Show simple item record

Statistical Study of Ion Upflow and Downflow Observed by PFISR

dc.contributor.authorRen, Jiaen
dc.contributor.authorZou, Shasha
dc.contributor.authorLu, Jiayue
dc.contributor.authorGiertych, Naomi
dc.contributor.authorChen, Yang
dc.contributor.authorVarney, Roger H.
dc.contributor.authorReimer, Ashton S.
dc.date.accessioned2020-11-04T16:00:58Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:00:58Z
dc.date.issued2020-10
dc.identifier.citationRen, Jiaen; Zou, Shasha; Lu, Jiayue; Giertych, Naomi; Chen, Yang; Varney, Roger H.; Reimer, Ashton S. (2020). "Statistical Study of Ion Upflow and Downflow Observed by PFISR." Journal of Geophysical Research: Space Physics 125(10): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163443
dc.description.abstractIon upflow in the F region and topside ionosphere can greatly influence the ion density and fluxes at higher altitudes and thus has significant impact on ion outflow. We investigated the statistical characteristics of ion upflow and downflow using a 3‐year (2011–2013) data set from the Poker Flat Incoherent Scatter Radar (PFISR). Ion upflow is twice more likely to occur on the nightside than on the dayside in PFISR observations, while downflow events occur more often in the afternoon sector. Upflow and downflow on the dayside tend to occur at altitudes ~500 km, higher than those on the nightside. Both upflow and downflow occur more frequently as ion convection speed increases. Upflow observed from 16 to 6 magnetic local time through midnight is associated with temperature and density enhancements. Occurrence rates of upflow on the nightside and downflow on the dayside increase with geomagnetic activity level. On the nightside, occurrence rate of ion upflow increases with enhanced solar wind and interplanetary magnetic field (IMF) drivers as well as southwestward local magnetic perturbations. The lack of correlation of upflow on the dayside with the solar wind and IMF parameters is because PFISR is usually equatorward of the dayside auroral zone. Occurrence rate of downflow does not show strong dependence on the solar wind and IMF conditions. However, it occurs much more frequently on the dayside when the IMF By > 10 nT and the IMF Bz < −10 nT, which we suggest is associated with the decaying of the dayside storm‐enhanced density (SED) and the SED plume.Key PointsThe occurrence frequency of ion upflow increases with enhanced geomagnetic activity level and stronger solar wind and IMF drivingIon upflow at PFISR latitude is twice more likely to occur on the nightside than on the daysidePeak ion downflow occurrence rate reaches 30% on the dayside during strongly positive IMF By and negative Bz, associated with SED and plume
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford University Press
dc.subject.otherion upflow
dc.subject.otherion downflow
dc.subject.otherPFISR
dc.subject.otherstatistical study
dc.subject.othersolar wind
dc.subject.otheroccurrence frequency
dc.titleStatistical Study of Ion Upflow and Downflow Observed by PFISR
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163443/3/jgra56049-sup-0001-2020JA028179-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163443/2/jgra56049.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163443/1/jgra56049_am.pdfen_US
dc.identifier.doi10.1029/2020JA028179
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceWahlund, J. ‐E., Opgenoorth, H. J., Häggström, I., Winser, K. J., & Jones, G. O. L. ( 1992 ). EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited. Journal of Geophysical Research: Space Physics, 97 ( A3 ), 3019 – 3037. https://doi.org/10.1029/91ja02438
dc.identifier.citedreferenceOgawa, Y., Seki, K., Keika, K., & Ebihara, Y. ( 2019 ). Characteristics of CME‐ and CIR‐driven ion upflows in the polar ionosphere. Journal of Geophysical Research: Space Physics, 124, 3637 – 3649. https://doi.org/10.1029/2018JA025870
dc.identifier.citedreferenceRedmon, R. J., Peterson, W. K., Andersson, L., Kihn, E. A., Denig, W. F., Hairston, M., & Coley, R. ( 2010 ). Vertical thermal O+ flows at 850 km in dynamic auroral boundary coordinates. Journal of Geophysical Research: Space Physics, 115, A00J08. https://doi.org/10.1029/2010JA015589
dc.identifier.citedreferenceRen, J., Zou, S., Gillies, R. G., Donovan, E., & Varney, R. H. ( 2018 ). Statistical characteristics of polar cap patches observed by RISR‐C. Journal of Geophysical Research: Space Physics, 123, 6981 – 6995. https://doi.org/10.1029/2018JA025621
dc.identifier.citedreferenceRen, J., Zou, S., Kendall, E., Coster, A., Sterne, K., & Ruohoniemi, M. ( 2020 ). Direct observations of a polar cap patch formation associated with dayside reconnection driven fast flow. Journal of Geophysical Research: Space Physics, 125, e2019JA027745. https://doi.org/10.1029/2019JA027745
dc.identifier.citedreferenceRong, Z. J., Lui, A. T. Y., Wan, W. X., Yang, Y. Y., Shen, C., Petrukovich, A. A., Zhang, Y. C., Zhang, T. L., & Wei, Y. ( 2015 ). Time delay of interplanetary magnetic field penetration into Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 120, 3406 – 3414. https://doi.org/10.1002/2014JA020452
dc.identifier.citedreferenceSato, T., & Rourke, G. F. ( 1964 ). F ‐region enhancements in the Antarctic. Journal of Geophysical Research, 69 ( 21 ), 4591 – 4607. https://doi.org/10.1029/jz069i021p04591
dc.identifier.citedreferenceSemeter, J., Heinselman, C. J., Thayer, J. P., Doe, R. A., & Frey, H. U. ( 2003 ). Ion upflow enhanced by drifting F‐region plasma structure along the nightside polar cap boundary. Geophysical Research Letters, 30 ( 22 ), 2139. https://doi.org/10.1029/2003gl017747
dc.identifier.citedreferenceSeo, Y., Horwitz, J. L., & Caton, R. ( 1997 ). Statistical relationships between high‐latitude ionospheric F region/topside upflows and their drivers: DE 2 observations. Journal of Geophysical Research, 102 ( A4 ), 7493 – 7500. https://doi.org/10.1029/97JA00151
dc.identifier.citedreferenceShen, Y., Knudsen, D. J., Burchill, J. K., Howarth, A. D., Yau, A. W., Miles, D. M., James, H. G., Perry, G. W., & Cogger, L. ( 2018 ). Low‐altitude ion heating, downflowing ions, and BBELF waves in the return current region. Journal of Geophysical Research: Space Physics, 123, 3087 – 3110. https://doi.org/10.1002/2017JA024955
dc.identifier.citedreferenceStrangeway, R. J. ( 2005 ). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research, 110, A03221. https://doi.org/10.1029/2004JA010829
dc.identifier.citedreferenceThomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster, A. J., Foster, J. C., & Erickson, P. J. ( 2013 ). Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 118, 1180 – 1189. https://doi.org/10.1002/jgra.50116
dc.identifier.citedreferenceTu, J.‐N., Dhar, M., Song, P., Reinisch, B. W., Green, J. L., Benson, R. F., & Coster, A. J. ( 2007 ). Extreme polar cap density enhancements along magnetic field lines during an intense geomagnetic storm. Journal of Geophysical Research, 112, A05201. https://doi.org/10.1029/2006JA012034
dc.identifier.citedreferenceWalsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., Runov, A., Soucek, J., Walsh, B. M., Wing, S., & Taylor, M. G. G. T. ( 2014 ). Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: A review. Annales Geophysicae, 32 ( 7 ), 705 – 737. https://doi.org/10.5194/angeo‐32‐705‐2014
dc.identifier.citedreferenceWang, Z., Zou, S., Coppeans, T., Ren, J., Ridley, A., & Gombosi, T. ( 2019 ). Segmentation of SED by boundary flows associated with westward drifting partial ring current. Geophysical Research Letters, 46, 7920 – 7928. https://doi.org/10.1029/2019GL084041
dc.identifier.citedreferenceWeber, E. J., Buchau, J., Moore, J. G., Sharber, J. R., Livingston, R. C., Winningham, J. D., & Reinisch, B. W. ( 1984 ). F layer ionization patches in the polar cap. Journal of Geophysical Research, 89 ( A3 ), 1683 – 1694. https://doi.org/10.1029/JA089iA03p01683
dc.identifier.citedreferenceWelling, D. T., Andre, M., Dandouras, I., Delcourt, D., Fazakerley, A., Dontaine, D., Foster, J., Ilie, R., Kistler, L., Lee, J. H., Liemohn, M. W., Slavin, J. A., Wang, C.‐P., Wiltberger, M., & Yau, A. ( 2015 ). The Earth: Plasma sources, losses, and transport processes. Space Science Reviews, 192 ( 1–4 ), 145 – 208. https://doi.org/10.1007/s11214‐015‐0187‐2
dc.identifier.citedreferenceWu, X.‐Y., Horwitz, J. L., & Seo, Y. ( 2000 ). Statistical analysis of F region and topside ionospheric ion field‐aligned flows at high latitudes. Journal of Geophysical Research, 105 ( A2 ), 2477 – 2494. https://doi.org/10.1029/1999JA900437
dc.identifier.citedreferenceYau, A. W., & André, M. ( 1997 ). Sources of ion outflow in the high latitude ionosphere. Space Science Reviews, 80, 1 – 25. https://doi.org/10.1023/A:1004947203046
dc.identifier.citedreferenceZhang, Q. H., Lockwood, M., Foster, J. C., Zhang, S. R., Zhang, B. C., McCrea, I. W., Moen, J., Lester, M., & Ruohoniemi, J. M. ( 2015 ). Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions. Journal of Geophysical Research Space Physics, 120, 4519 – 4530. https://doi.org/10.1002/2015JA021172
dc.identifier.citedreferenceZhang, Q.‐H., Zong, Q., Lockwood, M., Heelis, R. A., Hairston, M., Liang, J., McCrea, I., Zhang, B.‐C., Moen, J., Zhang, S.‐R., Zhang, Y., Ruohoniemi, J. M., Lester, M., Thomas, E. G., Liu, R.‐Y., Dunlop, M. W., Liu, Y. C.‐M., & Ma, Y. ( 2016 ). Earth’s ion upflow associated with polar cap patches: Global and in situ observations. Geophysical Research Letters, 43, 1845 – 1853. https://doi.org/10.1002/2016GL067897
dc.identifier.citedreferenceZou, S., Lyons, L. R., Nicolls, M. J., Heinselman, C. J., & Mende, S. B. ( 2009 ). Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. Journal of Geophysical Research: Space Physics, 114, A12301. https://doi.org/10.1029/2009JA014259
dc.identifier.citedreferenceZou, S., Lyons, L. R., Wang, C.‐P., Boudouridis, A., Ruohoniemi, J. M., Anderson, P. C., Dyson, P. L., & Devlin, J. C. ( 2009 ). On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP and IMAGE observations. Journal of Geophysical Research, 114, A01205. https://doi.org/10.1029/2008JA013449
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density (SED) plumes: Role of the convection flow and field‐aligned ion flow. Journal of Geophysical Research, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408
dc.identifier.citedreferenceZou, S., Ozturk, D., Varney, R., & Reimer, A. ( 2017 ). Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation. Geophysical Research Letters, 44, 3047 – 3058. https://doi.org/10.1002/2017GL072678
dc.identifier.citedreferenceZou, S., Ridley, A., Jia, X., Boyd, E., Nicolls, M., Coster, A., Thomas, E., & Ruohoniemi, J. M. ( 2017 ). PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 2589 – 2604. https://doi.org/10.1002/2016JA023697
dc.identifier.citedreferenceZou, S., & Ridley, A. J. ( 2016 ). Modeling of the evolution of storm‐enhanced density (SED) plume during the Oct. 24–25, 2011 geomagnetic storm. In C. R. Chappell, R. W. Schunk, P. M. Banks, J. L. Burch, R. M. Thorne (Eds.), Magnetosphere‐ionosphere coupling in the solar system, Geophysical Monograph Series (Vol. 222, pp. 205 – 213 ). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119066880.ch16
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceBates, H. F. ( 1974 ). Atmospheric expansion from Joule heating. Planetary and Space Science, 22 ( 6 ), 925 – 937. https://doi.org/10.1016/0032‐0633(74)90162‐7
dc.identifier.citedreferenceBrowett, S. D., Fear, R. C., Grocott, A., & Milan, S. E. ( 2017 ). Timescales for the penetration of IMF B y into the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 579 – 593. https://doi.org/10.1002/2016JA023198
dc.identifier.citedreferenceBuchert, S. C., Ogawa, Y., Fujii, R., & van Eyken, A. P. ( 2004 ). Observations of diverging field‐aligned ion flow with the ESR. Annales Geophysicae, 22 ( 3 ), 889 – 899. https://doi.org/10.5194/angeo‐22‐889‐2004
dc.identifier.citedreferenceBurchill, J. K., Knudsen, D. J., Clemmons, J. H., Oksavik, K., Pfaff, R. F., Steigies, C. T., Yau, A. W., & Yeoman, T. K. ( 2010 ). Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux. Journal of Geophysical Research: Space Physics, 115, A05206. https://doi.org/10.1029/2009JA015006
dc.identifier.citedreferenceChappell, C. R. ( 2015 ). The role of the ionosphere in providing plasma to the terrestrial magnetosphere—An historical overview. Space Science Reviews, 192 ( 1–4 ), 5 – 25. https://doi.org/10.1007/s11214‐015‐0168‐5
dc.identifier.citedreferenceCohen, I. J., Lessard, M. R., Varney, R. H., Oksavik, K., Zettergren, M., & Lynch, K. A. ( 2015 ). Ion upflow dependence on ionospheric density and solar photoionization. Journal of Geophysical Research: Space Physics, 39 – 52. https://doi.org/10.1002/2015JA021523
dc.identifier.citedreferenceColey, W. R., Heelis, R. A., & Hairston, M. R. ( 2006 ). Characteristics of high‐latitude vertical plasma flow from the Defense Meteorological Satellite Program. Journal of Geophysical Research, 111, A11314. https://doi.org/10.1029/2005JA011553
dc.identifier.citedreferenceCrowley, G. ( 1996 ). Critical review of ionospheric patches and blobs. In W. R. Stone (Ed.), Review of radio science, 1993–1996 (pp. 619 – 648 ). New York: Oxford University Press.
dc.identifier.citedreferenceDeng, Y., & Ridley, A. J. ( 2006 ). Role of vertical ion convection in the high‐latitude ionospheric plasma distribution. Journal of Geophysical Research, 111, A09314. https://doi.org/10.1029/2006JA011637
dc.identifier.citedreferenceEndo, M., Fujii, R., Ogawa, Y., Buchert, S. C., Nozawa, S., Watanabe, S., & Yoshida, N. ( 1999 ). Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar. Annales Geophysicae, 18, 170 – 181. https://doi.org/10.1007/s00585‐000‐0170‐3
dc.identifier.citedreferenceFoster, C., Lester, M., & Davies, J. A. ( 1998 ). A statistical study of diurnal, seasonal and solar cycle variations of F ‐region and topside auroral upflows observed by EISCAT between 1984 and 1996. Annales Geophysicae, 16, 1144 – 1158. https://doi.org/10.1007/s00585‐998‐1144‐0
dc.identifier.citedreferenceFoster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92JA02032
dc.identifier.citedreferenceFoster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A., & Rich, F. J. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research: Space Physics, 117, A09213. https://doi.org/10.1029/2012JA017683
dc.identifier.citedreferenceHeelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle‐latitude dayside ionosphere. Journal of Geophysical Research, 114, A03315. https://doi.org/10.1029/2008JA013690
dc.identifier.citedreferenceHosokawa, K., Tsugawa, T., Shiokawa, K., Otsuka, Y., Nishitani, N., Ogawa, T., & Hairston, M. R. ( 2010 ). Dynamic temporal evolution of polar cap tongue of ionization during magnetic storm. Journal of Geophysical Research, 115, A12333. https://doi.org/10.1029/2010JA015848
dc.identifier.citedreferenceJi, E. Y., Jee, G., & Lee, C. ( 2019 ). Characteristics of the occurrence of ion upflow in association with ion/electron heating in the polar ionosphere. Journal of Geophysical Research: Space Physics, 124, 6226 – 6236. https://doi.org/10.1029/2019JA026799
dc.identifier.citedreferenceKeating, J. G., Mulligan, F. J., Doyle, D. B., Winser, K. J., & Lockwood, M. ( 1990 ). A statistical study of large field‐aligned flows of thermal ions at high‐latitudes. Planetary and Space Science, 38 ( 9 ), 1187 – 1201. https://doi.org/10.1016/0032‐0633(90)90026‐M
dc.identifier.citedreferenceLiu, H., Ma, S.‐Y., & Schlegel, K. ( 2001 ). Diurnal, seasonal, and geomagnetic variations of large fieldaligned ion upflows in the high‐latitude ionospheric F region. Journal of Geophysical Research, 106 ( A11 ), 24,651 – 24,661. https://doi.org/10.1029/2001JA900047
dc.identifier.citedreferenceLoranc, M., Hanson, W. B., Heelis, R. A., & St.‐Maurice, J.‐P. ( 1991 ). A morphological study of vertical ionospheric flows in the high‐latitude F region. Journal of Geophysical Research, 96 ( A3 ), 3627. https://doi.org/10.1029/90JA02242
dc.identifier.citedreferenceLoranc, M., & St. ‐Maurice, J.‐P. ( 1994 ). A time‐dependent gyro‐kinetic model of thermal ion upflows in the high‐latitude F region. Journal of Geophysical Research, 99 ( A9 ), 17429. https://doi.org/10.1029/93JA01852
dc.identifier.citedreferenceLotko, W. ( 2007 ). The magnetosphere–ionosphere system from the perspective of plasma circulation: A tutorial. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 3 ), 191 – 211. https://doi.org/10.1016/j.jastp.2006.08.011
dc.identifier.citedreferenceMa, Y. Z., Zhang, Q. H., Xing, Z. Y., Jayachandran, P. T., Moen, J., Heelis, R. A., & Wang, Y. ( 2018 ). Combined contribution of solar illumination, solar activity, and convection to ion upflow above the polar cap. Journal of Geophysical Research: Space Physics, 123, 4317 – 4328. https://doi.org/10.1029/2017JA024974
dc.identifier.citedreferenceMoen, J., Qiu, X. C., Carlson, H. C., Fujii, R., & McCrea, I. W. ( 2008 ). On the diurnal variability in F 2‐region plasma density above the EISCAT Svalbard radar. Annales de Geophysique, 26 ( 8 ), 2427 – 2433. https://doi.org/10.5194/angeo‐26‐2427‐2008
dc.identifier.citedreferenceMoore, T. E., & Horwitz, J. L. ( 2007 ). Stellar ablation of planetary atmospheres. Reviews of Geophysics, 45, RG3002. https://doi.org/10.1029/2005RG000194
dc.identifier.citedreferenceNilsson, H., Waara, M., Marghitu, O., Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.‐A., Dandouras, I., Lucek, E., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano‐Cattaneo, M. B., & Korth, A. ( 2008 ). Transients in oxygen outflow above the polar cap as observed by the cluster spacecraft. Annales Geophysicae, 26 ( 11 ), 3365 – 3373. https://doi.org/10.5194/angeo‐26‐3365‐2008
dc.identifier.citedreferenceOgawa, Y., Buchert, S. C., Fujii, R., Nozawa, S., & van Eyken, A. P. ( 2009 ). Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard Radar. Journal of Geophysical Research: Space Physics, 114 ( A5 ), A05305, https://doi.org/10.1029/2008JA013817.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.