Show simple item record

A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics

dc.contributor.authorPham, Tuan‐anh
dc.contributor.authorNguyen, Tuan‐khoa
dc.contributor.authorVadivelu, Raja Kumar
dc.contributor.authorDinh, Toan
dc.contributor.authorQamar, Afzaal
dc.contributor.authorYadav, Sharda
dc.contributor.authorYamauchi, Yusuke
dc.contributor.authorRogers, John A.
dc.contributor.authorNguyen, Nam‐trung
dc.contributor.authorPhan, Hoang‐phuong
dc.date.accessioned2020-11-04T15:59:39Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T15:59:39Z
dc.date.issued2020-10
dc.identifier.citationPham, Tuan‐anh ; Nguyen, Tuan‐khoa ; Vadivelu, Raja Kumar; Dinh, Toan; Qamar, Afzaal; Yadav, Sharda; Yamauchi, Yusuke; Rogers, John A.; Nguyen, Nam‐trung ; Phan, Hoang‐phuong (2020). "A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics." Advanced Functional Materials 30(43): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/163418
dc.description.abstractImproving and optimizing the processes for transfer printing have the potential to further enhance capabilities in heterogeneous integration of various sensing materials on unconventional substrates for implantable and stretchable electronic devices in biosensing, diagnostics, and therapeutic applications. An advanced transfer printing method based on sacrificial layer engineering for silicon carbide materials in stretchable electronic devices is presented here. In contrast to the typical processes where defined anchor structures are required for the transfer step, the use of a sacrificial layer offers enhances versatility in releasing complex microstructures from rigid donor substrates to flexible receiver platforms. The sacrificial layer also minimizes twisting and wrinkling issues that may occur in free- standing microstructures, thereby facilitating printing onto flat polymer surfaces (e.g., polydimethylsiloxane). The experimental results demonstrate that transferred SiC microstructures exhibit good stretchability, stable electrical properties, excellent biocompatibility, as well as promising sensing- functions associated with a high level of structural perfection, without any cracks or tears. This transfer printing method can be applied to other classes of wide bandgap semiconductors, particularly group III- nitrides and diamond films epitaxially grown on Si substrates, thereby serving as the foundation for the development and possible commercialization of implantable and stretchable bioelectronic devices that exploit wide bandgap materials.Employing a dissolvable film as a supporting layer for the fabrication of free- standing silicon carbide microstructures, the present work eliminates the wrinkling and twisting phenomena associated with nanomembranes grown at high temperatures. This technique enables transfer- printing of diverse microstructures of wide band gap semiconductors onto a soft substrate, creating a new class of stretchable electronics for biosensing and implanting applications.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertransfer printing
dc.subject.otherbio- integrated electronics
dc.subject.othersacrificial layers
dc.subject.othersensing devices
dc.subject.otherstretchable substrates
dc.subject.otherNano Electro Mechanical Systems (NEMS)
dc.titleA Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163418/3/adfm202004655_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163418/2/adfm202004655.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163418/1/adfm202004655-sup-0001-SuppMat.pdfen_US
dc.identifier.doi10.1002/adfm.202004655
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceC. A. Diaz- Botia, L. E. Luna, R. M. Neely, M. Charmanzar, C. Carraro, J. M. Carmena, P. N. Sabes, R. Maboudian, M. A. M. Maharbiz, J. Neural Eng. 2017, 14, 056006.
dc.identifier.citedreferenceJ. Seo, C. Kim, B. S. Ma, T. L. Lee, J. H. Bong, J. G. Oh, B. J. Cho, T. S. Kim, Adv. Funct. Mater. 2018, 28, 1707102.
dc.identifier.citedreferenceM. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheir, J. Riikonen, J. Lipsanen, 2D Mater. 2017, 4, 035004.
dc.identifier.citedreferenceC. H. Lee, D. R. Kim, X. Zheng, ACS Nano 2014, 8, 8746.
dc.identifier.citedreferenceH. Zhou, W. Qin, Q. Yu, H. Cheng, X. Yu, H. Wu, Nanomaterials 2019, 9, 283.
dc.identifier.citedreferenceC. Linghu, S. Zhang, C. Wang, J. Song, npj Flexible Electron. 2018, 26, 8247.
dc.identifier.citedreferenceB. Corbett, R. Loi, W. Zhou, D. Liu, Z. Ma, Prog. Quantum Electron. 2017, 52, 1.
dc.identifier.citedreferenceG. Müller, G. Krӧtz, E. Niemann, Sens. Actuators, A 1994, 43, 259.
dc.identifier.citedreferenceT. Nguyen, T. Dinh, A. R. M. Foisal, H.- P. Phan, T.- K. Nguyen, N.- T. Nguyen, D. V. Dao, Nat. Commun. 2019, 10, 1.
dc.identifier.citedreferenceH.- P. Phan, D. V. Dao, P. Tanner, L. Wang, N.- T. Nguyen, Appl. Phys. Lett. 2014, 104, 111905.
dc.identifier.citedreferenceT. H. Lee, S. Bhunia, Science 2010, 329, 1316.
dc.identifier.citedreferenceM. A. Lantz, B. Gotsmann, P. Jaroenapibal, T. D. Jacobs, S. D. O’Connor, K. Sridharan, R. W. Carpick, Adv. Funct. Mater. 2012, 22, 1639.
dc.identifier.citedreferenceT.- K. Nguyen, H.- P. Phan, T. Dinh, J. Han, S. Dimitrijev, P. Tanner, A. R. M. Foisal, Y. Zhu, N. T. Nguyen, D. V. Dao, IEEE Electron Device Lett. 2017, 38, 955.
dc.identifier.citedreferenceA. Qamar, H.- P. Phan, T. Dinh, N.- T. Nguyen, M. Rais- Zadeh, Appl. Phys. Lett. 2020, 116, 132902.
dc.identifier.citedreferenceA. Oliveros, A. Guiseppi- Elie, S. E. Saddow, Biomed. Microdevices 2013, 15, 353.
dc.identifier.citedreferenceH. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, ACS Appl. Mater. Interfaces 2015, 7, 10886.
dc.identifier.citedreferenceN. Yang, H. Zhuang, R. Hoffmann, W. Smirnov, J. Hees, X. Jiang, C. E. Nebel, Anal. Chem. 2011, 83, 5827.
dc.identifier.citedreferenceF. Deku, Y. Cohen, A. Joshi- Imre, A. Kanneganti, T. J. Gardner, S. F. Cogan, J. Neural Eng. 2018, 15, 016007.
dc.identifier.citedreferenceS. S. Pandurangi, S. S. Kulkarni, Int. J. Solids Struct. 2015, 62, 124.
dc.identifier.citedreferenceH.- P. Phan, T.- K. Nguyen, T. Dinh, G. Ina, A. R. Kermany, A. Qamar, J. Han, T. Namazu, R. Maeda, D. V. Dao, N.- T. Nguyen, Appl. Phys. Lett. 2017, 110, 141906.
dc.identifier.citedreferenceA. R. Kermany, F. Lacopi, J. Appl. Phys. 2015, 118, 155304.
dc.identifier.citedreferenceP. Tanner, A. Lacopi, H.- P. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D. V. Dao, N.- T. Nguyen, Sci. Rep. 2017, 7, 17734.
dc.identifier.citedreferenceH.- P. Phan, P. Tanner, D. V. Dao, L. Wang, N.- T. Nguyen, Y. Zhu, S. Dimitrijev, IEEE Electron Device Lett. 2014, 35, 399.
dc.identifier.citedreferenceA. E. Kacimi, E. Pauliac- Vaujour, J. Eymery, ACS Appl. Mater. Interfaces 2018, 10, 4794.
dc.identifier.citedreferenceN. R. Glavin, K. D. Chabak, E. R. Heller, E. A. Moore, T. A. Prusnick, B. Maruyama, D. E. Walker Jr., D. L. Dorsey, Q. Paduano, M. Snure, Adv. Mater. 2017, 29, 1701838.
dc.identifier.citedreferenceY. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin, Y. Xie, Sensors 2018, 18, 645.
dc.identifier.citedreferenceJ. Chun, Y. Hwang, Y. S. Choi, T. Jeong, J. H. Baek, H. C. Ko, S. J. Park, IEEE Photonics Technol. Lett. 2012, 24, 2115.
dc.identifier.citedreferenceW. F. Quiros- Solano, N. Gaio, C. Silvestri, G. Pandraud, R. Dekker, P. M. Sarro, Micromachines 2019, 10, 536.
dc.identifier.citedreferenceD. Huh, Y. Torisawa, G. A. Hamilton, H. J. Kim, D. E. Ingber, Lab Chip 2012, 12, 2156.
dc.identifier.citedreferenceS. Rohmfeld, M. Hundhausen, L. Ley, J. Appl. Phys. 2002, 91, 1113.
dc.identifier.citedreferenceY. Mei, P. J. Diemer, J. R. Niazi, R. K. Hallani, K. Jarolimek, C. S. Day, C. Risko, J. E. Anthony, A. Amassian, O. D. Jurchescu, Proc. Natl. Acad. Sci. USA 2017, 114, E6739.
dc.identifier.citedreferenceJ. Lian, Y. Yang, W. Wang, S. G. Parker, V. R. Gonçales, R. D. Tilley, J. J Gooding, Chem. Commun. 2019, 55, 123.
dc.identifier.citedreferenceT. Dinh, T. Nguyen, H.- P. Phan, T.- K. Nguyen, V. T. Dau, N.- T. Nguyen, D. V. Dao, Small 2020, 16, 1905707.
dc.identifier.citedreferenceD. Kuzum, H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. D. Vries, H. Bink, M. A. Dichter, T. H. Lucas, D. A. Coulter, E. Cubukcu, B. Litt, Nat. Commun. 2014, 5, 5259.
dc.identifier.citedreferenceT.- M. Fu, G. Hong, R. D. Viveros, T. Zhou, C. M. Lieber, Proc. Natl. Acad. Sci. USA 2017, 21, 114.
dc.identifier.citedreferenceJ. W. Jeong, J. G. MacCall, G. Shin, Y. Zhang, R. Al- Hasani, M. Kim, S. Li, J. Y. Sim, K. I. Jang, Y. Shi, D. Y. Hong, Y. Liu, G. P. Schimitz, L. Xia, Z. He, P. Gamble, W. Z. Ray, Y. Huang, M. R. Bruchas, J. A. Rogers, Cell 2015, 162, 662.
dc.identifier.citedreferenceX. Dai, W. Zhou, T. Gao, J. Liu, C. M. Lieber, Nat. Nanotechnol. 2016, 11, 776.
dc.identifier.citedreferenceJ. J. Jun, N. A. Steinmetz, J. H. Siegle, D. J. Denman, M. Bauza, B. Barbarits, A. K. Lee, C. A. Anastassiou, A. Andrei, C. Aydin, M. Barbic, T. J. Blanche, V. Bonin, J. Couto, B. Dutta, S. L. Gratiy, D. A. Gutnisky, M. Hausser, B. Karsh, P. Ledochowitsch, C. M. Lopez, C. Mitelut, S. Musa, M. Okun, M. Pachitariu, J. Putzeys, P. D. Rich, C. Rossant, W. L. Sun, K. Svoboda, et al., Nature 2017, 551, 232.
dc.identifier.citedreferenceE. Formento, K. Minassian, F. Wagner, J. B. Mignardot, C. G. Le Goff- MIgnardot, A. Rowald, J. Bloch, S. Micera, M. Capogrosso, G. Courtine, Nat. Neurosci. 2018, 21, 1728.
dc.identifier.citedreferenceT. Someya, Z. Bao, G. G. Malliaras, Nature 2016, 540, 379.
dc.identifier.citedreferenceJ. Viventi, D. H. Kim, J. D. Moss, Y.- S. Kim, J. A. Blanco, N. Annetta, A. Hicks, J. L. Xiao, Y. Huang, D. J. Callans, J. A. Rogers, B. A. Litt, Sci. Transl. Med. 2010, 2, 2422.
dc.identifier.citedreferenceV. M. Pathak, Navneet, Bioresour. Bioprocess. 2017, 4, 15.
dc.identifier.citedreferenceH.- P. Phan, Y. Zhong, T.- K. Nguyen, Y. Park, T. Dinh, E. Song, R. K. Vadivelu, M. K. Masud, J. Li, M. J. A. Shiddiky, D. Dao, Y. Yamauchi, J. A. Rogers, N.- T. Nguyen, ACS Nano 2019, 13, 11572.
dc.identifier.citedreferenceJ. K. Chang, H. P. Chang, Q. Gue, J. Koo, C. I. Wu, J. A. Rogers, Adv. Mater. 2018, 30, 1704955.
dc.identifier.citedreferenceG. Huang, Y. Mei, Small 2018, 14, 1703665.
dc.identifier.citedreferenceE. Song, C.- H. Chiang, R. Li, X. Jin, J. Zhao, M. Hill, Y. Xia, L. Li, Y. Huang, S. M. Won, K. J. Yu, X. Sheng, H. Fang, M. A. Alam, Y. Huang, J. Viventi, J. K. Chang, J. A. Roger, Proc. Natl. Acad. Sci. USA 2019, 116, 15398.
dc.identifier.citedreferenceJ. K. Chang, H. Fang, C. A. Bower, E. Song, X. Yu, J. A. Rogers, Proc. Natl. Acad. Sci. USA 2017, 114, E5522.
dc.identifier.citedreferenceH. Fang, K. J. Yu, C. Gloschat, Z. Yang, E. Song, C.- H. Chiang, J. Zhao, S. M. Won, S. Xu, M. Trumpis, Y. Zhong, S. W. Han, Y. Xue, D. Xu, S. W. Choi, G. Cauwenberghs, M. Kay, Y. Huang, J. Viventi, I. R. Efimov, J. A. Rogers, Nat. Biomed. Eng. 2017, 1, 0038.
dc.identifier.citedreferenceX. Xu, H. Subbaraman, A. Hosseini, C. Y. Lin, D. Kwong, R. T. Chen, Opt. Lett. 2012, 37, 1020.
dc.identifier.citedreferenceC. A. Bower, M. A. Meitl, B. Raymond, E. Radauscher, R. Cok, S. Bonafede, D. Gomez, T. Moore, C. Prevatte, B. Fisher, R. Rotzoll, G. A. Melnik, A. Fecioru, A. J. Trindade, Photonics Res. 2017, 5, A23.
dc.identifier.citedreferenceL. G. P. Martins, Y. Song, T. Zeng, M. S. Dresselhaus, J. Kong, P. T. Araujo, Proc. Natl. Acad. Sci. USA 2013, 110, 17762.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.