Show simple item record

Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems

dc.contributor.authorChoi, Seok Ki
dc.date.accessioned2020-11-04T16:00:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:00:01Z
dc.date.issued2020-10
dc.identifier.citationChoi, Seok Ki (2020). "Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems." Advanced Therapeutics 3(10): n/a-n/a.
dc.identifier.issn2366-3987
dc.identifier.issn2366-3987
dc.identifier.urihttps://hdl.handle.net/2027.42/163427
dc.description.abstractControl of therapeutic release constitutes one of most critical aspects considered in the design of nanoscale delivery systems. There are a variety of cellular factors and external stimuli employed for release control. Of these, use of light offers various photoactivation mechanisms that enable to effectively engage in therapeutic release. It also allows a higher degree of spatial and temporal control. Over recent decades, the application of photoactivation strategies has seen remarkable growth and made a significant impact on rapid advances in the field of drug delivery. This Review aims to summarize the fundamental concepts and practical applications demonstrated recently in numerous therapeutic areas from cancers to infectious diseases. Its scope is defined by a focus on those photoactivation strategies that occur via either linker cleavage, nanocontainer gating, or disassembly. Each of these is discussed with specific examples and underlying mechanisms that comprise linker photolysis, photoisomerization, photothermal heating, or photodynamic reactions with reactive oxygen species. In summary, this Review provides an inclusive summary of new developments and insights obtained from recent progress in photoactivation strategies and their applications in therapeutic nanodelivery.Photoactivation constitutes one of the major release mechanisms applied in therapeutics delivery systems. The strategy consists primarily of linker photolysis, photoisomerization, photothermal activation, or photodynamic reaction. Recently, of nanotherapeutic delivery system have found application in various disease areas. This Review addresses recent achievements and challenges in the development of photoactivation release systems.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.otherphotodynamic reactions
dc.subject.otherphotoisomerization
dc.subject.otherlinker photolysis
dc.subject.othertherapeutic release
dc.subject.otherupconversion luminescence
dc.subject.otherphotothermal activation
dc.titlePhotoactivation Strategies for Therapeutic Release in Nanodelivery Systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163427/2/adtp202000117.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163427/1/adtp202000117_am.pdfen_US
dc.identifier.doi10.1002/adtp.202000117
dc.identifier.sourceAdvanced Therapeutics
dc.identifier.citedreferenceY. Zhong, C. Wang, L. Cheng, F. Meng, Z. Zhong, Z. Liu, Biomacromolecules 2013, 14, 2411.
dc.identifier.citedreferenceV. Brega, F. Scaletti, X. Zhang, L.‐S. Wang, P. Li, Q. Xu, V. M. Rotello, S. W. Thomas, ACS Appl. Mater. Interfaces 2019, 11, 2814.
dc.identifier.citedreferenceA. R. Hilgenbrink, P. S. Low, J. Pharm. Sci. 2005, 94, 2135.
dc.identifier.citedreferenceR. J. Lee, P. S. Low, Biochim. Biophys. Acta, Biomembr. 1995, 1233, 134.
dc.identifier.citedreferenceX. Montet, M. Funovics, K. Montet‐Abou, R. Weissleder, L. Josephson, J. Med. Chem. 2006, 49, 6087.
dc.identifier.citedreferenceR. Shukla, T. P. Thomas, J. Peters, A. Kotlyar, A. Myc, J. R. Baker Jr, Chem. Commun. 2005, 5739.
dc.identifier.citedreferenceK. Temming, M. Lacombe, R. Q. J. Schaapveld, L. Orfi, G. Kéri, K. Poelstra, G. Molema, R. J. Kok, ChemMedChem 2006, 1, 1200.
dc.identifier.citedreferenceY. Chen, C. A. Foss, Y. Byun, S. Nimmagadda, M. Pullambhatla, J. J. Fox, M. Castanares, S. E. Lupold, J. W. Babich, R. C. Mease, M. G. Pomper, J. Med. Chem. 2008, 51, 7933.
dc.identifier.citedreferenceR. Shukla, T. P. Thomas, A. M. Desai, A. Kotlyar, S. J. Park, J. R. Baker Jr, Nanotechnology 2008, 19, 295102.
dc.identifier.citedreferenceT. P. Thomas, S. K. Choi, M.‐H. Li, A. Kotlyar, J. R. Baker Jr, Bioorg. Med. Chem. Lett. 2010, 20, 5191.
dc.identifier.citedreferenceA. Plantinga, A. Witte, M.‐H. Li, A. Harmon, S. K. Choi, M. M. Banaszak Holl, B. G. Orr, J. R. Baker Jr, K. Sinniah, ACS Med. Chem. Lett. 2011, 2, 363.
dc.identifier.citedreferenceG. Obaid, M. Broekgaarden, A.‐L. Bulin, H.‐C. Huang, J. Kuriakose, J. Liu, T. Hasan, Nanoscale 2016, 8, 12471.
dc.identifier.citedreferenceM. T. Huggett, M. Jermyn, A. Gillams, R. Illing, S. Mosse, M. Novelli, E. Kent, S. G. Bown, T. Hasan, B. W. Pogue, S. P. Pereira, Br. J. Cancer 2014, 110, 1698.
dc.identifier.citedreferenceH. He, L. Liu, E. E. Morin, M. Liu, A. Schwendeman, Acc. Chem. Res. 2019, 52, 2445.
dc.identifier.citedreferenceO. Lyass, B. Uziely, R. Ben‐Yosef, D. Tzemach, N. I. Heshing, M. Lotem, G. Brufman, A. Gabizon, Cancer 2000, 89, 1037.
dc.identifier.citedreferenceM. Dunne, B. Epp‐Ducharme, A. M. Sofias, M. Regenold, D. N. Dubins, C. Allen, J. Controlled Release 2019, 308, 197.
dc.identifier.citedreferenceO. Sartor, Urology 2003, 61, 25.
dc.identifier.citedreferenceA. Sparreboom, C. D. Scripture, V. Trieu, P. J. Williams, T. De, A. Yang, B. Beals, W. D. Figg, M. Hawkins, N. Desai, Clin. Cancer Res. 2005, 11, 4136.
dc.identifier.citedreferenceC. Li, Adv. Drug Delivery Rev. 2002, 54, 695.
dc.identifier.citedreferenceK. Venkatakrishnan, Y. Liu, D. Noe, J. Mertz, M. Bargfrede, T. Marbury, K. Farbakhsh, C. Oliva, A. Milton, Br. J. Clin. Pharmacol. 2014, 77, 998.
dc.identifier.citedreferenceJ. A. Silverman, S. R. Deitcher, Cancer Chemother. Pharmacol. 2013, 71, 555.
dc.identifier.citedreferenceH. Zhang, OncoTargets Ther. 2016, 9, 3001.
dc.identifier.citedreferenceT. Maisch, F. Santarelli, S. Schreml, P. Babilas, R.‐M. Szeimies, Exp. Dermatol. 2010, 19, e302.
dc.identifier.citedreferenceH. S. de Bruijn, S. Brooks, A. van der Ploeg‐van den Heuvel, T. L. M. ten Hagen, E. R. M. de Haas, D. J. Robinson, PLoS One 2016, 11, e0148850.
dc.identifier.citedreferenceN. Nishiyama, Y. Morimoto, W.‐D. Jang, K. Kataoka, Adv. Drug Delivery Rev. 2009, 61, 327.
dc.identifier.citedreferenceS. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev. 2015, 115, 1990.
dc.identifier.citedreferenceA. Moussaron, Z. Youssef, A. Ben‐Mihoub, R. Vanderesse, C. Frochot, S. Acherar, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 105.
dc.identifier.citedreferenceL. Vigderman, E. R. Zubarev, Adv. Drug Delivery Rev. 2013, 65, 663.
dc.identifier.citedreferenceY. Chen, C. Tan, H. Zhang, L. Wang, Chem. Soc. Rev. 2015, 44, 2681.
dc.identifier.citedreferenceY. Shi, M. Liu, F. Deng, G. Zeng, Q. Wan, X. Zhang, Y. Wei, J. Mater. Chem. B 2017, 5, 194.
dc.identifier.citedreferenceX. Wu, C.‐M. Dong, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 83.
dc.identifier.citedreferenceC. Zhang, D. Li, X. Shi, in Photonanotechnology for Therapeutics and Imaging (Ed.: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 23 – 43.
dc.identifier.citedreferenceY. Lu, P. S. Low, Adv. Drug Delivery Rev. 2002, 54, 675.
dc.identifier.citedreferenceA. K. Patri, J. F. Kukowska‐Latallo, J. R. Baker Jr, Adv. Drug Delivery Rev. 2005, 57, 2203.
dc.identifier.citedreferenceN. Kamaly, Z. Xiao, P. M. Valencia, A. F. Radovic‐Moreno, O. C. Farokhzad, Chem. Soc. Rev. 2012, 41, 2971.
dc.identifier.citedreferenceH. Maeda, Adv. Enzyme Regul. 2001, 41, 189.
dc.identifier.citedreferenceM. Mammen, S. K. Choi, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 2754.
dc.identifier.citedreferenceP. S. Low, W. A. Henne, D. D. Doorneweerd, Acc. Chem. Res. 2008, 41, 120.
dc.identifier.citedreferenceS. Bhatia, L. C. Camacho, R. Haag, J. Am. Chem. Soc. 2016, 138, 8654.
dc.identifier.citedreferenceL. L. Kiessling, J. E. Gestwicki, L. E. Strong, Angew. Chem., Int. Ed. 2006, 45, 2348.
dc.identifier.citedreferenceP. S. Low, S. A. Kularatne, Curr. Opin. Chem. Biol. 2009, 13, 256.
dc.identifier.citedreferenceZ. M. Qian, H. Li, H. Sun, K. Ho, Pharmacol. Rev. 2002, 54, 561.
dc.identifier.citedreferenceP. T. Wong, S. K. Choi, Chem. Rev. 2015, 115, 3388.
dc.identifier.citedreferenceJ. Zhuang, M. R. Gordon, J. Ventura, L. Li, S. Thayumanavan, Chem. Soc. Rev. 2013, 42, 7421.
dc.identifier.citedreferenceR. Tong, D. S. Kohane, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2012, 4, 638.
dc.identifier.citedreferenceN. Fomina, J. Sankaranarayanan, A. Almutairi, Adv. Drug Delivery Rev. 2012, 64, 1005.
dc.identifier.citedreferenceC. Englert, I. Nischang, C. Bader, P. Borchers, J. Alex, M. Pröhl, M. Hentschel, M. Hartlieb, A. Traeger, G. Pohnert, S. Schubert, M. Gottschaldt, U. S. Schubert, Angew. Chem., Int. Ed. 2018, 57, 2479.
dc.identifier.citedreferenceY. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev. 2019, 48, 2053.
dc.identifier.citedreferenceC. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem., Int. Ed. 2012, 51, 8446.
dc.identifier.citedreferenceP. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Adv. Drug Delivery Rev. 2010, 62, 1094.
dc.identifier.citedreferenceJ. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Chem. Rev. 2010, 110, 2795.
dc.identifier.citedreferenceJ. H. Kaplan, B. Forbush, J. F. Hoffman, Biochemistry 1978, 17, 1929.
dc.identifier.citedreferenceA. P. Billington, K. M. Walstrom, D. Ramesh, A. P. Guzikowski, B. K. Carpenter, G. P. Hess, Biochemistry 1992, 31, 5500.
dc.identifier.citedreferenceP. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119.
dc.identifier.citedreferenceS. K. Choi, T. Thomas, M. Li, A. Kotlyar, A. Desai, J. R. Baker Jr, Chem. Commun. 2010, 46, 2632.
dc.identifier.citedreferenceS. K. Choi, T. P. Thomas, M.‐H. Li, A. Desai, A. Kotlyar, J. R. Baker, Photochem. Photobiol. Sci. 2012, 11, 653.
dc.identifier.citedreferenceM. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski, B. L. Feringa, Angew. Chem., Int. Ed. 2016, 55, 10978.
dc.identifier.citedreferenceM. Wegener, M. J. Hansen, A. J. M. Driessen, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2017, 139, 17979.
dc.identifier.citedreferenceY. Huang, R. Dong, X. Zhu, D. Yan, Soft Matter 2014, 10, 6121.
dc.identifier.citedreferenceW. Wu, X. Shao, J. Zhao, M. Wu, Adv. Sci. 2017, 4, 1700113.
dc.identifier.citedreferenceS. K. Choi, NanoImpact 2016, 3‐4, 81.
dc.identifier.citedreferenceQ. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches, A. Tropsha, B. Yan, Chem. Rev. 2014, 114, 7740.
dc.identifier.citedreferenceC. C. Winterbourn, Nat. Chem. Biol. 2008, 4, 278.
dc.identifier.citedreferenceW. Lu, M. P. Melancon, C. Xiong, Q. Huang, A. Elliott, S. Song, R. Zhang, L. G. Flores, J. G. Gelovani, L. V. Wang, G. Ku, R. J. Stafford, C. Li, Cancer Res. 2011, 71, 6116.
dc.identifier.citedreferenceJ. M. Silva, E. Silva, R. L. Reis, J. Controlled Release 2019, 298, 154.
dc.identifier.citedreferenceT. Dvir, M. R. Banghart, B. P. Timko, R. Langer, D. S. Kohane, Nano Lett. 2010, 10, 250.
dc.identifier.citedreferenceB. P. Timko, T. Dvir, D. S. Kohane, Adv. Mater. 2010, 22, 4925.
dc.identifier.citedreferenceQ. Liu, C. Zhan, D. S. Kohane, Bioconjugate Chem. 2017, 28, 98.
dc.identifier.citedreferenceM. Karimi, P. Sahandi Zangabad, S. Baghaee‐Ravari, M. Ghazadeh, H. Mirshekari, M. R. Hamblin, J. Am. Chem. Soc. 2017, 139, 4584.
dc.identifier.citedreferenceM. J. Geisow, W. H. Evans, Exp. Cell Res. 1984, 150, 36.
dc.identifier.citedreferenceP. Chan, J. Lovrić, J. Warwicker, Proteomics 2006, 6, 3494.
dc.identifier.citedreferenceM. J. Geisow, Exp. Cell Res. 1984, 150, 29.
dc.identifier.citedreferenceR. P. Feazell, N. Nakayama‐Ratchford, H. Dai, S. J. Lippard, J. Am. Chem. Soc. 2007, 129, 8438.
dc.identifier.citedreferenceG. M. Dubowchik, M. A. Walker, Pharmacol. Ther. 1999, 83, 67.
dc.identifier.citedreferenceB. Huang, S. Tang, A. Desai, X.‐M. Cheng, A. Kotlyar, A. V. D. Spek, T. P. Thomas, J. R. Baker Jr, Bioorg. Med. Chem. Lett. 2009, 19, 5016.
dc.identifier.citedreferenceE. Gullotti, Y. Yeo, Mol. Pharmaceutics 2009, 6, 1041.
dc.identifier.citedreferenceL. M. Kaminskas, B. D. Kelly, V. M. McLeod, G. Sberna, B. J. Boyd, D. J. Owen, C. J. H. Porter, Mol. Pharmaceutics 2011, 8, 338.
dc.identifier.citedreferenceL. M. Kaminskas, B. D. Kelly, V. M. McLeod, B. J. Boyd, G. Y. Krippner, E. D. Williams, C. J. H. Porter, Mol. Pharmaceutics 2009, 6, 1190.
dc.identifier.citedreferenceA. Homma, H. Sato, A. Okamachi, T. Emura, T. Ishizawa, T. Kato, T. Matsuura, S. Sato, T. Tamura, Y. Higuchi, T. Watanabe, H. Kitamura, K. Asanuma, T. Yamazaki, M. Ikemi, H. Kitagawa, T. Morikawa, H. Ikeya, K. Maeda, K. Takahashi, K. Nohmi, N. Izutani, M. Kanda, R. Suzuki, Bioorg. Med. Chem. 2009, 17, 4647.
dc.identifier.citedreferenceS. Dhar, Z. Liu, J. r. Thomale, H. Dai, S. J. Lippard, J. Am. Chem. Soc. 2008, 130, 11467.
dc.identifier.citedreferenceD. P. Naughton, Adv. Drug Delivery Rev. 2001, 53, 229.
dc.identifier.citedreferenceH. H. W. Chen, I.‐S. Song, A. Hossain, M.‐K. Choi, Y. Yamane, Z. D. Liang, J. Lu, L. Y.‐H. Wu, Z. H. Siddik, L. W. J. Klomp, N. Savaraj, M. T. Kuo, Mol. Pharmacol. 2008, 74, 697.
dc.identifier.citedreferenceI. Ojima, Acc. Chem. Res. 2008, 41, 108.
dc.identifier.citedreferenceJ. M. Chan, L. Zhang, R. Tong, D. Ghosh, W. Gao, G. Liao, K. P. Yuet, D. Gray, J.‐W. Rhee, J. Cheng, G. Golomb, P. Libby, R. Langer, O. C. Farokhzad, Proc. Natl. Acad. Sci. USA 2010, 107, 2213.
dc.identifier.citedreferenceX. Xue, Y. Zhao, L. Dai, X. Zhang, X. Hao, C. Zhang, S. Huo, J. Liu, C. Liu, A. Kumar, W.‐Q. Chen, G. Zou, X.‐J. Liang, Adv. Mater. 2014, 26, 712.
dc.identifier.citedreferenceV. G. Deepagan, D. G. You, W. Um, H. Ko, S. Kwon, K. Y. Choi, G.‐R. Yi, J. Y. Lee, D. S. Lee, K. Kim, I. C. Kwon, J. H. Park, Nano Lett. 2016, 16, 6257.
dc.identifier.citedreferenceF. Xu, M. Hu, C. Liu, S. K. Choi, Biomater. Sci. 2017, 5, 678.
dc.identifier.citedreferenceJ.‐F. Gohy, Y. Zhao, Chem. Soc. Rev. 2013, 42, 7117.
dc.identifier.citedreferenceL. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 2014, 114, 10869.
dc.identifier.citedreferenceV. Biju, Chem. Soc. Rev. 2014, 43, 744.
dc.identifier.citedreferenceN. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
dc.identifier.citedreferenceY. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. Brown, Acc. Chem. Res. 2011, 44, 914.
dc.identifier.citedreferenceM.‐C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
dc.identifier.citedreferenceH. Chen, L. Shao, Q. Li, J. Wang, Chem. Soc. Rev. 2013, 42, 2679.
dc.identifier.citedreferenceH. Cai, K. Li, J. Li, S. Wen, Q. Chen, M. Shen, L. Zheng, G. Zhang, X. Shi, Small 2015, 11, 4584.
dc.identifier.citedreferenceD. Li, S. Wen, W. Sun, J. Zhang, D. Jin, C. Peng, M. Shen, X. Shi, ACS Appl. Bio Mater. 2018, 1, 221.
dc.identifier.citedreferenceG. Ku, Q. Huang, X. Wen, J. Ye, D. Piwnica‐Worms, C. Li, ACS Omega 2018, 3, 5888.
dc.identifier.citedreferenceJ. Li, M. Zhou, F. Liu, C. Xiong, W. Wang, Q. Cao, X. Wen, J. D. Robertson, X. Ji, Y. A. Wang, S. Gupta, C. Li, Radiology 2016, 281, 427.
dc.identifier.citedreferenceN. Zhao, J. You, Z. Zeng, C. Li, Y. Zu, Small 2013, 9, 3477.
dc.identifier.citedreferenceJ. You, G. Zhang, C. Li, ACS Nano 2010, 4, 1033.
dc.identifier.citedreferenceM. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, Y. Xia, Nat. Mater. 2009, 8, 935.
dc.identifier.citedreferenceC. M. Cobley, L. Au, J. Chen, Y. Xia, Expert Opin. Drug Delivery 2010, 7, 577.
dc.identifier.citedreferenceN. S. Abadeer, C. J. Murphy, J. Phys. Chem. C 2016, 120, 4691.
dc.identifier.citedreferenceL. Au, D. Zheng, F. Zhou, Z.‐Y. Li, X. Li, Y. Xia, ACS Nano 2008, 2, 1645.
dc.identifier.citedreferenceC. Xiong, W. Lu, M. Zhou, X. Wen, C. Li, Cancer Nanotechnol. 2018, 9, 1.
dc.identifier.citedreferenceW. Lu, G. Zhang, R. Zhang, L. G. Flores, Q. Huang, J. G. Gelovani, C. Li, Cancer Res. 2010, 70, 3177.
dc.identifier.citedreferenceW. Li, J. Yang, L. Luo, M. Jiang, B. Qin, H. Yin, C. Zhu, X. Yuan, J. Zhang, Z. Luo, Y. Du, Q. Li, Y. Lou, Y. Qiu, J. You, Nat. Commun. 2019, 10, 3349.
dc.identifier.citedreferenceF. Xu, Y. Zhao, M. Hu, p. zhang, N. Kong, r. Liu, C. Liu, S. K. Choi, Chem. Commun. 2018, 54, 9525.
dc.identifier.citedreferenceM. Dahl, Y. Liu, Y. Yin, Chem. Rev. 2014, 114, 9853.
dc.identifier.citedreferenceJ. M. Anglada, M. Martins‐Costa, J. S. Francisco, M. F. Ruiz‐López, Acc. Chem. Res. 2015, 48, 575.
dc.identifier.citedreferenceG. Chen, H. Qiu, P. N. Prasad, X. Chen, Chem. Rev. 2014, 114, 5161.
dc.identifier.citedreferenceR. Justin, S. Roman, D. Chen, K. Tao, X. Geng, R. T. Grant, S. MacNeil, K. Sun, B. Chen, RSC Adv. 2015, 5, 51934.
dc.identifier.citedreferenceS. Barua, X. Geng, B. Chen, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 45 – 81.
dc.identifier.citedreferenceD. Eder, Chem. Rev. 2010, 110, 1348.
dc.identifier.citedreferenceQ. Mu, D. L. Broughton, B. Yan, Nano Lett. 2009, 9, 4370.
dc.identifier.citedreferenceJ. Zhou, Y. Yang, C.‐Y. Zhang, Chem. Rev. 2015, 115, 11669.
dc.identifier.citedreferenceT. Daimon, Y. Nosaka, J. Phys. Chem. C 2007, 111, 4420.
dc.identifier.citedreferenceM. Buchalska, P. Labuz, L. Bujak, G. Szewczyk, T. Sarna, S. Mackowski, W. Macyk, Dalton Trans. 2013, 42, 9468.
dc.identifier.citedreferenceA. Amirshaghaghi, L. Yan, J. Miller, Y. Daniel, J. M. Stein, T. M. Busch, Z. Cheng, A. Tsourkas, Sci. Rep. 2019, 9, 2613.
dc.identifier.citedreferenceD. Chen, R. Tao, K. Tao, B. Chen, S. K. Choi, Q. Tian, Y. Xu, G. Zhou, K. Sun, Small 2017, 13, 1602053.
dc.identifier.citedreferenceB. Zhao, P. J. Bilski, Y.‐Y. He, L. Feng, C. F. Chignell, Photochem. Photobiol. 2008, 84, 1215.
dc.identifier.citedreferenceS. Heer, K. Kömpe, H. U. Güdel, M. Haase, Adv. Mater. 2004, 16, 2102.
dc.identifier.citedreferenceX. Liu, C.‐H. Yan, J. A. Capobianco, Chem. Soc. Rev. 2015, 44, 1299.
dc.identifier.citedreferenceM. Haase, H. Schäfer, Angew. Chem., Int. Ed. 2011, 50, 5808.
dc.identifier.citedreferenceO. S. Wolfbeis, Chem. Soc. Rev. 2015, 44, 4743.
dc.identifier.citedreferenceN. M. Idris, M. K. G. Jayakumar, A. Bansal, Y. Zhang, Chem. Soc. Rev. 2015, 44, 1449.
dc.identifier.citedreferenceF. Wang, X. Liu, Chem. Soc. Rev. 2009, 38, 976.
dc.identifier.citedreferenceK. Tao, K. Sun, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 147 – 176.
dc.identifier.citedreferenceA. Alabugin, Photochem. Photobiol. 2019, 95, 722.
dc.identifier.citedreferenceM. Hu, W. Liu, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 205 – 241.
dc.identifier.citedreferenceJ. Jin, Y.‐J. Gu, C. W.‐Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H.‐Y. Lee, S. H. Cheng, W.‐T. Wong, ACS Nano 2011, 5, 7838.
dc.identifier.citedreferenceQ. Tian, K. Tao, W. Li, K. Sun, J. Phys. Chem. C 2011, 115, 22886.
dc.identifier.citedreferenceJ. Vuilleumier, G. Gaulier, R. De Matos, Y. Mugnier, G. Campargue, J.‐P. Wolf, L. Bonacina, S. Gerber‐Lemaire, Helv. Chim. Acta 2020, 103, e1900251.
dc.identifier.citedreferenceD. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber‐Lemaire, L. Juillerat‐Jeanneret, L. Bonacina, J.‐P. Wolf, ACS Nano 2012, 6, 2542.
dc.identifier.citedreferenceM. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2015, 44, 3358.
dc.identifier.citedreferenceM. Bio, G. Nkepang, Y. You, Chem. Commun. 2012, 48, 6517.
dc.identifier.citedreferenceG. Saravanakumar, J. Lee, J. Kim, W. J. Kim, Chem. Commun. 2015, 51, 9995.
dc.identifier.citedreferenceK. Kim, C.‐S. Lee, K. Na, Chem. Commun. 2016, 52, 2839.
dc.identifier.citedreferenceS. Guo, X. Liu, C. Yao, C. Lu, Q. Chen, X.‐Y. Hu, L. Wang, Chem. Commun. 2016, 52, 10751.
dc.identifier.citedreferenceZ. Liu, Q. Lin, Q. Huang, H. Liu, C. Bao, W. Zhang, X. Zhong, L. Zhu, Chem. Commun. 2011, 47, 1482.
dc.identifier.citedreferenceN. G. Patil, N. B. Basutkar, A. V. Ambade, Chem. Commun. 2015, 51, 17708.
dc.identifier.citedreferenceC. Yao, P. Wang, X. Li, X. Hu, J. Hou, L. Wang, F. Zhang, Adv. Mater. 2016, 28, 9341.
dc.identifier.citedreferenceG. Mayer, A. Heckel, Angew. Chem., Int. Ed. 2006, 45, 4900.
dc.identifier.citedreferenceM. Goard, G. Aakalu, O. D. Fedoryak, C. Quinonez, J. St. Julien, S. J. Poteet, E. M. Schuman, T. M. Dore, Chem. Biol. 2005, 12, 685.
dc.identifier.citedreferenceP. Neveu, I. Aujard, C. Benbrahim, T. Le Saux, J.‐F. Allemand, S. Vriz, D. Bensimon, L. Jullien, Angew. Chem., Int. Ed. 2008, 47, 3744.
dc.identifier.citedreferenceA. Momotake, N. Lindegger, E. Niggli, R. J. Barsotti, G. C. R. Ellis‐Davies, Nat. Methods 2006, 3, 35.
dc.identifier.citedreferenceI. Aujard, C. Benbrahim, M. Gouget, O. Ruel, J.‐B. Baudin, P. Neveu, L. Jullien, Chem. ‐ Eur. J. 2006, 12, 6865.
dc.identifier.citedreferenceP. T. Wong, S. Tang, J. Cannon, J. Mukherjee, D. Isham, K. Gam, M. Payne, S. A. Yanik, J. R. Baker, S. K. Choi, ChemBioChem 2017, 18, 126.
dc.identifier.citedreferenceT. Furuta, S. S. H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 1999, 96, 1193.
dc.identifier.citedreferenceS. Tang, J. Cannon, K. Yang, M. F. Krummel, J. R. Baker, S. K. Choi, J. Org. Chem. 2020, 85, 2945.
dc.identifier.citedreferenceA. P. Gorka, R. R. Nani, J. Zhu, S. Mackem, M. J. Schnermann, J. Am. Chem. Soc. 2014, 136, 14153.
dc.identifier.citedreferenceR. R. Nani, A. P. Gorka, T. Nagaya, T. Yamamoto, J. Ivanic, H. Kobayashi, M. J. Schnermann, ACS Cent. Sci. 2017, 3, 329.
dc.identifier.citedreferenceE. Janett, Y. Bernardinelli, D. Müller, C. G. Bochet, Bioconjugate Chem. 2015, 26, 2408.
dc.identifier.citedreferenceR. Johnsson, J. G. Lackey, J. J. Bogojeski, M. J. Damha, Bioorg. Med. Chem. Lett. 2011, 21, 3721.
dc.identifier.citedreferenceS. Kantevari, S. Passlick, H.‐B. Kwon, M. T. Richers, B. L. Sabatini, G. C. R. Ellis‐Davies, ChemBioChem 2016, 17, 953.
dc.identifier.citedreferenceR. J. T. Mikkelsen, K. E. Grier, K. T. Mortensen, T. E. Nielsen, K. Qvortrup, ACS Comb. Sci. 2018, 20, 377.
dc.identifier.citedreferenceF. M. Rossi, M. Margulis, C.‐M. Tang, J. P. Y. Kao, J. Biol. Chem. 1997, 272, 32933.
dc.identifier.citedreferenceF. M. Rossi, J. P. Y. Kao, J. Biol. Chem. 1997, 272, 3266.
dc.identifier.citedreferenceL. Niu, K. R. Gee, K. Schaper, G. P. Hess, Biochemistry 1996, 35, 2030.
dc.identifier.citedreferenceS. K. Choi, M. Verma, J. Silpe, R. E. Moody, K. Tang, J. J. Hanson, J. R. Baker Jr, Bioorg. Med. Chem. 2012, 20, 1281.
dc.identifier.citedreferenceM. A. Inlay, V. Choe, S. Bharathi, N. B. Fernhoff, J. R. Baker, I. L. Weissman, S. K. Choi, Chem. Commun. 2013, 49, 4971.
dc.identifier.citedreferenceS. S. Agasti, A. Chompoosor, C.‐C. You, P. Ghosh, C. K. Kim, V. M. Rotello, J. Am. Chem. Soc. 2009, 131, 5728.
dc.identifier.citedreferenceP. T. Wong, E. W. Roberts, S. Tang, J. Mukherjee, J. Cannon, A. J. Nip, K. Corbin, M. F. Krummel, S. K. Choi, ACS Chem. Biol. 2017, 12, 1001.
dc.identifier.citedreferenceP. T. Wong, D. Chen, S. Tang, S. Yanik, M. Payne, J. Mukherjee, A. Coulter, K. Tang, K. Tao, K. Sun, J. R. Baker Jr, S. K. Choi, Small 2015, 11, 6078.
dc.identifier.citedreferenceM. Gaplovsky, Y. V. Il’ichev, Y. Kamdzhilov, S. V. Kombarova, M. Mac, M. A. Schworer, J. Wirz, Photochem. Photobiol. Sci. 2005, 4, 33.
dc.identifier.citedreferenceY. V. Il’ichev, M. A. Schwörer, J. Wirz, J. Am. Chem. Soc. 2004, 126, 4581.
dc.identifier.citedreferenceM. Wilcox, R. W. Viola, K. W. Johnson, A. P. Billington, B. K. Carpenter, J. A. McCray, A. P. Guzikowski, G. P. Hess, J. Org. Chem. 1990, 55, 1585.
dc.identifier.citedreferenceR. K. Paradise, D. A. Lauffenburger, K. J. Van Vliet, PLoS One 2011, 6, e15746.
dc.identifier.citedreferenceS. K. Choi, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 243 – 275.
dc.identifier.citedreferenceY. M. Li, J. Shi, R. Cai, X. Chen, Z. F. Luo, Q. X. Guo, J. Photochem. Photobiol., A 2010, 211, 129.
dc.identifier.citedreferenceT. Narumi, K. Miyata, A. Nii, K. Sato, N. Mase, T. Furuta, Org. Lett. 2018, 20, 4178.
dc.identifier.citedreferenceA.‐L. K. Hennig, D. Deodato, N. Asad, C. Herbivo, T. M. Dore, J. Org. Chem. 2020, 85, 726.
dc.identifier.citedreferenceN. Asad, D. Deodato, X. Lan, M. B. Widegren, D. L. Phillips, L. Du, T. M. Dore, J. Am. Chem. Soc. 2017, 139, 12591.
dc.identifier.citedreferenceY. Venkatesh, S. Nandi, M. Shee, B. Saha, A. Anoop, N. D. P. Singh, Eur. J. Org. Chem. 2017, 2017, 6121.
dc.identifier.citedreferenceY. Venkatesh, Y. Rajesh, S. Karthik, A. C. Chetan, M. Mandal, A. Jana, N. D. P. Singh, J. Org. Chem. 2016, 81, 11168.
dc.identifier.citedreferenceR. G. Wylie, M. S. Shoichet, J. Mater. Chem. 2008, 18, 2716.
dc.identifier.citedreferenceC. Bao, G. Fan, Q. Lin, B. Li, S. Cheng, Q. Huang, L. Zhu, Org. Lett. 2012, 14, 572.
dc.identifier.citedreferenceK. R. Gee, L. Niu, K. Schaper, V. Jayaraman, G. P. Hess, Biochemistry 1999, 38, 3140.
dc.identifier.citedreferenceJ. W. Walker, J. A. McCray, G. P. Hess, Biochemistry 1986, 25, 1799.
dc.identifier.citedreferenceK. Mitra, C. E. Lyons, M. C. T. Hartman, Angew. Chem., Int. Ed. 2018, 57, 10263.
dc.identifier.citedreferenceJ. Lee, J. Park, K. Singha, W. J. Kim, Chem. Commun. 2013, 49, 1545.
dc.identifier.citedreferenceH. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, X. Ma, K. T. Nguyen, V. Korzh, Y. Zhao, Angew. Chem., Int. Ed. 2012, 51, 8373.
dc.identifier.citedreferenceJ. Liu, W. Bu, L. Pan, J. Shi, Angew. Chem., Int. Ed. 2013, 52, 4375.
dc.identifier.citedreferenceR. J. Mart, R. K. Allemann, Chem. Commun. 2016, 52, 12262.
dc.identifier.citedreferenceQ. Zhao, Y. Wang, Y. Yan, J. Huang, ACS Nano 2014, 8, 11341.
dc.identifier.citedreferenceQ. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.‐H. Yan, W. Tan, ACS Nano 2012, 6, 6337.
dc.identifier.citedreferenceA. Martinez‐Cuezva, S. Valero‐Moya, M. Alajarin, J. Berna, Chem. Commun. 2015, 51, 14501.
dc.identifier.citedreferenceJ. R. Schnell, H. J. Dyson, P. E. Wright, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 119.
dc.identifier.citedreferenceM. H. N. Tattersall, B. Brown, E. Frei, Nature 1975, 253, 198.
dc.identifier.citedreferenceD. Farquhar, R. A. Newman, J. E. Zuckerman, B. S. Andersson, J. Med. Chem. 1991, 34, 561.
dc.identifier.citedreferenceP. T. Wong, S. Tang, J. Cannon, D. Chen, R. Sun, J. Lee, J. Phan, K. Tao, K. Sun, B. Chen, J. R. Baker, S. K. Choi, Bioconjugate Chem. 2017, 28, 3016.
dc.identifier.citedreferenceJ. A. Johnson, Y. Y. Lu, A. O. Burts, Y.‐H. Lim, M. G. Finn, J. T. Koberstein, N. J. Turro, D. A. Tirrell, R. H. Grubbs, J. Am. Chem. Soc. 2011, 133, 559.
dc.identifier.citedreferenceM. M. Dcona, Q. Yu, J. A. Capobianco, M. C. T. Hartman, Chem. Commun. 2015, 51, 8477.
dc.identifier.citedreferenceP. Wong, S. Tang, J. Mukherjee, K. Tang, K. Gam, D. Isham, C. Murat, R. Sun, J. R. Baker, S. K. Choi, Chem. Commun. 2016, 52, 10357.
dc.identifier.citedreferenceJ. Xiang, X. Tong, F. Shi, Q. Yan, B. Yu, Y. Zhao, J. Mater. Chem. B 2018, 6, 3531.
dc.identifier.citedreferenceY. Dai, H. Xiao, J. Liu, Q. Yuan, P. a. Ma, D. Yang, C. Li, Z. Cheng, Z. Hou, P. Yang, J. Lin, J. Am. Chem. Soc. 2013, 135, 18920.
dc.identifier.citedreferenceS. Li, R. Liu, X. Jiang, Y. Qiu, X. Song, G. Huang, N. Fu, L. Lin, J. Song, X. Chen, H. Yang, ACS Nano 2019, 13, 2103.
dc.identifier.citedreferenceQ. Jin, F. Mitschang, S. Agarwal, Biomacromolecules 2011, 12, 3684.
dc.identifier.citedreferenceM. Noguchi, M. Skwarczynski, H. Prakash, S. Hirota, T. Kimura, Y. Hayashi, Y. Kiso, Bioorg. Med. Chem. 2008, 16, 5389.
dc.identifier.citedreferenceM. Skwarczynski, M. Noguchi, S. Hirota, Y. Sohma, T. Kimura, Y. Hayashi, Y. Kiso, Bioorg. Med. Chem. Lett. 2006, 16, 4492.
dc.identifier.citedreferenceA. Z. Suzuki, R. Sekine, S. Takeda, R. Aikawa, Y. Shiraishi, T. Hamaguchi, H. Okuno, H. Tamamura, T. Furuta, Chem. Commun. 2018, 55, 451.
dc.identifier.citedreferenceR. A. Gropeanu, H. Baumann, S. Ritz, V. Mailänder, T. Surrey, A. del Campo, PLoS One 2012, 7, e43657.
dc.identifier.citedreferenceC. Xu, H. Li, K. Zhang, D. W. Binzel, H. Yin, W. Chiu, P. Guo, Nano Res. 2019, 12, 41.
dc.identifier.citedreferenceX. Hu, J. Tian, T. Liu, G. Zhang, S. Liu, Macromolecules 2013, 46, 6243.
dc.identifier.citedreferenceG. Yu, W. Yu, Z. Mao, C. Gao, F. Huang, Small 2015, 11, 919.
dc.identifier.citedreferenceL. Huang, Y. Zhao, H. Zhang, K. Huang, J. Yang, G. Han, Angew. Chem., Int. Ed. 2017, 56, 14400.
dc.identifier.citedreferenceX. Li, J. Mu, F. Liu, E. W. P. Tan, B. Khezri, R. D. Webster, E. K. L. Yeow, B. Xing, Bioconjugate Chem. 2015, 26, 955.
dc.identifier.citedreferenceH. Song, W. Li, R. Qi, L. Yan, X. Jing, M. Zheng, H. Xiao, Chem. Commun. 2015, 51, 11493.
dc.identifier.citedreferenceH. Song, X. Kang, J. Sun, X. Jing, Z. Wang, L. Yan, R. Qi, M. Zheng, Chem. Commun. 2016, 52, 2281.
dc.identifier.citedreferenceM. LeBel, Pharmacotherapy 1988, 8, 3.
dc.identifier.citedreferenceY. Shi, V. X. Truong, K. Kulkarni, Y. Qu, G. P. Simon, R. L. Boyd, P. Perlmutter, T. Lithgow, J. S. Forsythe, J. Mater. Chem. B 2015, 3, 8771.
dc.identifier.citedreferenceP. T. Wong, S. Tang, K. Tang, A. Coulter, J. Mukherjee, K. Gam, J. R. Baker, S. K. Choi, J. Mater. Chem. B 2015, 3, 1149.
dc.identifier.citedreferenceG. Han, C.‐C. You, B.‐J. Kim, R. S. Turingan, N. S. Forbes, C. T. Martin, V. M. Rotello, Angew. Chem., Int. Ed. 2006, 45, 3165.
dc.identifier.citedreferenceP. K. Brown, A. T. Qureshi, A. N. Moll, D. J. Hayes, W. T. Monroe, ACS Nano 2013, 7, 2948.
dc.identifier.citedreferenceY. Pan, J. Yang, X. Luan, X. Liu, X. Li, J. Yang, T. Huang, L. Sun, Y. Wang, Y. Lin, Y. Song, Sci. Adv. 2019, 5, eaav7199.
dc.identifier.citedreferenceM. K. G. Jayakumar, A. Bansal, K. Huang, R. Yao, B. N. Li, Y. Zhang, ACS Nano 2014, 8, 4848.
dc.identifier.citedreferenceA. Fraix, N. Kandoth, I. Manet, V. Cardile, A. C. E. Graziano, R. Gref, S. Sortino, Chem. Commun. 2013, 49, 4459.
dc.identifier.citedreferenceC. Fowley, A. P. McHale, B. McCaughan, A. Fraix, S. Sortino, J. F. Callan, Chem. Commun. 2015, 51, 81.
dc.identifier.citedreferenceH.‐J. Xiang, L. An, W.‐W. Tang, S.‐P. Yang, J.‐G. Liu, Chem. Commun. 2015, 51, 2555.
dc.identifier.citedreferenceM. Guo, H.‐J. Xiang, Y. Wang, Q.‐L. Zhang, L. An, S.‐P. Yang, Y. Ma, Y. Wang, J.‐G. Liu, Chem. Commun. 2017, 53, 3253.
dc.identifier.citedreferenceA. E. Pierri, P.‐J. Huang, J. V. Garcia, J. G. Stanfill, M. Chui, G. Wu, N. Zheng, P. C. Ford, Chem. Commun. 2015, 51, 2072.
dc.identifier.citedreferenceW. Chen, M. Chen, Q. Zang, L. Wang, F. Tang, Y. Han, C. Yang, L. Deng, Y.‐N. Liu, Chem. Commun. 2015, 51, 9193.
dc.identifier.citedreferenceW. Chen, D. Ni, Z. T. Rosenkrans, T. Cao, W. Cai, Adv. Sci. 2019, 6, 1901724.
dc.identifier.citedreferenceC. Alvarez‐Lorenzo, L. Bromberg, A. Concheiro, Photochem. Photobiol. 2009, 85, 848.
dc.identifier.citedreferenceF. Huang, W.‐C. Liao, Y. S. Sohn, R. Nechushtai, C.‐H. Lu, I. Willner, J. Am. Chem. Soc. 2016, 138, 8936.
dc.identifier.citedreferenceB. Chandra, S. Mallik, D. K. Srivastava, Chem. Commun. 2005, 3021.
dc.identifier.citedreferenceF. Reeßing, M. C. A. Stuart, D. F. Samplonius, R. A. J. O. Dierckx, B. L. Feringa, W. Helfrich, W. Szymanski, Chem. Commun. 2019, 55, 10784.
dc.identifier.citedreferenceH. Wu, J. Dong, C. Li, Y. Liu, N. Feng, L. Xu, X. Zhan, H. Yang, G. Wang, Chem. Commun. 2013, 49, 3516.
dc.identifier.citedreferenceX. Zhao, M. Qi, S. Liang, K. Tian, T. Zhou, X. Jia, J. Li, P. Liu, ACS Appl. Mater. Interfaces 2016, 8, 22127.
dc.identifier.citedreferenceY. Li, Y. Qian, T. Liu, G. Zhang, S. Liu, Biomacromolecules 2012, 13, 3877.
dc.identifier.citedreferenceJ. Yang, J.‐I. Song, Q. Song, J. Y. Rho, E. D. H. Mansfield, S. C. L. Hall, M. Sambrook, F. Huang, S. Perrier, Angew. Chem., Int. Ed. 2020, 59, 8860.
dc.identifier.citedreferenceF. Sun, P. Zhang, Y. Liu, C. Lu, Y. Qiu, H. Mu, J. Duan, Carbohydr. Polym. 2019, 206, 309.
dc.identifier.citedreferenceL. Yang, H. Sun, Y. Liu, W. Hou, Y. Yang, R. Cai, C. Cui, P. Zhang, X. Pan, X. Li, L. Li, B. S. Sumerlin, W. Tan, Angew. Chem., Int. Ed. 2018, 57, 17048.
dc.identifier.citedreferenceB. Yan, J.‐C. Boyer, N. R. Branda, Y. Zhao, J. Am. Chem. Soc. 2011, 133, 19714.
dc.identifier.citedreferenceZ. Sun, G. Liu, J. Hu, S. Liu, Biomacromolecules 2018, 19, 2071.
dc.identifier.citedreferenceG. Pasparakis, T. Manouras, M. Vamvakaki, P. Argitis, Nat. Commun. 2014, 5, 3623.
dc.identifier.citedreferenceY. Zhang, G. Lu, Y. Yu, H. Zhang, J. Gao, Z. Sun, Y. Lu, H. Zou, ACS Appl. Bio Mater. 2019, 2, 495.
dc.identifier.citedreferenceH. Zhao, W. Hu, H. Ma, R. Jiang, Y. Tang, Y. Ji, X. Lu, B. Hou, W. Deng, W. Huang, Q. Fan, Adv. Funct. Mater. 2017, 27, 1702592.
dc.identifier.citedreferenceY. Abebe Alemayehu, B. Tewabe Gebeyehu, C.‐C. Cheng, Biomacromolecules 2019, 20, 4535.
dc.identifier.citedreferenceJ. Lai, X. Mu, Y. Xu, X. Wu, C. Wu, C. Li, J. Chen, Y. Zhao, Chem. Commun. 2010, 46, 7370.
dc.identifier.citedreferenceA. Hernández‐Montoto, M. Gorbe, A. Llopis‐Lorente, J. M. Terrés, R. Montes, R. Cao‐Milán, B. Díaz de Greñu, M. Alfonso, M. Orzaez, M. D. Marcos, R. Martínez‐Máñez, F. Sancenón, Chem. Commun. 2019, 55, 9039.
dc.identifier.citedreferenceJ. Xiang, F. Ge, B. Yu, Q. Yan, F. Shi, Y. Zhao, ACS Appl. Mater. Interfaces 2018, 10, 20790.
dc.identifier.citedreferenceN. Ž. Knežević, B. G. Trewyn, V. S. Y. Lin, Chem. Commun. 2011, 47, 2817.
dc.identifier.citedreferenceS. He, K. Krippes, S. Ritz, Z. Chen, A. Best, H.‐J. Butt, V. Mailänder, S. Wu, Chem. Commun. 2015, 51, 431.
dc.identifier.citedreferenceS. Alberti, G. J. A. A. Soler‐Illia, O. Azzaroni, Chem. Commun. 2015, 51, 6050.
dc.identifier.citedreferenceD. Wang, S. Wu, Langmuir 2016, 32, 632.
dc.identifier.citedreferenceN. Ma, W.‐J. Wang, S. Chen, X.‐S. Wang, X.‐Q. Wang, S.‐B. Wang, J.‐Y. Zhu, S.‐X. Cheng, X.‐Z. Zhang, Chem. Commun. 2015, 51, 12970.
dc.identifier.citedreferenceE. Beňová, V. Zeleňák, D. Halamová, M. Almáši, V. Petrul’ová, M. Psotka, A. Zeleňáková, M. Bačkor, V. Hornebecq, J. Mater. Chem. B 2017, 5, 817.
dc.identifier.citedreferenceX. Wang, J. Hu, G. Liu, J. Tian, H. Wang, M. Gong, S. Liu, J. Am. Chem. Soc. 2015, 137, 15262.
dc.identifier.citedreferenceT. Senthilkumar, L. Zhou, Q. Gu, L. Liu, F. Lv, S. Wang, Angew. Chem., Int. Ed. 2018, 57, 13114.
dc.identifier.citedreferenceX. Liang, X. Yue, Z. Dai, J.‐I. Kikuchi, Chem. Commun. 2011, 47, 4751.
dc.identifier.citedreferenceH. Namazi, S. Jafarirad, J. Pharm. Pharm. Sci. 2011, 14, 162.
dc.identifier.citedreferenceQ. Yan, Y. Xin, R. Zhou, Y. Yin, J. Yuan, Chem. Commun. 2011, 47, 9594.
dc.identifier.citedreferenceK. Peng, I. Tomatsu, A. Kros, Chem. Commun. 2010, 46, 4094.
dc.identifier.citedreferenceT. Zhao, P. Wang, Q. Li, A. A. Al‐Khalaf, W. N. Hozzein, F. Zhang, X. Li, D. Zhao, Angew. Chem., Int. Ed. 2018, 57, 2611.
dc.identifier.citedreferenceT. Yan, F. Li, S. Qi, J. Tian, R. Tian, J. Hou, Q. Luo, Z. Dong, J. Xu, J. Liu, Chem. Commun. 2020, 56, 149.
dc.identifier.citedreferenceY. Huang, L. Shen, D. Guo, W. Yasen, Y. Wu, Y. Su, D. Chen, F. Qiu, D. Yan, X. Zhu, Chem. Commun. 2019, 55, 6735.
dc.identifier.citedreferenceF.‐Q. Li, Q.‐L. Yu, Y.‐H. Liu, H.‐J. Yu, Y. Chen, Y. Liu, Chem. Commun. 2020, 56, 3907.
dc.identifier.citedreferenceH. Zhang, X. Fan, R. Suo, H. Li, Z. Yang, W. Zhang, Y. Bai, H. Yao, W. Tian, Chem. Commun. 2015, 51, 15366.
dc.identifier.citedreferenceR. Weissleder, Nat. Biotechnol. 2001, 19, 316.
dc.identifier.citedreferenceS. O. Poelma, S. S. Oh, S. Helmy, A. S. Knight, G. L. Burnett, H. T. Soh, C. J. Hawker, J. Read de Alaniz, Chem. Commun. 2016, 52, 10525.
dc.identifier.citedreferenceJ. Karcher, Z. L. Pianowski, Chem. ‐ Eur. J. 2018, 24, 11605.
dc.identifier.citedreferenceK. Roth Stefaniak, C. C. Epley, J. J. Novak, M. L. McAndrew, H. D. Cornell, J. Zhu, D. K. McDaniel, J. L. Davis, I. C. Allen, A. J. Morris, T. Z. Grove, Chem. Commun. 2018, 54, 7617.
dc.identifier.citedreferenceN. Möller, T. Hellwig, L. Stricker, S. Engel, C. Fallnich, B. J. Ravoo, Chem. Commun. 2017, 53, 240.
dc.identifier.citedreferenceC. Yagüe, M. Arruebo, J. Santamaria, Chem. Commun. 2010, 46, 7513.
dc.identifier.citedreferenceD. T. Marquez, J. C. Scaiano, Langmuir 2016, 32, 13764.
dc.identifier.citedreferenceM. Li, H. Yan, C. Teh, V. Korzh, Y. Zhao, Chem. Commun. 2014, 50, 9745.
dc.identifier.citedreferenceD. Paramelle, S. Gorelik, Y. Liu, J. Kumar, Chem. Commun. 2016, 52, 9897.
dc.identifier.citedreferenceH.‐P. Liang, L.‐J. Wan, C.‐L. Bai, L. Jiang, J. Phys. Chem. B 2005, 109, 7795.
dc.identifier.citedreferenceJ. You, R. Shao, X. Wei, S. Gupta, C. Li, Small 2010, 6, 1022.
dc.identifier.citedreferenceZ. Li, J. Liu, Y. Hu, K. A. Howard, Z. Li, X. Fan, M. Chang, Y. Sun, F. Besenbacher, C. Chen, M. Yu, ACS Nano 2016, 10, 9646.
dc.identifier.citedreferenceR. Lv, P. Yang, F. He, S. Gai, C. Li, Y. Dai, G. Yang, J. Lin, ACS Nano 2015, 9, 1630.
dc.identifier.citedreferenceX. An, F. Zhang, Y. Zhu, W. Shen, Chem. Commun. 2010, 46, 7202.
dc.identifier.citedreferenceS. Geng, L. Wu, H. Cui, W. Tan, T. Chen, P. K. Chu, X.‐F. Yu, Chem. Commun. 2018, 54, 6060.
dc.identifier.citedreferenceY. Li, Y. Deng, X. Tian, H. Ke, M. Guo, A. Zhu, T. Yang, Z. Guo, Z. Ge, X. Yang, H. Chen, ACS Nano 2015, 9, 9626.
dc.identifier.citedreferenceM. Zheng, C. Yue, Y. Ma, P. Gong, P. Zhao, C. Zheng, Z. Sheng, P. Zhang, Z. Wang, L. Cai, ACS Nano 2013, 7, 2056.
dc.identifier.citedreferenceW. Wang, G. Liang, W. Zhang, D. Xing, X. Hu, Chem. Mater. 2018, 30, 3486.
dc.identifier.citedreferenceB. Shi, N. Ren, L. Gu, G. Xu, R. Wang, T. Zhu, Y. Zhu, C. Fan, C. Zhao, H. Tian, Angew. Chem., Int. Ed. 2019, 58, 16826.
dc.identifier.citedreferenceH. Takahashi, Y. Niidome, S. Yamada, Chem. Commun. 2005, 2247.
dc.identifier.citedreferenceM. A. Mackey, M. R. K. Ali, L. A. Austin, R. D. Near, M. A. El‐Sayed, J. Phys. Chem. B 2014, 118, 1319.
dc.identifier.citedreferenceZ. Zhang, J. Wang, X. Nie, T. Wen, Y. Ji, X. Wu, Y. Zhao, C. Chen, J. Am. Chem. Soc. 2014, 136, 7317.
dc.identifier.citedreferenceL. Zhang, H. Su, J. Cai, D. Cheng, Y. Ma, J. Zhang, C. Zhou, S. Liu, H. Shi, Y. Zhang, C. Zhang, ACS Nano 2016, 10, 10404.
dc.identifier.citedreferenceJ. Song, X. Yang, O. Jacobson, L. Lin, P. Huang, G. Niu, Q. Ma, X. Chen, ACS Nano 2015, 9, 9199.
dc.identifier.citedreferenceY. Ding, C. Du, J. Qian, C.‐M. Dong, Nano Lett. 2019, 19, 4362.
dc.identifier.citedreferenceW. Wang, N. S. R. Satyavolu, Z. Wu, J.‐R. Zhang, J.‐J. Zhu, Y. Lu, Angew. Chem., Int. Ed. 2017, 56, 6798.
dc.identifier.citedreferenceW. Ha, X.‐B. Zhao, K. Jiang, Y. Kang, J. Chen, B.‐J. Li, Y.‐P. Shi, Chem. Commun. 2016, 52, 14384.
dc.identifier.citedreferenceZ. Wang, X. Tang, X. Wang, D. Yang, C. Yang, Y. Lou, J. Chen, N. He, Chem. Commun. 2016, 52, 12210.
dc.identifier.citedreferenceR. Kurapati, A. M. Raichur, Chem. Commun. 2013, 49, 734.
dc.identifier.citedreferenceJ. He, P. Zhang, T. Babu, Y. Liu, J. Gong, Z. Nie, Chem. Commun. 2013, 49, 576.
dc.identifier.citedreferenceE. H. Jeong, J. H. Ryu, H. Jeong, B. Jang, H. Y. Lee, S. Hong, H. Lee, H. Lee, Chem. Commun. 2014, 50, 13388.
dc.identifier.citedreferenceL. Yu, A. Dong, R. Guo, M. Yang, L. Deng, J. Zhang, ACS Biomater. Sci. Eng. 2018, 4, 2424.
dc.identifier.citedreferenceJ. S. Basuki, F. Qie, X. Mulet, R. Suryadinata, A. V. Vashi, Y. Y. Peng, L. Li, X. Hao, T. Tan, T. C. Hughes, Angew. Chem., Int. Ed. 2017, 56, 966.
dc.identifier.citedreferenceX. Wang, C. Wang, Q. Zhang, Y. Cheng, Chem. Commun. 2016, 52, 978.
dc.identifier.citedreferenceM. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, Proc. Natl. Acad. Sci. USA 2018, 115, 501.
dc.identifier.citedreferenceP. Sun, T. Huang, X. Wang, G. Wang, Z. Liu, G. Chen, Q. Fan, Biomacromolecules 2020, 21, 556.
dc.identifier.citedreferenceW.‐P. Li, P.‐Y. Liao, C.‐H. Su, C.‐S. Yeh, J. Am. Chem. Soc. 2014, 136, 10062.
dc.identifier.citedreferenceF. Lu, A. Popa, S. Zhou, J.‐J. Zhu, A. C. S. Samia, Chem. Commun. 2013, 49, 11436.
dc.identifier.citedreferenceZ. Yang, W. Fan, J. Zou, W. Tang, L. Li, L. He, Z. Shen, Z. Wang, O. Jacobson, M. A. Aronova, P. Rong, J. Song, W. Wang, X. Chen, J. Am. Chem. Soc. 2019, 141, 14687.
dc.identifier.citedreferenceN. N. Mahmoud, A. M. Alkilany, E. A. Khalil, A. G. Al‐Bakri, Sci. Rep. 2018, 8, 6881.
dc.identifier.citedreferenceB. Tao, C. Lin, Y. Deng, Z. Yuan, X. Shen, M. Chen, Y. He, Z. Peng, Y. Hu, K. Cai, J. Mater. Chem. B 2019, 7, 2534.
dc.identifier.citedreferenceY. Zhao, Q. Cai, W. Qi, Y. Jia, T. Xiong, Z. Fan, S. Liu, J. Yang, N. Li, B. Chang, ChemistrySelect 2018, 3, 9510.
dc.identifier.citedreferenceM.‐C. Wu, A. R. Deokar, J.‐H. Liao, P.‐Y. Shih, Y.‐C. Ling, ACS Nano 2013, 7, 1281.
dc.identifier.citedreferenceP.‐A. Ashford, S. P. Bew, Chem. Soc. Rev. 2012, 41, 957.
dc.identifier.citedreferenceS. Bowden, C. Joseph, S. Tang, J. Cannon, E. Francis, M. Zhou, J. R. Baker, S. K. Choi, Biochemistry 2018, 57, 2723.
dc.identifier.citedreferenceS.‐G. Wang, Y.‐C. Chen, Y.‐C. Chen, Nanomedicine 2018, 13, 1405.
dc.identifier.citedreferenceD. He, T. Yang, W. Qian, C. Qi, L. Mao, X. Yu, H. Zhu, G. Luo, J. Deng, Appl. Mater. Today 2018, 12, 415.
dc.identifier.citedreferenceG. Gao, Y.‐W. Jiang, H.‐R. Jia, F.‐G. Wu, Biomaterials 2019, 188, 83.
dc.identifier.citedreferenceM. Liu, D. He, T. Yang, W. Liu, L. Mao, Y. Zhu, J. Wu, G. Luo, J. Deng, J. Nanobiotechnol. 2018, 16, 1.
dc.identifier.citedreferenceD. G. Meeker, T. Wang, W. N. Harrington, V. P. Zharov, S. A. Johnson, S. V. Jenkins, S. E. Oyibo, C. M. Walker, W. B. Mills, M. E. Shirtliff, K. E. Beenken, J. Chen, M. S. Smeltzer, Int. J. Hyperthermia 2018, 34, 209.
dc.identifier.citedreferenceW.‐L. Chiang, T.‐T. Lin, R. Sureshbabu, W.‐T. Chia, H.‐C. Hsiao, H.‐Y. Liu, C.‐M. Yang, H.‐W. Sung, J. Controlled Release 2015, 199, 53.
dc.identifier.citedreferenceX. Li, L. Xing, K. Zheng, P. Wei, L. Du, M. Shen, X. Shi, ACS Appl. Mater. Interfaces 2017, 9, 5817.
dc.identifier.citedreferenceL. Luo, Y. Guo, J. Yang, Y. Liu, S. Chu, F. Kong, Y. Wang, Z. Zou, Chem. Commun. 2011, 47, 11243.
dc.identifier.citedreferenceQ. Pei, X. Hu, X. Zheng, S. Liu, Y. Li, X. Jing, Z. Xie, ACS Nano 2018, 12, 1630.
dc.identifier.citedreferenceH. Li, Y. Zhao, Y. Jia, C. Qu, J. Li, Chem. Commun. 2019, 55, 15057.
dc.identifier.citedreferenceY. Wang, N. Tian, C. Li, Y. Hou, X. Wang, Q. Zhou, Chem. Commun. 2019, 55, 14081.
dc.identifier.citedreferenceY. Li, S. Wang, Y. Huang, Y. Chen, W. Wu, Y. Liu, J. Zhang, Y. Feng, X. Jiang, M. Gou, Chem. Commun. 2019, 55, 13128.
dc.identifier.citedreferenceH. Pan, S. Wang, Y. Xue, H. Cao, W. Zhang, Chem. Commun. 2016, 52, 14208.
dc.identifier.citedreferenceC. Ji, Q. Gao, X. Dong, W. Yin, Z. Gu, Z. Gan, Y. Zhao, M. Yin, Angew. Chem., Int. Ed. 2018, 57, 11384.
dc.identifier.citedreferenceM. R. Hamblin, Photochem. Photobiol. 2012, 88, 496.
dc.identifier.citedreferenceS. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, M. Wilson, Photochem. Photobiol. Sci. 2011, 10, 712.
dc.identifier.citedreferenceR. Yin, T. Agrawal, U. Khan, G. K. Gupta, V. Rai, Y.‐Y. Huang, M. R. Hamblin, Nanomedicine 2015, 10, 2379.
dc.identifier.citedreferenceB. Rout, C.‐H. Liu, W.‐C. Wu, Sci. Rep. 2017, 7, 7892.
dc.identifier.citedreferenceJ. K. Trigo Gutierrez, G. C. Zanatta, A. L. M. Ortega, M. I. C. Balastegui, P. V. Sanitá, A. C. Pavarina, P. A. Barbugli, E. G. d. O. Mima, PLoS One 2017, 12, e0187418.
dc.identifier.citedreferenceY. Zhang, P. Huang, D. Wang, J. Chen, W. Liu, P. Hu, M. Huang, X. Chen, Z. Chen, Nanoscale 2018, 10, 15485.
dc.identifier.citedreferenceC. Li, F. Lin, W. Sun, F.‐G. Wu, H. Yang, R. Lv, Y.‐X. Zhu, H.‐R. Jia, C. Wang, G. Gao, Z. Chen, ACS Appl. Mater. Interfaces 2018, 10, 16715.
dc.identifier.citedreferenceY. Wan, L. Zheng, Y. Sun, D. Zhang, J. Mater. Chem. B 2014, 2, 4818.
dc.identifier.citedreferenceF. Liu, A. Soh Yan Ni, Y. Lim, H. Mohanram, S. Bhattacharjya, B. Xing, Bioconjugate Chem. 2012, 23, 1639.
dc.identifier.citedreferenceS. Cui, D. Yin, Y. Chen, Y. Di, H. Chen, Y. Ma, S. Achilefu, Y. Gu, ACS Nano 2013, 7, 676.
dc.identifier.citedreferenceN. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, Y. Zhang, Nat. Med. 2012, 18, 1580.
dc.identifier.citedreferenceM. R. Hamblin, T. Hasan, Photochem. Photobiol. Sci. 2004, 3, 436.
dc.identifier.citedreferenceY. Ye, Y. Li, F. Fang, Int. J. Nanomed. 2014, 9, 5157.
dc.identifier.citedreferenceS. Li, S. Cui, D. Yin, Q. Zhu, Y. Ma, Z. Qian, Y. Gu, Nanoscale 2017, 9, 3912.
dc.identifier.citedreferenceJ. Xu, N. Liu, D. Wu, Z. Gao, Y.‐Y. Song, P. Schmuki, ACS Nano 2020, 14, 337.
dc.identifier.citedreferenceS. K. Choi, in Photonanotechnology for Therapeutics and Imaging (Ed: S. K. Choi ), Elsevier, Amsterdam 2020, pp. 1 – 21.
dc.identifier.citedreferenceA. Gupta, P. Avci, T. Dai, Y.‐Y. Huang, M. R. Hamblin, Adv. Wound Care 2013, 2, 422.
dc.identifier.citedreferenceY.‐H. Hsin, C.‐F. Chen, S. Huang, T.‐S. Shih, P.‐S. Lai, P. J. Chueh, Toxicol. Lett. 2008, 179, 130.
dc.identifier.citedreferenceL. J. Steven, Phys. Med. Biol. 2013, 58, R37.
dc.identifier.citedreferenceG. M. Hale, M. R. Querry, Appl. Opt. 1973, 12, 555.
dc.identifier.citedreferenceR. R. Anderson, J. A. Parrish, J. Invest. Dermatol. 1981, 77, 13.
dc.identifier.citedreferenceJ. V. Frangioni, Curr. Opin. Chem. Biol. 2003, 7, 626.
dc.identifier.citedreferenceA. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710.
dc.identifier.citedreferenceJ.‐N. Liu, W.‐B. Bu, J.‐L. Shi, Acc. Chem. Res. 2015, 48, 1797.
dc.identifier.citedreferenceF. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, G. Zhu, Sci. Rep. 2015, 5, 10785.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.