Show simple item record

Elastically and Plastically Foldable Electrothermal Micro‐Origami for Controllable and Rapid Shape Morphing

dc.contributor.authorZhu, Yi
dc.contributor.authorBirla, Mayur
dc.contributor.authorOldham, Kenn R.
dc.contributor.authorFilipov, Evgueni T.
dc.date.accessioned2020-11-04T16:00:53Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:00:53Z
dc.date.issued2020-10
dc.identifier.citationZhu, Yi; Birla, Mayur; Oldham, Kenn R.; Filipov, Evgueni T. (2020). "Elastically and Plastically Foldable Electrothermal Micro‐Origami for Controllable and Rapid Shape Morphing." Advanced Functional Materials 30(40): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/163442
dc.description.abstractIntegrating origami principles within traditional microfabrication methods can produce shape morphing microscale metamaterials and 3D systems with complex geometries and programmable mechanical properties. However, available micro‐origami systems usually have slow folding speeds, provide few active degrees of freedom, rely on environmental stimuli for actuation, and allow for either elastic or plastic folding but not both. This work introduces an integrated fabrication–design–actuation methodology of an electrothermal micro‐origami system that addresses the above‐mentioned challenges. Controllable and localized Joule heating from electrothermal actuator arrays enables rapid, large‐angle, and reversible elastic folding, while overheating can achieve plastic folding to reprogram the static 3D geometry. Because the proposed micro‐origami do not rely on an environmental stimulus for actuation, they can function in different atmospheric environments and perform controllable multi‐degrees‐of‐freedom shape morphing, allowing them to achieve complex motions and advanced functions. Combining the elastic and plastic folding enables these micro‐origami to first fold plastically into a desired geometry and then fold elastically to perform a function or for enhanced shape morphing. The proposed origami systems are suitable for creating medical devices, metamaterials, and microrobots, where rapid folding and enhanced control are desired.An elastically and plastically foldable micro‐origami is developed and tested to create controllable and functional 3D shape morphing systems with multiple active degrees of freedom. The work demonstrates a versatile design–fabrication–actuation method to achieve rapid folding, enhanced control, and function in different atmospheric environments, enabling applications in microrobots, medical devices, and metamaterials.
dc.publisherA. K. Peters
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrapid folding
dc.subject.otherelectrothermal actuators
dc.subject.othermicro‐electromechanical systems
dc.subject.othermicro‐origami
dc.subject.otherprogrammable metamaterials
dc.titleElastically and Plastically Foldable Electrothermal Micro‐Origami for Controllable and Rapid Shape Morphing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163442/2/adfm202003741.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163442/1/adfm202003741-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163442/3/adfm202003741_am.pdfen_US
dc.identifier.doi10.1002/adfm.202003741
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceC.‐H. Rhee, J. S. Pulskamp, R. G. Polcawich, K. R. Oldham, J. Microelectromech. Syst. 2012, 21, 1492.
dc.identifier.citedreferenceE. T. Filipov, T. Tachi, G. H. Paulino, Proc. Natl. Acad. Sci. USA 2015, 112, 12321.
dc.identifier.citedreferenceM. Schenk, S. D. Guest, Proc. Natl. Acad. Sci. USA 2013, 110, 3276.
dc.identifier.citedreferenceH. Fang, S.‐C. A. Chu, Y. Xia, K.‐W. Wang, Adv. Mater. 2018, 30, 1706311.
dc.identifier.citedreferenceE. Iwase, I. Shimoyama, J. Microelectromech. Syst. 2005, 14, 1265.
dc.identifier.citedreferenceY. W. Yi, C. Liu, J. Microelectromech. Syst. 1999, 8, 10.
dc.identifier.citedreferenceJ. Zou, J. Chen, C. Liu, J. E. Schutt‐Aine, J. Microelectromech. Syst. 2001, 10, 302.
dc.identifier.citedreferenceR. R. Syms, E. M. Yeatman, V. M. Bright, G. M. Whitesides, J. Microelectromech. Syst. 2003, 12, 387.
dc.identifier.citedreferenceY. Liu, J. K. Boyles, J. Genzer, M. D. Dickey, Soft Matter. 2012, 8, 1764.
dc.identifier.citedreferenceH. Fu, K. Nan, W. Bai, W. Huang, K. Bai, L. Lu, C. Zhou, Y. Liu, F. Liu, J. Wang, M. Han, Z. Yan, H. Luan, Y. Zhang, Y. Zhang, J. Zhao, X. Cheng, M. Li, J. W. Lee, Y. Liu, D. Fang, X. Li, Y. Huang, Y. Zhang, J. A. Rogers, Nat. Mater. 2018, 17, 268.
dc.identifier.citedreferenceX. Ning, X. Yu, H. Wang, R. Sun, R. E. Corman, H. Li, C. M. Lee, Y. Xue, A. Chempakasseril, Y. Yao, Z. Zhang, H. Luan, Z. Wang, W. Xia, X. Feng, R. H. Ewoldt, Y. Huang, Y. Zhang, J. A. Rogers, Sci. Adv. 2018, 4, eaat8313.
dc.identifier.citedreferenceK. Suzuki, I. Shimoyama, H. Miura, J. Microelectromech. Syst. 1994, 3, 4.
dc.identifier.citedreferenceM. Ataka, A. Omodaka, N. Takeshima, H. Fujita, J. Microelectromech. Syst. 1993, 2, 146.
dc.identifier.citedreferenceJ. W. Suh, R. B. Darling, K. F. Bohringer, B. R. Donald, H. Baltes, G. T. Kovacs, J. Microelectromech. Syst. 1999, 8, 483.
dc.identifier.citedreferenceY. Suzuki, Jpn. J. Appl. Phys. 1994, 33, 2107.
dc.identifier.citedreferenceJ. Choi, M. Shin, R. Q. Rudy, C. Kao, J. S. Pulskamp, R. G. Polcawich, K. R. Oldham, Int. J. Intell. Rob. Appl. 2017, 1, 180.
dc.identifier.citedreferenceA. Potekhina, C. Wang, Actuators 2019, 8, 69.
dc.identifier.citedreferenceN. Chronis, L. P. Lee, J. Microelectromech. Syst. 2005, 14, 857.
dc.identifier.citedreferenceR. Yeh, E. J. J. Kruglick, K. S. J. Pister, J. Microelectromech. Syst. 1996, 5, 10.
dc.identifier.citedreferenceP. B. Chu, P. R. Nelson, M. L. Tachiki, K. S. Pister, Sens. Actuators, A 1996, 52, 216.
dc.identifier.citedreferenceA. Arevalo, D. Conchouso, D. Castro, M. Diaz, I. G. Foulds, Micro Nano Lett. 2015, 10, 545.
dc.identifier.citedreferenceH. Fang, S. Li, K. W. Wang, P. Roy. Soc. A. 2016, 472, 20160682.
dc.identifier.citedreferenceS. Kamrava, D. Mousanezhad, S. M. Felton, A. Vaziri, Adv. Mater. Technol. 2018, 3, 1870012.
dc.identifier.citedreferenceT. Tachi, in Origami4 (Ed: R. J. Lang ), A. K. Peters, Natick, MA 2009, pp. 165 – 174.
dc.identifier.citedreferenceT. Tachi, J. IASS. 2009, 50, 173.
dc.identifier.citedreferenceM. Stern, M. B. Pinson, A. Murugan, Phys. Rev. X 2017, 7, 041070.
dc.identifier.citedreferenceK. Liu, G. H. Paulino, P. Roy. Soc. A. 2017, 473, 20170348.
dc.identifier.citedreferenceY. Zhu, E. T. Filipov, J. Mech. Rob. 2020, 12, 021110.
dc.identifier.citedreferenceY. Zhu, E. Filipov, P. Roy. Soc. A. 2019, 475, 20190366.
dc.identifier.citedreferenceB. An, S. Miyashita, A. Ong, M. T. Tolley, M. L. Demaine, E. D. Demaine, R. J. Wood, D. Rus, IEEE Trans. Rob. 2018, 34, 1409.
dc.identifier.citedreferenceS. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, Science 2014, 345, 644.
dc.identifier.citedreferenceR. J. Lang, S. Magleby, L. Howell, J. Mech. Rob. 2016, 8, 031005.
dc.identifier.citedreferenceS. Kamrava, D. Mousanezhad, H. Ebrahimi, R. Ghosh, A. Vaziri, Sci. Rep. 2017, 7, 46046.
dc.identifier.citedreferenceT. G. Leong, A. M. Zarafshar, D. H. Gracias, Small 2010, 6, 792.
dc.identifier.citedreferenceJ. Rogers, Y. Huang, O. G. Schmidt, D. H. Gracias, MRS Bull. 2016, 41, 123.
dc.identifier.citedreferenceE. W. H. Jager, O. Inganas, I. Lundstrom, Science 2000, 288, 2335.
dc.identifier.citedreferenceJ. C. Breger, C. Yoon, R. Xiao, H. R. Kwag, M. O. Wang, J. P. Fisher, T. D. Nguyen, D. H. Gracias, ACS Appl. Mater. Interfaces 2015, 7, 3398.
dc.identifier.citedreferenceT. G. Leong, C. L. Randall, B. R. Benson, N. Bassik, G. M. Stern, D. H. Gracias, Proc. Natl. Acad. Sci. USA 2009, 106, 703.
dc.identifier.citedreferenceT. G. Leong, C. L. Randall, B. R. Benson, A. M. Zarafshar, D. H. Gracias, Lab Chip 2008, 8, 1621.
dc.identifier.citedreferenceJ.‐H. Kang, H. Kim, C. D. Santangelo, R. C. Hayward, Adv. Mater. 2019, 31, 0193006.
dc.identifier.citedreferenceJ.‐H. Na, A. A. Evans, J. Bae, M. C. Chiappelli, C. D. Santangelo, R. J. Lang, T. C. Hull, R. C. Hayward, Adv. Mater. 2015, 27, 79.
dc.identifier.citedreferenceJ. L. Silverberg, J.‐H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, Nat. Mater. 2015, 14, 389.
dc.identifier.citedreferenceC. Yoon, R. Xiao, J. Park, J. Cha, T. D. Nguyen, D. H. Gracias, Smart Mater. Struct. 2014, 23, 094008.
dc.identifier.citedreferenceJ. S. Randhawa, M. D. Keung, P. Tyagi, D. H. Gracias, Adv. Mater. 2010, 22, 407.
dc.identifier.citedreferenceN. Bassik, G. M. Stern, D. H. Gracias, Appl. Phys. Lett. 2009, 95, 091901.
dc.identifier.citedreferenceN. S. Shaar, G. Barbastathis, C. Livermore, J. Microelectromech. Syst. 2015, 24, 1043.
dc.identifier.citedreferenceJ. Kim, S. E. Chung, S.‐E. Choi, H. Lee, J. Kim, S. Kwon, Nat. Mater. 2011, 10, 747.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.