, G. J., Sellek, R., Moffett, R. J., & Jenkins, B. ( 1993 ). Field- aligned drifts in subauroral ion drift events. Journal of Geophysical Research, 98 ( A12 ), 21,493 - 21,500. https://doi.org/10.1029/93JA02209
dc.identifier.citedreferenceHeinemann, N. C., Gussenhoven, M. S., Hardy, D. A., Rich, F. J., & Yeh, H. C. ( 1989 ). Electron/ion precipitation differences in relation to region 2 field- aligned currents. Journal of Geophysical Research, 94 ( A10 ), 13,593 - 13,600. https://doi.org/10.1029/JA094iA10p13593
dc.identifier.citedreferenceHeppner, J. P., & Maynard, N. C. ( 1987 ). Empirical high- latitude electric field models. Journal of Geophysical Research, 92 ( A5 ), 4467 - 4490. https://doi.org/10.1029/JA092iA05p04467
dc.identifier.citedreferenceHernandez, G., McCormac, F. G., & Smith, R. W. ( 1991 ). Austral thermospheric wind circulation and interplanetary magnetic field orientation. Journal of Geophysical Research, 96 ( A4 ), 5777 - 5783. https://doi.org/10.1029/90JA02458
dc.identifier.citedreferenceHorvath, I., & Lovell, B. C. ( 2016 ). Structured subauroral polarization streams and related auroral undulations occurring on the storm day of 21 January 2005. Journal of Geophysical Research: Space Physics, 121, 1680 - 1695. https://doi.org/10.1002/2015JA022057
dc.identifier.citedreferenceHuang, C.- S., & Foster, J. C. ( 2007 ). Correlation of the subauroral polarization streams (SAPS) with the Dst index during severe magnetic storms. Journal of Geophysical Research, 112, A11302. https://doi.org/10.1029/2007JA012584
dc.identifier.citedreferenceImmel, T. J., Craven, J. D., & Frank, L. A. ( 1997 ). Influence of IMF B y on large- scale decreases of O column density at middle latitudes. Journal of Atmospheric and Solar- Terrestrial Physics, 59, 725 - 737. https://doi.org/10.1016/S1364- 6826(96)00099- 5
dc.identifier.citedreferenceKarlsson, T., Marklund, G. T., Blomberg, L. G., & Mälkki, A. ( 1998 ). Subauroral electric fields observed by the Freja satellite: A statistical study. Journal of Geophysical Research, 103 ( A3 ), 4327 - 4342. https://doi.org/10.1029/97JA00333
dc.identifier.citedreferenceKarpachev, A. T. ( 2003 ). The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity. Geomagnetism and Aeronomy, 43 ( 2 ), 239 - 251.
dc.identifier.citedreferenceKarpachev, A. T. ( 2019 ). Variations in the winter troughs’ position with local time, longitude, and solar activity in the Northern and Southern Hemispheres. Journal of Geophysical Research: Space Physics, 124, 8039 - 8055. https://doi.org/10.1029/2019JA026631
dc.identifier.citedreferenceKarpachev, A. T., Deminov, M. G., & Afonin, V. V. ( 1996 ). Model of the mid- latitude ionospheric trough on the base of Cosmos- 900 and Intercosmos- 19 satellites data. Advances in Space Research, 18 ( 6 ), 221 - 230. https://doi.org/10.1016/0273- 1177(95)00928- 0
dc.identifier.citedreferenceKelley, M. C., Vlasov, M. N., Foster, J. C., & Coster, A. J. ( 2004 ). A quantitative explanation for the phenomenon known as storm- enhanced density. Geophysical Research Letters, 31, L19809. https://doi.org/10.1029/2004GL020875
dc.identifier.citedreferenceKepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., Lester, M., Nakamura, R., Pulkkinen, T. I., & Sergeev, V. ( 2015 ). Substorm current wedge revisited. Space Science Review, 190 ( 1- 4 ), 1 - 46.
dc.identifier.citedreferenceKoustov, A. V., Drayton, R. A., Makarevich, R. A., McWilliams, K. A., St- Maurice, J. P., Kikuchi, T., & Frey, H. U. ( 2006 ). Observations of high- velocity SAPS- like flows with the King Salmon SuperDARN radar. Annales Geophysicae, 24 ( 6 ), 1591 - 1608. https://doi.org/10.5194/angeo- 24- 1591- 2006
dc.identifier.citedreferenceKozyra, J. U., Brace, L. H., Cravens, T. E., & Nagy, A. F. ( 1986 ). A statistical study of the subauroral electron temperature enhancement using Dynamics Explorer- 2 Langmuir probe observations. Journal of Geophysical Research, 91 ( A10 ), 11,270 - 11,280. https://doi.org/10.1029/JA091iA10p11270
dc.identifier.citedreferenceKozyra, J. U., Valladares, C. E., Carlson, H. C., Buonsanto, M. J., & Slater, D. W. ( 1990 ). A theoretical study of the seasonal and solar cycle variations of stable Auroa Red arcs. Journal of Geophysical Research, 95 ( A8 ), 12,219 - 12,234. https://doi.org/10.1029/JA095iA08p12219
dc.identifier.citedreferenceKunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Grocott, A., Thomas, E. G., Freeman, M. P., & Talaat, E. R. ( 2012 ). An examination of inter- hemispheric conjugacy in a subauroral polarization stream. Journal of Geophysical Research, 117, A08225. https://doi.org/10.1029/2012JA017784
dc.identifier.citedreferenceKunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Nishitani, N., Oksavik, K., Erickson, P. J., Coster, A. J., Shepherd, S. G., Bristow, W. A., & Miller, E. S. ( 2018 ). A new empirical model of the subauroral polarization stream. Journal of Geophysical Research: Space Physics, 123, 7342 - 7357. https://doi.org/10.1029/2018JA025690
dc.identifier.citedreferenceKunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Thomas, E. G., Shepherd, S. G., & Sterne, K. T. ( 2017 ). Statistical characterization of the large- scale structure of the subauroral polarization stream. Journal of Geophysical Research: Space Physics, 122, 6035 - 6048. https://doi.org/10.1002/2017JA024131
dc.identifier.citedreferenceLandry, R. G., & Anderson, P. C. ( 2018 ). An auroral boundary- oriented model of subauroral polarization streams (SAPS). Journal of Geophysical Research: Space Physics, 123, 3154 - 3169. https://doi.org/10.1002/2017JA024921
dc.identifier.citedreferenceLe, H., Yang, N., Liu, L., Chen, Y., & Zhang, H. ( 2017 ). The latitudinal structure of nighttime ionospheric TEC and its empirical orthogonal functions model over North American sector. Journal of Geophysical Research: Space Physics, 122, 963 - 977. https://doi.org/10.1002/2016JA023361
dc.identifier.citedreferenceLejosne, S., & Mozer, F. S. ( 2017 ). Subauroral polarization streams (SAPS) duration as determined from Van Allen Probe successive electric drift measurements. Geophysical Research Letters, 44, 9134 - 9141. https://doi.org/10.1002/2017GL074985
dc.identifier.citedreferenceLeonard, J. M., Pinnock, M., Rodger, A. S., Dudeney, J. R., Greenwald, R. A., & Baker, K. B. ( 1995 ). Ionospheric plasma convection in the southern hemisphere. Journal of Atmospheric and Terrestrial Physics, 57, 889 - 897. https://doi.org/10.1016/0021- 9169(94)00070- 5
dc.identifier.citedreferenceLin, D., Wang, W., Scales, W. A., Pham, K., Liu, J., Zhang, B., Merkin, V., Shi, X., Kunduri, B., & Maimaiti, M. ( 2019 ). SAPS in the 17 March 2013 storm event: Initial results from the coupled magnetosphere- ionosphere- thermosphere model. Journal of Geophysical Research: Space Physics, 124, 6212 - 6225. https://doi.org/10.1029/2019JA026698
dc.identifier.citedreferenceLyatsky, W., Newell, P. T., & Hamza, A. ( 2001 ). Solar illumination as cause of the equinoctial preference for geomagnetic activity. Geophysical Research Letters, 28 ( 12 ), 2353 - 2356. https://doi.org/10.1029/2000GL012803
dc.identifier.citedreferenceRichards, P. G., & Torr, D. G. ( 1986 ). Thermal coupling of conjugate ionospheres and the tilt of the Earth’s magnetic field. Journal of Geophysical Research, 91 ( A8 ), 9017 - 9022. https://doi.org/10.1029/JA091iA08p09017
dc.identifier.citedreferenceMakarevich, R. A., Kellerman, A. C., Bogdanova, Y. V., & Koustov, A. V. ( 2009 ). Time evolution of the subauroral electric fields: A case study during a sequence of two substorms. Journal of Geophysical Research, 114, A04312. https://doi.org/10.1029/2008JA013944
dc.identifier.citedreferenceMcCormac, F. G., Killeen, T. L., Gombosi, E., Hays, P. B., & Spencer, N. W. ( 1985 ). Configuration of the high- latitude thermosphere neutral circulation for IMF B y negative and positive. Geophysical Research Letters, 12 ( 4 ), 155 - 158. https://doi.org/10.1029/GL012i004p00155
dc.identifier.citedreferenceMendillo, M. ( 2006 ). Storms in the ionosphere: Patterns and processes for total electron content. Reviews of Geophysics, 44, RG4001. https://doi.org/10.1029/2005RG000193
dc.identifier.citedreferenceMishin, E. V. ( 2013 ). Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID. Journal of Geophysical Research: Space Physics, 118, 5782 - 5796. https://doi.org/10.1002/jgra.50548
dc.identifier.citedreferenceMishin, E. V. ( 2016 ). SAPS onset timing during substorms and the westward traveling surge. Geophysical Research Letters, 43, 6687 - 6693. https://doi.org/10.1002/2016GL069693
dc.identifier.citedreferenceMishin, E. V., Foster, J. C., Potekhin, A. P., Rich, F. J., Schlegel, K., Yumoto, K., Taran, V. I., Ruohoniemi, J. M., & Friedel, R. ( 2002 ). Global ULF disturbances during a stormtime substorm on 25 September 1998. Journal of Geophysical Research, 107 ( A12 ), 1486. https://doi.org/10.1029/2002JA009302
dc.identifier.citedreferenceMishin, E. V., Nishimura, Y., & Foster, J. ( 2017 ). SAPS/SAID revisited: A causal relation to the substorm current wedge. Journal of Geophysical Research: Space Physics, 122, 8516 - 8535. https://doi.org/10.1002/2017JA024263
dc.identifier.citedreferenceMishin, E. V., Puhl- Quinn, P. A., & Santolik, O. ( 2010 ). SAID: A turbulent plasmaspheric boundary layer. Geophysical Research Letters, 37, L07106. https://doi.org/10.1029/2010GL042929
dc.identifier.citedreferenceMoffett, R. J., Ennis, A. E., Bailey, G. J., Heelis, R. A., & Brace, L. H. ( 1998 ). Electron temperatures during rapid subauroral ion drift events. Annales Geophysicae, 16 ( 4 ), 450 - 459. https://doi.org/10.1007/s00585- 998- 0450- x
dc.identifier.citedreferenceMoffett, R. J., & Quegan, S. ( 1983 ). The mid- latitude trough in the electron concentration of the ionospheric F- layer- A review of observations and modelling. Journal of Atmospheric and Terrestrial Physics, 45, 315 - 343. https://doi.org/10.1016/S0021- 9169(83)80038- 5
dc.identifier.citedreferenceMuldrew, D. B. ( 1965 ). F- layer ionization troughs deduced from Alouette data. Journal of Geophysical Research, 70 ( 11 ), 2635 - 2650. https://doi.org/10.1029/JZ070i011p02635
dc.identifier.citedreferenceNagano, H., Nishitani, N., & Hori, T. ( 2015 ). Occurrence characteristics and lowest speed limit of subauroral polarization stream (SAPS) observed by the SuperDARN Hokkaido East radar. Earth, Planets, and Space, 67, 126. https://doi.org/10.1186/s40623- 015- 0299- 7
dc.identifier.citedreferenceOksavik, K., Greenwald, R. A., Ruohoniemi, J. M., Hairston, M. R., Paxton, L. J., Baker, J. B. H., Gjerloev, J. W., & Barnes, R. J. ( 2006 ). First observations of the temporal/spatial variation of the sub- auroral polarization stream from the SuperDARN Wallops HF radar. Geophysical Research Letters, 33, L12104. https://doi.org/10.1029/2006GL026256
dc.identifier.citedreferencePapitashvili, V. O., Belov, B. A., Faermark, D. S., Feldstein, Y. I., Golyshev, S. A., Gromova, L. I., & Levitin, A. E. ( 1994 ). Electric potential patterns in the northern and southern polar regions parameterized by the interplanetary magnetic field. Journal of Geophysical Research, 99 ( A7 ), 13,251 - 13,262. https://doi.org/10.1029/94JA00822
dc.identifier.citedreferenceParkinson, M. L., Pinnock, M., Wild, J. A., Lester, M., Yeoman, T. K., Milan, S. E., Ye, H., Devlin, J. C., Frey, H. U., & Kikuchi, T. ( 2005 ). Interhemispheric asymmetries in the occurrence of magnetically conjugate sub- auroral polarisation streams. Annales Geophysicae, 23 ( 4 ), 1371 - 1390. https://doi.org/10.5194/angeo- 23- 1371- 2005
dc.identifier.citedreferencePintér, B., Thom, S. D., Balthazor, R., Vo, H., & Bailey, G. J. ( 2006 ). Modeling subauroral polarization streams equatorward of the plasmapause footprints. Journal of Geophysical Research, 111, A10306. https://doi.org/10.1029/2005JA011457
dc.identifier.citedreferencePrölss, G. W. ( 2006 ). Subauroral electron temperature enhancement in the nighttime ionosphere. Annales Geophysicae, 24 ( 7 ), 1871 - 1885. https://doi.org/10.5194/angeo- 24- 1871- 2006
dc.identifier.citedreferencePrölss, G. W. ( 2007 ). The equatorward wall of the subauroral trough in the afternoon/evening sector. Annales Geophysicae, 25 ( 3 ), 645 - 659. https://doi.org/10.5194/angeo- 25- 645- 2007
dc.identifier.citedreferenceRaeder, J., Cramer, W. D., Jensen, J., Fuller- Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. ( 2016 ). Sub- Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics Conference Series, 767, 012021. https://doi.org/10.1088/1742- 6596/767/1/012021
dc.identifier.citedreferenceRees, D., Fuller- Rowell, T. J., Gordon, R., Smith, M. F., Maynard, N. C., Heppner, J. P., Spencer, N. W., Wharton, L., Hays, P. B., & Killeen, T. L. ( 1986 ). A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the - Y- component of the interplanetary magnetic field. Planetary and Space Science, 34 ( 1 ), 1 - 40. https://doi.org/10.1016/0032- 0633(86)90100- 5
dc.identifier.citedreferenceRich, F. J., & Hairston, M. ( 1994 ). Large- scale convection patterns observed by DMSP. Journal of Geophysical Research, 99 ( A3 ), 3827 - 3844. https://doi.org/10.1029/93JA03296
dc.identifier.citedreferenceRichmond, A. D., LathuillèRe, C., & Vennerstroem, S. ( 2003 ). Winds in the high- latitude lower thermosphere: Dependence on the interplanetary magnetic field. Journal of Geophysical Research, 108 ( A2 ), 1066. https://doi.org/10.1029/2002JA009493
dc.identifier.citedreferenceRobinson, R. M., & Vondrak, R. R. ( 1984 ). Measurements of E region ionization and conductivity produced by solar illumination at high latitudes. Journal of Geophysical Research, 89 ( A6 ), 3951 - 3956. https://doi.org/10.1029/JA089iA06p03951
dc.identifier.citedreferenceRodger, A. S. ( 2008 ). The mid- latitude trough- Revisited. Washington DC American Geophysical Union Geophysical Monograph Series, 181, 25 - 33. https://doi.org/10.1029/181GM04
dc.identifier.citedreferenceRuohoniemi, J. M., & Greenwald, R. A. ( 1996 ). Statistical patterns of high- latitude convection obtained from Goose Bay HF radar observations. Journal of Geophysical Research, 101 ( A10 ), 21,743 - 21,764. https://doi.org/10.1029/96JA01584
dc.identifier.citedreferenceRuohoniemi, J. M., & Greenwald, R. A. ( 2005 ). Dependencies of high- latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. Journal of Geophysical Research, 110, A09204. https://doi.org/10.1029/2004JA010815
dc.identifier.citedreferenceSchunk, R. W., Banks, P. M., & Raitt, W. J. ( 1976 ). Effects of electric fields and other processes upon the nighttime high- latitude F layer. Journal of Geophysical Research, 81 ( 19 ), 3271. https://doi.org/10.1029/JA081i019p03271
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 1978 ). Electron temperatures in the F region of the ionosphere: Theory and observation. Reviews of Geophysics and Space Physics, 16, 355 - 399. https://doi.org/10.1029/RG016i003p00355
dc.identifier.citedreferenceSchunk, R. W., & Nagy, A. F. ( 2000 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceSergeev, V. A., Nikolaev, A. V., Tsyganenko, N. A., Angelopoulos, V., Runov, A. V., Singer, H. J., & Yang, J. ( 2014 ). Testing a two- loop pattern of the substorm current wedge (SCW2L). Journal of Geophysical Research: Space Physics, 119, 947 - 963. https://doi.org/10.1002/2013JA019629
dc.identifier.citedreferenceSpiro, R. W., Heelis, R. A., & Hanson, W. B. ( 1978 ). Ion convection and the formation of the mid- latitude F region ionization trough. Journal of Geophysical Research, 83 ( A9 ), 4255 - 4264. https://doi.org/10.1029/JA083iA09p04255
dc.identifier.citedreferenceSpiro, R. W., Heelis, R. A., & Hanson, W. B. ( 1979 ). Rapid subauroral ion drifts observed by Atmosphere Explorer C. Geophysical Research Letters, 6 ( 8 ), 657 - 660. https://doi.org/10.1029/GL006i008p00657
dc.identifier.citedreferenceThayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J. J., & Spencer, N. W. ( 1987 ). Thermospheric neutral wind signatures dependent on the east- west component of the interplanetary magnetic field for Northern and Southern Hemispheres as measured from Dynamics Explorer- 2. Annales Geophysicae, 5, 363 - 368.
dc.identifier.citedreferenceTulunay, Y. K., & Sayers, J. ( 1971 ). Characteristics of the mid- latitude trough as determined by the electron density experiment on Ariel III. Journal of Atmospheric and Terrestrial Physics, 33 ( 11 ), 1737 - 1761. https://doi.org/10.1016/0021- 9169(71)90221- 2
dc.identifier.citedreferenceVoiculescu, M., & Nygrén, T. ( 2007 ). IMF effect on ionospheric trough occurrence at equinoxes. Advances in Space Research, 40 ( 12 ), 1935 - 1940. https://doi.org/10.1016/j.asr.2007.04.108
dc.identifier.citedreferenceWang, W., Burns, A. G., & Killeen, T. L. ( 2006 ). A numerical study of the response of ionospheric electron temperature to geomagnetic activity. Journal of Geophysical Research, 111, A11301. https://doi.org/10.1029/2006JA011698
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.