Show simple item record

Evidence of Rapid Phenocryst Growth of Olivine During Ascent in Basalts From the Big Pine Volcanic Field: Application of Olivine‐Melt Thermometry and Hygrometry at the Liquidus

dc.contributor.authorBrehm, Sarah K.
dc.contributor.authorLange, Rebecca A.
dc.date.accessioned2020-11-04T16:00:30Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:00:30Z
dc.date.issued2020-10
dc.identifier.citationBrehm, Sarah K.; Lange, Rebecca A. (2020). "Evidence of Rapid Phenocryst Growth of Olivine During Ascent in Basalts From the Big Pine Volcanic Field: Application of Olivine‐Melt Thermometry and Hygrometry at the Liquidus." Geochemistry, Geophysics, Geosystems 21(10): n/a-n/a.
dc.identifier.issn1525-2027
dc.identifier.issn1525-2027
dc.identifier.urihttps://hdl.handle.net/2027.42/163434
dc.description.abstractThe Quaternary Big Pine (BP) volcanic field in eastern California is notable for the occurrence of mantle xenoliths in several flows. This points to rapid ascent of basalt through the crust and precludes prolonged storage in a crustal reservoir. In this study, the hypothesis of phenocryst growth during ascent is tested for several basalts (13–7 wt% MgO) and shown to be viable. Phenocrysts of olivine and clinopyroxene frequently display diffusion‐limited growth textures, and clinopyroxene compositions are consistent with polybaric crystallization. When the most Mg‐rich olivine in each sample is paired with the whole‐rock composition, resulting Fe2+‐MgKD(olivine‐melt) values (0.31–0.36) match those calculated from literature models (0.32–0.36). Application of a Mg‐ and a Ni‐based olivine‐melt thermometer from the literature, both calibrated on the same experimental data set, leads to two sets of temperatures that vary linearly with whole‐rock MgO wt%. Because the Ni thermometer is independent of water content, it provides the actual temperature at the onset of olivine crystallization (1247–1097°C), whereas the Mg thermometer gives the temperature under anhydrous conditions and thus allows ΔT (=TMg − TNi = depression of liquidus due to water) to be obtained. The average ΔT for all samples is ~59°C, which is consistent with analyzed water contents of 1.5–3.0 wt% in olivine‐hosted melt inclusions from the literature. Because the application of olivine‐melt thermometry/hygrometry at the liquidus only requires microprobe analyses of olivine combined with whole‐rock compositions, it can be used to obtain large global data sets of the temperature and water contents of basalts from different tectonic settings.Plain Language SummaryBasaltic lavas are a window into their mantle source regions, which is why it is important to determine their temperatures and water contents. In this study, a new approach that allows these two parameters to be quantified is demonstrated for basalts from the Big Pine volcanic field, CA. They were targeted because many contain chunks of dense mantle rocks, which precludes storage in a crustal magma chamber and points to direct ascent from the mantle to the surface along fractures. Two hypotheses are proposed, tested, and shown to be viable in this study: (1) olivine crystallized in the basalts during ascent, and (2) the most Mg‐rich olivine analyzed in each basalt represents the first olivine to grow during ascent. This enables the most Mg‐rich olivine to be paired with the whole‐rock composition in the application of olivine‐melt thermometry and hygrometry. The results match those from published, independent studies. The success of this approach paves the way for the attainment of large, high‐quality data sets for basalts from a wide variety of tectonic settings. This, in turn, may allow global variations in mantle temperature and volatile content to be mapped in greater detail and better understood.Key PointsRapid phenocryst growth occurs during ascent in Mg‐rich basalts (some carry mantle xenoliths) from the Big Pine volcanic field, CAThe most Mg‐rich olivine can be paired with the whole‐rock composition to apply olivine‐melt thermometry/hygrometry at the liquidusLarge, high‐quality data sets on the temperature and water content of basalts from various tectonic settings can be obtained by this method
dc.publisherGeological Society of America
dc.publisherWiley Periodicals, Inc.
dc.subject.otherolivine‐melt hygrometry
dc.subject.otherolivine‐melt thermometry
dc.subject.otherolivine‐melt oxybarometry
dc.subject.otherolivine
dc.subject.otherbasalt
dc.titleEvidence of Rapid Phenocryst Growth of Olivine During Ascent in Basalts From the Big Pine Volcanic Field: Application of Olivine‐Melt Thermometry and Hygrometry at the Liquidus
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/3/ggge22329-sup-0001-2020GC009264-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/2/ggge22329.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163434/1/ggge22329_am.pdfen_US
dc.identifier.doi10.1029/2020GC009264
dc.identifier.sourceGeochemistry, Geophysics, Geosystems
dc.identifier.citedreferenceRoeder, P. L., Poustovetov, A., & Oskarsson, N. ( 2001 ). Growth forms and composition of chromian spinel in MORB magma: Diffusion‐controlled crystallization of chromian spinel. Canadian Mineralogist, 39 ( 2 ), 397 – 416. https://doi.org/10.2113/gscanmin.39.2.397
dc.identifier.citedreferencePutirka, K. D., Perfit, M., Ryerson, F. J., & Jackson, M. G. ( 2007 ). Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical Geology, 241 ( 3–4 ), 177 – 206. https://doi.org/10.1016/j.chemgeo.2007.01.014
dc.identifier.citedreferenceReiners, P. W., Hammond, P. E., McKenna, J. M., & Duncan, R. A. ( 2000 ). Young basalts of the central Washington Cascades, flux melting of the mantle, and trace element signatures of primary arc magmas. Contributions to Mineralogy and Petrology, 138 ( 3 ), 249 – 264. https://doi.org/10.1007/s004100050561
dc.identifier.citedreferenceShea, T., Hammer, J. E., Hellebrand, E., Mourey, A. J., Costa, F., First, E. C., Lynn, K. J., & Melnik, O. ( 2019 ). Phosphorous and aluminum zoning in olivine: Contrasting behavior of two nominally incompatible trace elements. Contributions to Mineralogy and Petrology, 174 ( 85 ), 1 – 24.
dc.identifier.citedreferenceShimizu, N. ( 1990 ). The oscillatory trace element zoning of augite phenocrysts. Earth Science Reviews, 29 ( 1–4 ), 27 – 37. https://doi.org/10.1016/0012‐8252(0)90025‐Q
dc.identifier.citedreferenceSimkin, T. O. M., & Smith, J. V. ( 1970 ). Minor‐element distribution in olivine. The Journal of Geology, 78 ( 3 ), 304 – 325. https://doi.org/10.1086/627519
dc.identifier.citedreferenceSkulski, T., Minarik, W., & Watson, E. B. ( 1994 ). High‐pressure experimental trace‐element partitioning between clinopyroxene and basaltic melts. Chemical Geology, 117 ( 1–4 ), 127 – 147. https://doi.org/10.1016/0009‐2541(94)90125‐2
dc.identifier.citedreferenceSnyder, W. S., Dickinson, W. R., & Silberman, M. L. ( 1976 ). Tectonic implications of space‐time patterns of Cenozoic magmatism in the western United States. Earth and Planetary Science Letters, 32 ( 1 ), 91 – 106.
dc.identifier.citedreferenceSparks, R. S. J., Pinkerton, H., & MacDonald, R. ( 1977 ). The transport of xenoliths in magmas. Earth and Planetary Science Letters, 35 ( 2 ), 234 – 238. https://doi.org/10.1016/0012‐821X(77)90126‐1
dc.identifier.citedreferenceSpera, F. J. ( 1980 ). In R. B. Hargraves (Ed.), Aspects of magma transport in physics of magmagtic processes (pp. 265 – 323 ). Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceSpera, F. J. ( 1984 ). Carbon dioxide in petrogenesis III: Role of volatiles in the ascent of alkaline magma with special reference to xenolith‐bearing mafic lavas. Contributions to Mineralogy and Petrology, 88 ( 3 ), 217 – 232. https://doi.org/10.1007/BF00380167
dc.identifier.citedreferenceStockli, D. F., Dumitru, T. A., McWilliams, M. O., & Farley, K. A. ( 2003 ). Cenozoic tectonic evolution of the White Mountains, California and Nevada. GSA Bulletin, 115 ( 7 ), 788 – 816. https://doi.org/10.1130/0016‐7606(2003)115<0788:CTEOTW>2.0.CO;2
dc.identifier.citedreferenceUbide, T., Mollo, S., Zhao, J., Xin Nazzari, M., & Scarlato, P. ( 2019 ). Sector‐zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochimica et Cosmochimica Acta, 251, 265 – 283. https://doi.org/10.1016/j.gca.2019.02.021
dc.identifier.citedreferenceVazquez, J. A., & Woolford, J. M. ( 2015 ). Late Pleistocene ages for the most recent volcanism and glacial‐pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36 Cl dating. Geochemistry, Geophysics, Geosystems, 16, 2812 – 2828. https://doi.org/10.1002/2015GC005889
dc.identifier.citedreferenceWaters, L. E., & Lange, R. A. ( 2015 ). An updated calibration of the plagioclase‐liquid hygrometer‐thermometer applicable to basalts through rhyolites. American Mineralogist, 100 ( 10 ), 2172 – 2184. https://doi.org/10.2138/am‐2015‐5232
dc.identifier.citedreferenceWaters, L. E., & Lange, R. A. ( 2016 ). No effect of H 2 O degassing on the oxidation state of magmatic liquids. Earth and Planetary Science Letters, 447, 48 – 59. https://doi.org/10.1016/j.epsl.2016.04.030
dc.identifier.citedreferenceWeaver, S. L., Wallace, P. J., & Johnston, A. D. ( 2011 ). A comparative study of continental vs. intraoceanic arc mantle melting: Experimentally determined phase relations of hydrous primitive melts. Earth and Planetary Science Letters, 308 ( 1–2 ), 97 – 106. https://doi.org/10.1016/j.epsl.2011.05.040
dc.identifier.citedreferenceWelsch, B., Faure, F., Famin, V., Baronnet, A., & Bachèlery, P. ( 2012 ). Dendritic crystallization: A single process for all the textures of olivine in basalts? Journal of Petrology, 54 ( 3 ), 539 – 574. https://doi.org/10.1093/petrology/egs077
dc.identifier.citedreferenceWelsch, B., Hammer, J., Baronnet, A., Jacob, S., Hellebrand, E., & Sinton, J. ( 2016 ). Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contributions to Mineralogy and Petrology, 171 ( 1 ), 6 – 19. https://doi.org/10.1007/s00410‐015‐1213‐9
dc.identifier.citedreferenceWelsch, B., Hammer, J., & Hellebrand, E. ( 2014 ). Phosphorus zoning reveals dendritic architecture of olivine. Geology, 42 ( 10 ), 867 – 870. https://doi.org/10.1130/G35691.1
dc.identifier.citedreferenceWilshire, H., Meyer, C. E., Nakata, J. K., & Calk, L. C. ( 1988 ). Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Washington, DC: U.S. Geological Survey. https://doi.org/10.3133/ofr85139
dc.identifier.citedreferenceWilson, A. D. ( 1960 ). The micro‐determination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst, 85 ( 1016 ), 823 – 827. https://doi.org/10.1039/an9608500823
dc.identifier.citedreferenceAllan, J. F., Batiza, R., Perfit, M. R., Fornari, D. J., & Sack, R. O. ( 1989 ). Petrology of lavas from the Lamont seamount chain and adjacent East Pacific Rise, 10°N. Journal of Petrology, 30 ( 5 ), 1245 – 1298. https://doi.org/10.1093/petrology/30.5.1245
dc.identifier.citedreferenceAlmeev, R. R., Holtz, F., Koepke, J., Parat, F., & Botcharnikov, R. E. ( 2007 ). The effect of H 2 O on olivine crystallization in MORB: Experimental calibration at 200 MPa. American Mineralogist, 92 ( 4 ), 670 – 674. https://doi.org/10.2138/am.2007.2484
dc.identifier.citedreferenceAsimow, P. D., & Ghiorso, M. S. ( 1998 ). Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist, 83 ( 9–10 ), 1127 – 1132. https://doi.org/10.2138/am‐1998‐9‐1022
dc.identifier.citedreferenceAsimow, P. D., Hirshmann, M. M., & Stolper, E. M. ( 2001 ). Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid‐ocean ridge basalts. Journal of Petrology, 42 ( 5 ), 963 – 998. https://doi.org/10.1093/petrology/42.5.963
dc.identifier.citedreferenceBacon, C. R., & Hirschmann, M. M. ( 1988 ). Mg/Mn partitioning as a test for equilibrium between coexisting Fe‐Ti oxides. American Mineralogist, 73 ( Table l ), 57 – 61.
dc.identifier.citedreferenceBeard, B. L., & Glazner, A. F. ( 1995 ). Trace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, California. Journal of Geophysical Research, 100 ( B3 ), 4169 – 4179. https://doi.org/10.1029/94JB02883
dc.identifier.citedreferenceBeard, B. L., & Johnson, C. M. ( 1997 ). Hafnium isotope evidence for the origin of Cenozoic basaltic lavas from the southwestern United States. Journal of Geophysical Research, 102 ( B9 ), 20,149 – 20,178. https://doi.org/10.1029/97JB01731
dc.identifier.citedreferenceBeattie, P. ( 1993 ). Olivine‐melt and orthopyroxene‐melt equilibria. Contributions to Mineralogy and Petrology, 115 ( 1 ), 103 – 111. https://doi.org/10.1007/BF00712982
dc.identifier.citedreferenceBlondes, M. S., Reiners, P. W., Ducea, M. N., Singer, B. S., & Chesley, J. ( 2008 ). Temporal‐compositional trends over short and long time‐scales in basalts of the Big Pine Volcanic Field, California. Earth and Planetary Science Letters, 269 ( 1–2 ), 140 – 154. https://doi.org/10.1016/j.epsl.2008.02.012
dc.identifier.citedreferenceBlondes, M. S., Reiners, P. W., Edwards, B. R., & Biscontini, A. ( 2007 ). Dating young basalt eruptions by (U‐Th)/He on xenolithic zircons. Geology, 35 ( 1 ), 17 – 20. https://doi.org/10.1130/G22956A.1
dc.identifier.citedreferenceBrophy, J. G., Whittington, C. S., & Park, Y. R. ( 1999 ). Sector‐zoned augite megacrysts in Aleutian high alumina basalts: Implications for the conditions of basalt crystallization and the generation of calc‐alkaline series magmas. Contributions to Mineralogy and Petrology, 135 ( 2–3 ), 277 – 290. https://doi.org/10.1007/s004100050512
dc.identifier.citedreferenceChristiansen, R. L., & Lipman, P. W. ( 1972 ). Cenozoic volcanism and plate‐tectonic evolution of the western United States. II. Late Cenozoic. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 271 ( 1213 ), 249 – 284. https://doi.org/10.1098/rsta.1972.0009
dc.identifier.citedreferenceColgan, J. P., Dumitru, T. A., Reiners, P. W., Wooden, J. L., & Miller, E. L. ( 2006 ). Cenozoic tectonic evolution of the basin and range province in northwestern Nevada. American Journal of Science, 306 ( 8 ), 616 – 654. https://doi.org/10.2475/08.2006.02
dc.identifier.citedreferenceCrabtree, S. M., & Lange, R. A. ( 2012 ). An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: A comparison of pre‐ and post‐eruptive Fe 2+ concentrations. Contributions to Mineralogy and Petrology, 163 ( 2 ), 209 – 224. https://doi.org/10.1007/s00410‐011‐0667‐7
dc.identifier.citedreferenceDePaolo, D. J., & Daley, E. E. ( 2000 ). Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169 ( 1–2 ), 157 – 185. https://doi.org/10.1016/S0009‐2541(00)00261‐8
dc.identifier.citedreferenceDucea, M. N., & Saleeby, J. B. ( 1996 ). Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California; evidence from xenolith thermobarometry. Journal of Geophysical Research, 101 ( B4 ), 8229 – 8244. https://doi.org/10.1029/95JB03452
dc.identifier.citedreferenceGavrilenko, M., Herzberg, C., Vidito, C., Carr, M. J., Tenner, T., & Ozerov, A. ( 2016 ). A calcium‐in‐olivine geohygrometer and its application to subduction zone magmatism. Journal of Petrology, 57 ( 9 ), 1811 – 1832. https://doi.org/10.1093/petrology/egw062
dc.identifier.citedreferenceGazel, E., Plank, T., Forsyth, D. W., Bendersky, C., Lee, C. T. A., & Hauri, E. H. ( 2012 ). Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California. Geochemistry, Geophysics, Geosystems, 13, Q0AK06. https://doi.org/10.1029/2012GC004060
dc.identifier.citedreferenceGhiorso, M. S., & Evans, B. W. ( 2008 ). Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe‐Ti two‐oxide geothermometer and oxygen‐barometer. American Journal of Science, 308 ( 9 ), 957 – 1039. https://doi.org/10.2475/09.2008.01
dc.identifier.citedreferenceGhiorso, M. S., & Sack, R. O. ( 1995 ). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid‐solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119 ( 2–3 ), 197 – 212. https://doi.org/10.1007/BF00307281
dc.identifier.citedreferenceHaase, C. S., Chadam, J., Feinn, D., & Ortoleva, P. ( 1980 ). Oscillatory zoning in plagioclase feldspar. Science, 209 ( 4453 ), 272 – 274. https://doi.org/10.1126/science.209.4453.272
dc.identifier.citedreferenceHammer, J., Jacob, S., Welsch, B., Hellebrand, E., & Sinton, J. ( 2016 ). Clinopyroxene in postshield Haleakala ankaramite: 1. Efficacy of thermobarometry. Contributions to Mineralogy and Petrology, 171, 7 – 23. https://doi.org/10.1007/s00410‐015‐1212‐x
dc.identifier.citedreferenceHenry, C. D., & Perkins, M. E. ( 2002 ). Sierra Nevada–Basin and Range transition near Reno, Nevada: Two‐stage development at 12 and 3 Ma. Geology, 29 ( 8 ), 719 – 722. https://doi.org/10.1130/0091‐7613(2001)029<0719:SNBART>2.0.CO;2
dc.identifier.citedreferenceHerzberg, C., & Asimow, P. D. ( 2008 ). Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9, Q09001. https://doi.org/10.1029/2008GC002057
dc.identifier.citedreferenceHofmann, A. W., & Jochum, K. P. ( 1996 ). Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research, 101 ( B5 ), 11,831 – 11,839. https://doi.org/10.1029/95JB03701
dc.identifier.citedreferenceHoush, T. B., Aranda‐Gómez, J. J., & Luhr, J. F. ( 2010 ). Isla Isabel (Nayarit, México): Quaternary alkalic basalts with mantle xenoliths erupted in the mouth of the Gulf of California. Journal of Volcanology and Geothermal Research, 197 ( 1–4 ), 85 – 107. https://doi.org/10.1016/j.jvolgeores.2009.06.011
dc.identifier.citedreferenceJohnson, E. R., Wallace, P. J., Cashman, K. V., Granados, H. D., & Kent, A. J. R. ( 2008 ). Magmatic volatile contents and degassing‐induced crystallization at Volcán Jorullo, Mexico: Implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary Science Letters, 269 ( 3–4 ), 478 – 487. https://doi.org/10.1016/j.epsl.2008.03.004
dc.identifier.citedreferenceJohnson, E. R., Wallace, P. J., Delgado Granados, H., Manea, V. C., Kent, A. J. R., Bindeman, I. N., & Donegan, C. S. ( 2009 ). Subduction‐related volatile recycling and magma generation beneath Central Mexico: Insights from melt inclusions, oxygen isotopes and geodynamic models. Journal of Petrology, 50 ( 9 ), 1729 – 1764. https://doi.org/10.1093/petrology/egp051
dc.identifier.citedreferenceKelley, K. A., & Cottrell, E. ( 2012 ). The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329–330, 109 – 121. https://doi.org/10.1016/j.epsl.2012.02.010
dc.identifier.citedreferenceKistler, R. W. ( 1990 ). Chapter 15: Two different lithosphere types in the Sierra Nevada, California. In J. L. Anderson (Ed.), The nature and origin of Cordilleran magmatism (Vol. 174, pp. 271 – 281 ). Geological Society of America. https://doi.org/10.1130/MEM174‐p271
dc.identifier.citedreferenceKouchi, A., Sugawara, Y., Kashima, K., & Sunagawa, I. ( 1983 ). Laboratory growth of sector zones clinopyroxenes in the system CaMgSi 2 O 6 ‐CaTiAl 2 O 6. Contributions to Mineralogy and Petrology, 83 ( 1–2 ), 177 – 184. https://doi.org/10.1007/BF00373091
dc.identifier.citedreferenceL’Heureux, I. ( 1993 ). Oscillatory zoning in crystal growth: A constitutional undercooling mechanism. Physical Review E, 48 ( 6 ), 4460 – 4469. https://doi.org/10.1103/PhysRevE.48.4460
dc.identifier.citedreferenceLee, C. T., Rudnick, R. L., & Brimhall, G. H. ( 2001 ). Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology. Geochemistry, Geophysics, Geosystems, 2 ( 12 ), 1053. https://doi.org/10.1029/2001GC000152
dc.identifier.citedreferenceLipman, P. W., Prostka, H. J., & Christiansen, R. L. ( 1972 ). Cenozoic volcanism and plate‐tectonic evolution of the western United States. I. Early and middle Cenozoic. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 271 ( 1213 ), 217 – 248.
dc.identifier.citedreferenceLofgren, G. ( 1974 ). An experimental study of plagioclase crystal morphology: Isothermal crystallization. American Journal of Science, 274 ( 3 ), 243 – 273. https://doi.org/10.2475/ajs.274.3.243
dc.identifier.citedreferenceMcDonough, W. F., & Sun, S. S. ( 1995 ). The composition of the Earth. Chemical Geology, 120, 223 – 253. https://doi.org/10.1016/0009‐2541(94)00140‐4
dc.identifier.citedreferenceMcKenzie, D., & Bickle, M. J. ( 1988 ). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29 ( 3 ), 625 – 679. https://doi.org/10.1093/petrology/29.3.625
dc.identifier.citedreferenceMédard, E., & Grove, T. L. ( 2008 ). The effect of H 2 O on the olivine liquidus of basaltic melts: Experiments and thermodynamic models. Contributions to Mineralogy and Petrology, 155 ( 4 ), 417 – 432. https://doi.org/10.1007/s00410‐007‐0250‐4
dc.identifier.citedreferenceMilman‐Barris, M. S., Beckett, J. R., Baker, M. B., Hofmann, A. E., Morgan, Z., Crowley, M. R., & Stolper, E. ( 2008 ). Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology, 155 ( 6 ), 739 – 765. https://doi.org/10.1007/s00410‐007‐0268‐7
dc.identifier.citedreferenceMollo, S., Ubide, T., Di Stefano, F., Nazzari, M., & Scarlato, P. ( 2020 ). Polybaric/polythermal magma transport and trace element partitioning recorded in single crystals: A case study of a zoned clinopyroxene from Mt. Etna. Lithos, 356, 105382. https://doi.org/10.1016/j.lithos.2020.105382
dc.identifier.citedreferenceMordick, B. E., & Glazner, A. F. ( 2006 ). Clinopyroxene thermobarometry of basalts from the Coso and Big Pine volcanic fields, California. Contributions to Mineralogy and Petrology, 152 ( 1 ), 111 – 124. https://doi.org/10.1007/s00410‐006‐0097‐0
dc.identifier.citedreferenceNeave, D. A., & Putirka, K. D. ( 2017 ). A new clinopyroxene‐liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102 ( 4 ), 777 – 794. https://doi.org/10.2138/am‐2017‐5968
dc.identifier.citedreferenceNorman, M. D., & Garcia, M. O. ( 1999 ). Primitive magmas and source characteristics of the Hawaiian plume: Petrology and geochemistry of shield picrites. Earth and Planetary Science Letters, 168 ( 1–2 ), 27 – 44. https://doi.org/10.1016/S0012‐821X(99)00043‐6
dc.identifier.citedreferenceOrmerod, D. S., Hawkesworth, C. J., Rogers, N. W., Leeman, W. P., & Menzies, M. A. ( 1988 ). Tectonic and magmatic transitions in the Western Great Basin, USA. Nature, 333 ( 6171 ), 349 – 353. https://doi.org/10.1038/333349a0
dc.identifier.citedreferenceOrmerod, D. S., Rogers, N. W., & Hawkesworth, C. J. ( 1991 ). Melting in the lithospheric mantle: Inverse modelling of alkali‐olivine basalts from the Big Pine Volcanic California. Contributions to Mineralogy and Petrology, 108 ( 3 ), 305 – 317. https://doi.org/10.1007/BF00285939
dc.identifier.citedreferencePlank, T., & Forsyth, D. W. ( 2016 ). Thermal structure and melting conditions in the mantle beneath the Basin and Range province from seismology and petrology. Geochemistry, Geophysics, Geosystems, 17, 1312 – 1338. https://doi.org/10.1002/2015GC006205
dc.identifier.citedreferencePu, X. ( 2018 ). New constraints on temperature, oxygen fugacity, and H 2 O of subduction zone basalts based on olivine‐melt equilibrium (Doctoral dissertation). Ann Arbor, USA: University of Michigan. Retrieved from https://deepblue.lib.umich.edu/handle/2027.42/144078
dc.identifier.citedreferencePu, X., Lange, R. A., & Moore, G. ( 2017 ). A comparison of olivine‐melt thermometers based on DMg and DNi: The effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts. American Mineralogist, 102 ( 4 ), 750 – 765. https://doi.org/10.2138/am‐2017‐5879
dc.identifier.citedreferencePutirka, K. ( 2008 ). Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology, 36 ( 4 ), 283 – 286. https://doi.org/10.1130/G24615A.1
dc.identifier.citedreferencePutirka, K., Jean, M., Cousens, B., Sharma, R., Torrez, G., & Carlson, C. ( 2012 ). Cenozoic volcanism in the Sierra Nevada and Walker Lane, California, and a new model for lithosphere degradation. Geosphere, 8 ( 2 ), 265 – 291. https://doi.org/10.1130/GES00728.1
dc.identifier.citedreferencePutirka, K., Tao, Y., Hari, K. R., Perfit, M. R., Jackson, M. G., & Arevalo, R. ( 2018 ). The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter). American Mineralogist, 103 ( 8 ), 1253 – 1270. https://doi.org/10.2138/am‐2018‐6192
dc.identifier.citedreferencePutirka, K. D. ( 2005 ). Mantle potential temperatures at Hawaii, Iceland, and the mid‐ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6, Q05L08. https://doi.org/10.1029/2005GC000915
dc.identifier.citedreferencePutirka, K. D. ( 2016 ). Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric‐ferrous ratios, olivine‐liquid Fe‐Mg exchange, and mantle potential temperature. American Mineralogist, 101 ( Korenaga 2008 ), 819 – 840. https://doi.org/10.2138/am‐2016‐5402
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.