Show simple item record

Chiral Nanoceramics

dc.contributor.authorFan, Jinchen
dc.contributor.authorKotov, Nicholas A.
dc.date.accessioned2020-11-04T16:01:23Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:01:23Z
dc.date.issued2020-10
dc.identifier.citationFan, Jinchen; Kotov, Nicholas A. (2020). "Chiral Nanoceramics." Advanced Materials 32(41): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/163453
dc.description.abstractThe study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever‐expanding toolbox of nanoscale engineering and self‐organization provides a chirality‐based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.Chiral nanoceramics are emerging as a remarkably active area of chiral research. It is still in its infant stage and is thus full of challenges and opportunities. Recent advances in the diversity of chemistries, geometries, and properties of chiral ceramic nanostructures are reviewed. An outlook of synthesis, computational methods, and emerging applications of chiral nanoceramics is presented.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetal oxides
dc.subject.othermirror asymmetry
dc.subject.othernanoassemblies
dc.subject.otherchiroplasmonics
dc.subject.otherbiomimetic helices
dc.titleChiral Nanoceramics
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/2/adma201906738_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163453/1/adma201906738.pdfen_US
dc.identifier.doi10.1002/adma.201906738
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferencea) J. T. Collins, C. Kuppe, D. C. Hooper, C. Sibilia, M. Centini, V. K. Valev, Adv. Opt. Mater. 2017, 5, 1700182; b) X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, X. Luo, Nanomaterials 2017, 7, 239.
dc.identifier.citedreferenceR. Yang, Z. L. Wang, J. Am. Chem. Soc. 2006, 128, 1466.
dc.identifier.citedreferenceX. Wang, G. Xi, S. Xiong, Y. Liu, B. Xi, W. Yu, Y. Qian, Cryst. Growth Des. 2007, 7, 930.
dc.identifier.citedreferenceG. Shen, D. Chen, J. Am. Chem. Soc. 2006, 128, 11762.
dc.identifier.citedreferenceP. Yin, Z.‐M. Zhang, H. Lv, T. Li, F. Haso, L. Hu, B. Zhang, J. Bacsa, Y. Wei, Y. Gao, Y. Hou, Y.‐G. Li, C. L. Hill, E.‐B. Wang, T. Liu, Nat. Commun. 2015, 6, 6475.
dc.identifier.citedreferencea) X. Gao, B. Han, X. Yang, Z. Tang, J. Am. Chem. Soc. 2019, 141, 13700; b) X. Mao, H. Li, J. Mater. Chem. B 2013, 1, 4267.
dc.identifier.citedreferenceH. Sun, N. Gao, K. Dong, J. Ren, X. Qu, ACS Nano 2014, 8, 6202.
dc.identifier.citedreferenceY. Ma, L. Shi, M. Zhou, B. Li, Z. Chen, L. Wu, Chem. Commun. 2019, 55, 7001.
dc.identifier.citedreferencea) K. Saito, T. Tatsuma, Nano Lett. 2018, 18, 3209; b) J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez‐Medina, Joong H. Bahng, G. Zhao, W.‐S. Chang, S.‐J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, N. A. Kotov, Nat. Mater. 2015, 14, 66.
dc.identifier.citedreferencea) L. Lin, S. Lepeshov, A. Krasnok, T. Jiang, X. Peng, B. A. Korgel, A. Alù, Y. Zheng, Mater. Today 2019, 25, 10; b) F. Patti, R. Saija, P. Denti, G. Pellegrini, P. Biagioni, M. A. Iatì, O. M. Maragò, Sci. Rep. 2019, 9, 29; c) L. Lin, J. Zhang, X. Peng, Z. Wu, A. C. H. Coughlan, Z. Mao, M. A. Bevan, Y. Zheng, Sci. Adv. 2017, 3, e1700458.
dc.identifier.citedreferenceW. Feng, J.‐Y. Kim, X. Wang, H. A. Calcaterra, Z. Qu, L. Meshi, N. A. Kotov, Sci. Adv. 2017, 3, e1601159.
dc.identifier.citedreferenceU. Hananel, A. Ben‐Moshe, H. Diamant, G. Markovich, Proc. Natl. Acad. Sci. USA 2019, 116, 11159.
dc.identifier.citedreferenceW. J. Choi, G. Cheng, Z. Huang, S. Zhang, T. B. Norris, N. A. Kotov, Nat. Mater. 2019, 18, 820.
dc.identifier.citedreferenceX. Gao, X. Zhang, K. Deng, B. Han, L. Zhao, M. Wu, L. Shi, J. Lv, Z. Tang, J. Am. Chem. Soc. 2017, 139, 8734.
dc.identifier.citedreferencea) S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 2015, 143, 054107; b) Y. Zhou, R. L. Marson, G. van Anders, J. Zhu, G. Ma, P. Ercius, K. Sun, B. Yeom, S. C. Glotzer, N. A. Kotov, ACS Nano 2016, 10, 3248.
dc.identifier.citedreferencea) Y. Li, J. Cheng, J. Li, X. Zhu, T. He, R. Chen, Z. Tang, Angew. Chem., Int. Ed. 2018, 57, 10236; b) J.‐i. Fujisawa, N. Kaneko, T. Eda, M. Hanaya, Chem. Commun. 2018, 54, 8490.
dc.identifier.citedreferenceY. Tang, A. E. Cohen, Phys. Rev. Lett. 2010, 104, 163901.
dc.identifier.citedreferencea) P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D. V. Bellas, C. Lekka, E. Lidorikis, Mater. Sci.Eng., R 2018, 123, 1; b) G. V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 2011, 1, 1090.
dc.identifier.citedreferenceH. Hu, Q. Gan, Q. Zhan, Phys. Rev. Lett. 2019, 122, 223901.
dc.identifier.citedreferencea) A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, R. R. Naik, Nano Lett. 2010, 10, 1374; b) T. Hu, B. P. Isaacoff, J. H. Bahng, C. Hao, Y. Zhou, J. Zhu, X. Li, Z. Wang, S. Liu, C. Xu, J. S. Biteen, N. A. Kotov, Nano Lett. 2014, 14, 6799.
dc.identifier.citedreferenceG. Long, C. Jiang, R. Sabatini, Z. Yang, M. Wei, L. N. Quan, Q. Liang, A. Rasmita, M. Askerka, G. Walters, X. Gong, J. Xing, X. Wen, R. Quintero‐Bermudez, H. Yuan, G. Xing, X. R. Wang, D. Song, O. Voznyy, M. Zhang, S. Hoogland, W. Gao, Q. Xiong, E. H. Sargent, Nat. Photonics 2018, 12, 528.
dc.identifier.citedreferenceY. Zhao, A. Alù, Nano Lett. 2013, 13, 1086.
dc.identifier.citedreferenceJ. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek‐Hönninger, P. Desbarats, P. Mounaix, J. Infrared, Millimeter, Terahertz Waves 2014, 35, 382.
dc.identifier.citedreferenceC. Hao, R. Gao, Y. Li, L. Xu, M. Sun, C. Xu, H. Kuang, Angew. Chem., Int. Ed. 2019, 58, 7371.
dc.identifier.citedreferenceC. Hao, A. Qu, L. Xu, M. Sun, H. Zhang, C. Xu, H. Kuang, J. Am. Chem. Soc. 2019, 141, 1091.
dc.identifier.citedreferencea) T. Vogl, R. Lecamwasam, B. C. Buchler, Y. Lu, P. K. Lam, ACS Photonics 2019, 6, 1955; b) W. Qin, L. Li, Z. Zhang, Nat. Phys. 2019, 15, 796; c) X. Liu, M. C. Hersam, Nat. Rev. Mater. 2019, 4, 669; d) J.‐B. Qiao, Y. Gong, W.‐J. Zuo, Y.‐C. Wei, D.‐L. Ma, H. Yang, N. Yang, K.‐Y. Qiao, J.‐A. Shi, L. Gu, L. He, Phys. Rev. B 2017, 95, 201403.
dc.identifier.citedreferencea) R. Juchtmans, A. Béché, A. Abakumov, M. Batuk, J. Verbeeck, Phys. Rev. B 2015, 91, 094112; b) T. R. Harvey, F. S. Yasin, J. J. Chess, J. S. Pierce, R. M. S. dos Reis, V. B. Özdöl, P. Ercius, J. Ciston, W. Feng, N. A. Kotov, B. J. McMorran, C. Ophus, Phys. Rev. Appl. 2018, 10, 061001.
dc.identifier.citedreferencea) R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl. 1966, 5, 385; b) Y. Wang, J. Xu, Y. Wang, H. Chen, Chem. Soc. Rev. 2013, 42, 2930.
dc.identifier.citedreferencea) H. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 2009, 65, 371; b) L. Pasteur, Ann. Chim. Phys. 1848, 24, 442.
dc.identifier.citedreferencea) V. V. Borovkov, G. A. Hembury, Y. Inoue, Acc. Chem. Res. 2004, 37, 449; b) V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song, Chem. Rev. 2006, 106, 2734; c) W. H. Brooks, W. C. Guida, K. G. Daniel, Curr. Top. Med. Chem. 2011, 11, 760; d) J. R. Brandt, F. Salerno, M. J. Fuchter, Nat. Rev. Chem. 2017, 1, 0045; e) D. R. Boyd, M. A. McKervey, Q. Rev., Chem. Soc. 1968, 22, 95.
dc.identifier.citedreferencea) M. Inaki, J. Liu, K. Matsuno, Philos. Trans. R. Soc., B 2016, 371, 20150403; b) D. G. Blackmond, Cold Spring Harbor Perspect. Biol. 2010, 2, a002147.
dc.identifier.citedreferencea) R. Naaman, Y. Paltiel, D. H. Waldeck, Nat. Rev. Chem. 2019, 3, 250; b) M. Senami, K. Ito, Phys. Rev. A 2019, 99, 012509; c) A. Dorta‐Urra, P. Bargueño, Symmetry 2019, 11, 661; d) P. L. Guennec, J. Math. Phys. 2000, 41, 5954; e) M. Goldhaber, L. Grodzins, A. W. Sunyar, Phys. Rev. 1958, 109, 1015.
dc.identifier.citedreferencea) R. Kafri, O. Markovitch, D. Lancet, Biol. Direct 2010, 5, 38; b) L. A. Nguyen, H. He, C. Pham‐Huy, Int. J. Biomed. Sci. 2006, 2, 85; c) A. Berthod, Anal. Chem. 2006, 78, 2093.
dc.identifier.citedreferenceW. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041.
dc.identifier.citedreferenceT. G. Schaaff, R. L. Whetten, J. Phys. Chem. B 2000, 104, 2630.
dc.identifier.citedreferenceM. P. Moloney, Y. K. Gun’ko, J. M. Kelly, Chem. Commun. 2007, 3900.
dc.identifier.citedreferenceA. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, Sci. Rep. 2015, 5, 14712.
dc.identifier.citedreferencea) W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, N. A. Kotov, Nano Lett. 2009, 9, 2153; b) B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, J. Am. Chem. Soc. 2012, 134, 17807; c) B. Auguié, J. L. Alonso‐Gómez, A. Guerrero‐Martínez, L. M. Liz‐Marzán, J. Phys. Chem. Lett. 2011, 2, 846.
dc.identifier.citedreferencea) K. Ngamdee, W. Ngeontae, Sens. Actuators, B. 2018, 274, 402; b) Y. Wang, X. Zhou, C. Xu, Y. Jin, B. Li, Sci. Rep. 2018, 8, 5296; c) Y. Xia, Y. Zhou, Z. Tang, Nanoscale 2011, 3, 1374.
dc.identifier.citedreferencea) I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El‐Ella, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl, Nat. Nanotechnol. 2015, 10, 775; b) W. Ma, H. Kuang, L. Wang, L. Xu, W.‐S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, N. A. Kotov, Sci. Rep. 2013, 3, 1934; c) M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu, Sci. Adv. 2017, 3, e1602735.
dc.identifier.citedreferencea) L. Kang, S. Lan, Y. Cui, S. P. Rodrigues, Y. Liu, D. H. Werner, W. Cai, Adv. Mater. 2015, 27, 4377; b) F. Zinna, U. Giovanella, L. D. Bari, Adv. Mater. 2015, 27, 1791; c) M. M. Glazov, S. D. Ganichev, Phys. Rep. 2014, 535, 101; d) P. M. Perez‐Piskunow, G. Usaj, C. A. Balseiro, L. E. F. F. Torres, Phys. Rev. B 2014, 89, 121401.
dc.identifier.citedreferencea) N. Shukla, M. A. Bartel, A. J. Gellman, J. Am. Chem. Soc. 2010, 132, 8575; b) C. F. McFadden, P. S. Cremer, A. J. Gellman, Langmuir 1996, 12, 2483; c) A. Gogoi, N. Mazumder, S. Konwer, H. Ranawat, N.‐T. Chen, G.‐Y. Zhuo, Molecules 2019, 24, 1007.
dc.identifier.citedreferencea) K. Sawai, R. Tatumi, T. Nakahodo, H. Fujihara, Angew. Chem., Int. Ed. 2008, 47, 6917; b) C. Hao, R. Gao, Y. Li, L. Xu, M. Sun, C. Xu, H. Kuang, Angew. Chem. 2019, 131, 7449; c) S. Zhao, F. Caruso, L. Dähne, G. Decher, B. G. De Geest, J. Fan, N. Feliu, Y. Gogotsi, P. T. Hammond, M. C. Hersam, A. Khademhosseini, N. Kotov, S. Leporatti, Y. Li, F. Lisdat, L. M. Liz‐Marzán, S. Moya, P. Mulvaney, A. L. Rogach, S. Roy, D. G. Shchukin, A. G. Skirtach, M. M. Stevens, G. B. Sukhorukov, P. S. Weiss, Z. Yue, D. Zhu, W. J. Parak, ACS Nano 2019, 13, 6151.
dc.identifier.citedreferencea) K. Unfried, C. Albrecht, L.‐O. Klotz, A. Von Mikecz, S. Grether‐Beck, R. P. F. Schins, Nanotoxicology 2007, 1, 52; b) N. Suzuki, Y. Wang, P. Elvati, Z.‐B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J. H. Bahng, J. Lee, A. Violi, N. A. Kotov, ACS Nano 2016, 10, 1744.
dc.identifier.citedreferencea) C.‐Y. Sun, C. Qin, C.‐G. Wang, Z.‐M. Su, S. Wang, X.‐L. Wang, G.‐S. Yang, K.‐Z. Shao, Y.‐Q. Lan, E.‐B. Wang, Adv. Mater. 2011, 23, 5629; b) Z. Guo, Y. Du, X. Liu, S.‐C. Ng, Y. Chen, Y. Yang, Nanotechnology 2010, 21, 165103; c) A. Motealleh, P. Dorri, N. S. Kehr, J. Mater. Chem. B 2019, 7, 2362; d) H. Li, H. Li, C. Wei, J. Ke, J. Li, L. Xu, H. Liu, YangYang, S. Li, M. Yang, Eur. J. Pharm. Sci. 2018, 117, 321.
dc.identifier.citedreferencea) M. Sun, L. Xu, A. Qu, P. Zhao, T. Hao, W. Ma, C. Hao, X. Wen, F. M. Colombari, A. F. de Moura, N. A. Kotov, C. Xu, H. Kuang, Nat. Chem. 2018, 10, 821; b) S. Li, J. Liu, N. S. Ramesar, H. Heinz, L. Xu, C. Xu, N. A. Kotov, Nat. Commun. 2019, 10, 4826; c) X. Feng, H. S. Jena, K. Leus, G. Wang, J. Ouwehand, P. Van Der Voort, J. Catal. 2018, 365, 36; d) C. Li, H. Zhang, D. Jiang, Q. Yang, Chem. Commun. 2007, 547.
dc.identifier.citedreferencea) W. Jiang, X. Yi, M. D. McKee, Mater. Horiz. 2019, 6, 1974; b) B. Sung, A. de la Cotte, E. Grelet, Nat. Commun. 2018, 9, 1405; c) Z. Guo, J. Wang, F. Qin, W. Shen, J. Colloid Interface Sci. 2019, 543, 130; d) S. Elsharkawy, A. Mata, Adv. Healthcare Mater. 2018, 7, 1800178;
dc.identifier.citedreferencea) C. O. Avci, E. Rosenberg, L. Caretta, F. Büttner, M. Mann, C. Marcus, D. Bono, C. A. Ross, G. S. D. Beach, Nat. Nanotechnol. 2019, 14, 561; b) J. Yeom, U. S. Santos, M. Chekini, M. Cha, A. F. de Moura, N. A. Kotov, Science 2018, 359, 309; c) T. Weber, J. Waizner, G. S. Tucker, R. Georgii, M. Kugler, A. Bauer, C. Pfleiderer, M. Garst, P. Böni, Phys. Rev. B 2018, 97, 224403; d) D.‐W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S.‐Y. Zhu, M. O. Scully, Nat. Phys. 2019, 15, 382; e) B. Liu, P. Zhang, H. Gao, F. Li, Phys. Rev. Lett. 2018, 121, 015303.
dc.identifier.citedreferencea) M. J. Urban, C. Shen, X.‐T. Kong, C. Zhu, A. O. Govorov, Q. Wang, M. Hentschel, N. Liu, Annu. Rev. Phys. Chem. 2019, 70, 275; b) J.‐W. Chen, T. Ishii, S. Pu, N. Yamamoto, Phys. Rev. D 2016, 93, 125023; c) A. Mukherjee, S. Schramm, J. Steinheimer, V. Dexheimer, Astron. Astrophys. 2017, 608, A110.
dc.identifier.citedreferencea) C. C. Kolb, in Encyclopedia of Geoarchaeology (Ed: A. S. Gilbert ), Springer, Dordrecht, Netherlands 2017, p. 118; b) Z.‐B. Qu, W.‐J. Feng, Y. Wang, F. Romanenko, N. A. Kotov, Angew. Chem., Int. Ed. 2020, 59, 8542; c) N. A. Kotov, Europhys. Lett. 2017, 119, 66008; d) J. J. De Yoreo, P. U. P. A. Gilbert, N. A. J. M. Sommerdijk, R. L. Penn, S. Whitelam, D. Joester, H. Zhang, J. D. Rimer, A. Navrotsky, J. F. Banfield, A. F. Wallace, F. M. Michel, F. C. Meldrum, H. Cölfen, P. M. Dove, Science 2015, 349, aaa6760; e) M. F. Hochella, D. W. Mogk, J. Ranville, I. C. Allen, G. W. Luther, L. C. Marr, B. P. McGrail, M. Murayama, N. P. Qafoku, K. M. Rosso, N. Sahai, P. A. Schroeder, P. Vikesland, P. Westerhoff, Y. Yang, Science 2019, 363, eaau8299.
dc.identifier.citedreferenceI. Denry, J. A. Holloway, Materials 2010, 3, 351.
dc.identifier.citedreferencea) M. Rosso, J. Mater. Process. Technol. 2006, 175, 364; b) R. J. Brook, in Concise Encyclopedia of Advanced Ceramic Materials (Ed: R. J. Brook ), Pergamon Press, Oxford, UK 1991, p. 1.
dc.identifier.citedreferenceC. B. Carter, M. G. Norton, Ceramic Materials: Science and Engineering, Springer, New York 2013, p. 3.
dc.identifier.citedreferenceG. Mera, M. Gallei, S. Bernard, E. Ionescu, Nanomaterials 2015, 5, 468.
dc.identifier.citedreferenceJ. Gal, Chirality 2011, 23, 1.
dc.identifier.citedreferenceK. Soai, S. Osanai, K. Kadowaki, S. Yonekubo, T. Shibata, I. Sato, J. Am. Chem. Soc. 1999, 121, 11235.
dc.identifier.citedreferencea) S. K. Brand, J. E. Schmidt, M. W. Deem, F. Daeyaert, Y. Ma, O. Terasaki, M. Orazov, M. E. Davis, Proc. Natl. Acad. Sci. USA 2017, 114, 5101; b) C. Dryzun, Y. Mastai, A. Shvalb, D. Avnir, J. Mater. Chem. 2009, 19, 2062.
dc.identifier.citedreferencea) Y. Han, Y. Li, J. Yu, R. Xu, Angew. Chem., Int. Ed. 2011, 50, 3003; b) L. Tang, L. Shi, C. Bonneau, J. Sun, H. Yue, A. Ojuva, B.‐L. Lee, M. Kritikos, R. G. Bell, Z. Bacsik, J. Mink, X. Zou, Nat. Mater. 2008, 7, 381.
dc.identifier.citedreferencea) A. Ben‐Moshe, A. O. Govorov, G. Markovich, Angew. Chem., Int. Ed. 2013, 52, 1275; b) F. P. Milton, J. Govan, M. V. Mukhina, Y. K. Gun’ko, Nanoscale Horiz. 2016, 1, 14.
dc.identifier.citedreferenceR. M. Hazen, D. A. Sverjensky, Cold Spring Harbor Perspect. Biol. 2010, 2, a002162.
dc.identifier.citedreferencea) G. Danger, R. Plasson, R. Pascal, Chem. Soc. Rev. 2012, 41, 5416; b) T. Georgelin, M. Jaber, H. Bazzi, J.‐F. Lambert, Origins Life Evol. Biospheres 2013, 43, 429; c) A. Rimola, M. Sodupe, P. Ugliengo, Life 2019, 9, 10.
dc.identifier.citedreferenceJ. Kumar, K. G. Thomas, L. M. Liz‐Marzán, Chem. Commun. 2016, 52, 12555.
dc.identifier.citedreferenceO. Cleary, F. Purcell‐Milton, A. Vandekerckhove, Y. K. Gun’ko, Adv. Opt. Mater. 2017, 5, 1601000.
dc.identifier.citedreferenceS. Jiang, M. Chekini, Z.‐B. Qu, Y. Wang, A. Yeltik, Y. Liu, A. Kotlyar, T. Zhang, B. Li, H. V. Demir, N. A. Kotov, J. Am. Chem. Soc. 2017, 139, 13701.
dc.identifier.citedreferenceY. Li, J. Cheng, J. Li, X. Zhu, T. He, R. Chen, Z. Tang, Angew. Chem. 2018, 130, 10393.
dc.identifier.citedreferencea) Z. Zhou, F. Zhang, J. Wang, X. Zhang, W. Xu, R. Wu, L. Liao, X. Wang, J. Wei, Mater. Sci. Eng., C 2019, 103, 109818; b) A. Sandmann, A. Kompch, V. Mackert, C. H. Liebscher, M. Winterer, Langmuir 2015, 31, 5701; c) E. Chwojnowska, M. Wolska‐Pietkiewicz, J. Grzonka, J. Lewiński, Nanoscale 2017, 9, 14782.
dc.identifier.citedreferenceA. Ben‐Moshe, B. M. Maoz, A. O. Govorov, G. Markovich, Chem. Soc. Rev. 2013, 42, 7028.
dc.identifier.citedreferenceS. Kim, J.‐M. Kim, J.‐E. Park, J.‐M. Nam, Adv. Mater. 2018, 30, 1704528.
dc.identifier.citedreferencea) W. Ma, C. Hao, M. Sun, L. Xu, C. Xu, H. Kuang, Mater. Horiz. 2018, 5, 141; b) E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Chem. Rev. 2016, 116, 13752; c) J. H. Jung, M. Park, S. Shinkai, Chem. Soc. Rev. 2010, 39, 4286.
dc.identifier.citedreferenceH. Qiu, S. Che, Chem. Soc. Rev. 2011, 40, 1259.
dc.identifier.citedreferenceC. Zhang, S. Wang, H. Huo, Z. Huang, Y. Li, B. Li, Y. Yang, Chem. ‐ Asian J. 2013, 8, 709.
dc.identifier.citedreferenceS. Yang, L. Zhao, C. Yu, X. Zhou, J. Tang, P. Yuan, D. Chen, D. Zhao, J. Am. Chem. Soc. 2006, 128, 10460.
dc.identifier.citedreferenceH. Huo, S. Wang, S. Lin, Y. Li, B. Li, Y. Yang, J. Mater. Chem. A 2014, 2, 333.
dc.identifier.citedreferenceQ. Wang, S. Lin, J. Qin, Y. Li, B. Li, Y. Yang, Chirality 2016, 28, 44.
dc.identifier.citedreferenceA. Sola‐Rabada, M.‐K. Liang, M. J. Roe, C. C. Perry, J. Mater. Chem. B 2015, 3, 3777.
dc.identifier.citedreferencea) B. Liu, Y. Cao, Z. Huang, Y. Duan, S. Che, Adv. Mater. 2015, 27, 479; b) M. Numata, K. Sugiyasu, T. Hasegawa, S. Shinkai, Angew. Chem., Int. Ed. 2004, 43, 3279.
dc.identifier.citedreferencea) Z. Wu, Y. Yan, J. Huang, Langmuir 2014, 30, 14375; b) Y. Qiao, Y. Lin, Y. Wang, Z. Yang, J. Liu, J. Zhou, Y. Yan, J. Huang, Nano Lett. 2009, 9, 4500; c) Y. Qiao, Y. Wang, Z. Yang, Y. Lin, J. Huang, Chem. Mater. 2011, 23, 1182.
dc.identifier.citedreferencea) Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, J. Mater. Chem. 2006, 16, 1644; b) Y. Yang, M. Suzuki, H. Shirai, A. Kurose, K. Hanabusa, Chem. Commun. 2005, 2032; c) T. Yokoi, Y. Yamataka, Y. Ara, S. Sato, Y. Kubota, T. Tatsumi, Microporous Mesoporous Mater. 2007, 103, 20; d) S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281; e) H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, Y. Inoue, K. Sakamoto, T. Nakanishi, K. Ariga, S. Che, Adv. Mater. 2006, 18, 593; f) K. Sugiyasu, S.‐i. Tamaru, M. Takeuchi, D. Berthier, I. Huc, R. Oda, S. Shinkai, Chem. Commun. 2002, 1212.
dc.identifier.citedreferencea) A. M. Seddon, H. M. Patel, S. L. Burkett, S. Mann, Angew. Chem., Int. Ed. 2002, 41, 2988; b) J. H. Jung, Y. Ono, S. Shinkai, Angew. Chem., Int. Ed. 2000, 39, 1862; c) Y. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, J. Am. Chem. Soc. 2007, 129, 581; d) J. H. Jung, S.‐H. Lee, J. S. Yoo, K. Yoshida, T. Shimizu, S. Shinkai, Chem. ‐ Eur. J. 2003, 9, 5307.
dc.identifier.citedreferencea) B. Wang, C. Chi, W. Shan, Y. Zhang, N. Ren, W. Yang, Y. Tang, Angew. Chem., Int. Ed. 2006, 45, 2088; b) Y. Han, L. Zhao, J. Y. Ying, Adv. Mater. 2007, 19, 2454.
dc.identifier.citedreferenceH. Qiu, S. Che, J. Phys. Chem. B 2008, 112, 10466.
dc.identifier.citedreferenceH. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, Chem. Mater. 2006, 18, 4981.
dc.identifier.citedreferenceY. Qin, Y. Kim, L. Zhang, S.‐M. Lee, R. B. Yang, A. Pan, K. Mathwig, M. Alexe, U. Gösele, M. Knez, Small 2010, 6, 910.
dc.identifier.citedreferenceK. E. Shopsowitz, H. Qi, W. Y. Hamad, M. J. MacLachlan, Nature 2010, 468, 422.
dc.identifier.citedreferenceG. Chu, J. Feng, Y. Wang, X. Zhang, Y. Xu, H. Zhang, Dalton Trans. 2014, 43, 15321.
dc.identifier.citedreferencea) P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, Z. L. Wang, Science 2005, 309, 1700; b) Z. L. Wang, J. Mater. Chem. 2005, 15, 1021.
dc.identifier.citedreferenceZ. Y. Zhang, X. L. Wu, L. L. Xu, J. C. Shen, G. G. Siu, P. K. Chu, J. Chem. Phys. 2008, 129, 164702.
dc.identifier.citedreferenceC. Wu, H. Zhu, J. Dai, W. Yan, J. Yang, Y. Tian, S. Wei, Y. Xie, Adv. Funct. Mater. 2010, 20, 3666.
dc.identifier.citedreferenceC.‐Y. Xu, J. Wu, L.‐X. Lv, J.‐X. Cui, Z.‐Q. Wang, Y.‐D. Huang, L. Zhen, CrystEngComm 2011, 13, 2674.
dc.identifier.citedreferenceC.‐Y. Xu, Y.‐Z. Liu, L. Zhen, Z. L. Wang, J. Phys. Chem. C 2008, 112, 7547.
dc.identifier.citedreferenceS. Y. Bae, J. Lee, H. Jung, J. Park, J.‐P. Ahn, J. Am. Chem. Soc. 2005, 127, 10802.
dc.identifier.citedreferenceH. S. Kim, S. O. Hwang, Y. Myung, J. Park, S. Y. Bae, J. P. Ahn, Nano Lett. 2008, 8, 551.
dc.identifier.citedreferencea) A. Barranco, A. Borras, A. R. Gonzalez‐Elipe, A. Palmero, Prog. Mater. Sci. 2016, 76, 59; b) B. Ai, Y. Zhao, Nanophotonics 2018, 8, 1; c) K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, C. Buzea, Rev. Sci. Instrum. 2004, 75, 1089; d) B. Wang, H. Qi, Y. Chai, M. Li, M. Guo, M. Pan, H. Wang, Y. Cui, J. Shao, Superlattices Microstruct. 2016, 90, 87.
dc.identifier.citedreferenceK. Robbie, M. J. Brett, J. Vac. Sci. Technol., A 1997, 15, 1460.
dc.identifier.citedreferenceK. Robbie, M. J. Brett, A. Lakhtakia, Nature 1996, 384, 616.
dc.identifier.citedreferenceA. C. van Popta, J. C. Sit, M. J. Brett, Appl. Opt. 2004, 43, 3632.
dc.identifier.citedreferenceL. Hu, P. Wang, X. Wan, S. Jiang, J. Mater. Sci. Technol. 2012, 28, 97.
dc.identifier.citedreferenceS. Wang, X. Zhao, Z. Fan, J. Shao, Appl. Phys. A 2012, 107, 227.
dc.identifier.citedreferenceR. Figueroa, T. G. S. Cruz, A. Gorenstein, J. Power Sources 2007, 172, 422.
dc.identifier.citedreferenceQ. Xie, W.‐P. Wang, Z. Xie, P. Zhan, Z.‐C. Li, Z.‐J. Zhang, Chin. Phys. B 2015, 24, 057503.
dc.identifier.citedreferenceL.‐C. Chen, C.‐H. Tien, L. Xuguang, X. Bingshe, J. Nanomater. 2012, 2012, 105.
dc.identifier.citedreferenceY. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Opt. Express 2008, 16, 5186.
dc.identifier.citedreferenceC.‐W. Chen, H.‐W. Tsai, Y.‐C. Wang, T.‐Y. Su, C.‐H. Yang, W.‐S. Lin, Z.‐H. Lin, J.‐S. Huang, Y.‐L. Chueh, J. Mater. Chem. A 2019, 7, 11452.
dc.identifier.citedreferenceB. D. Karahan, K. Amine, J. Appl. Electrochem. 2019, 49, 671.
dc.identifier.citedreferenceM. Chundak, I. Khalakhan, P. Kúš, T. Duchoň, V. Potin, A. Cacucci, N. Tsud, V. Matolín, K. Veltruská, Mater. Chem. Phys. 2019, 232, 485.
dc.identifier.citedreferenceM. A. Camblor, A. Corma, J. Pérez‐Pariente, Zeolites 1993, 13, 82.
dc.identifier.citedreferenceJ. M. Newsam, M. M. J. Treacy, W. T. Koetsier, C. B. D. Gruyter, Proc. R. Soc. London, Ser A 1988, 420, 375.
dc.identifier.citedreferenceJ. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman, J. D. Wood, G. T. Kerr, W. J. Rohrbaugh, Zeolites 1988, 8, 446.
dc.identifier.citedreferenceM. M. J. Treacy, J. M. Newsam, Nature 1988, 332, 249.
dc.identifier.citedreferenceL. Xu, C. Qin, X. Wang, Y. Wei, E. Wang, Inorg. Chem. 2003, 42, 7342.
dc.identifier.citedreferenceY. Duan, X. Liu, L. Han, S. Asahina, D. Xu, Y. Cao, Y. Yao, S. Che, J. Am. Chem. Soc. 2014, 136, 7193.
dc.identifier.citedreferenceF. Meng, S. A. Morin, A. Forticaux, S. Jin, Acc. Chem. Res. 2013, 46, 1616.
dc.identifier.citedreferenceS. A. Morin, M. J. Bierman, J. Tong, S. Jin, Science 2010, 328, 476.
dc.identifier.citedreferenceS. Hacialioglu, F. Meng, S. Jin, Chem. Commun. 2012, 48, 1174.
dc.identifier.citedreferenceS. A. Morin, A. Forticaux, M. J. Bierman, S. Jin, Nano Lett. 2011, 11, 4449.
dc.identifier.citedreferenceS. Jin, M. J. Bierman, S. A. Morin, J. Phys. Chem. Lett. 2010, 1, 1472.
dc.identifier.citedreferenceC. A. Orme, A. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, J. J. DeYoreo, Nature 2001, 411, 775.
dc.identifier.citedreferenceE. A. Kulp, J. A. Switzer, J. Am. Chem. Soc. 2007, 129, 15120.
dc.identifier.citedreferenceT. Sugawara, Y. Suwa, K. Ohkawa, H. Yamamoto, Macromol. Rapid Commun. 2003, 24, 847.
dc.identifier.citedreferenceW. Jiang, M. S. Pacella, D. Athanasiadou, V. Nelea, H. Vali, R. M. Hazen, J. J. Gray, M. D. McKee, Nat. Commun. 2017, 8, 15066.
dc.identifier.citedreferenceW. Jiang, M. S. Pacella, H. Vali, J. J. Gray, M. D. McKee, Sci. Adv. 2018, 4, eaas9819.
dc.identifier.citedreferencea) K. R. Kloetstra, H. W. Zandbergen, J. C. Jansen, H. van Bekkum, Microporous Mater. 1996, 6, 287; b) J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem., Int. Ed. 1999, 38, 56.
dc.identifier.citedreferenceY. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, S. Shinkai, M. Sano, J. Hojo, Chem. Commun. 1998, 1477.
dc.identifier.citedreferencea) J. H. Jung, G. John, M. Masuda, K. Yoshida, S. Shinkai, T. Shimizu, Langmuir 2001, 17, 7229; b) J. H. Jung, K. Yoshida, T. Shimizu, Langmuir 2002, 18, 8724.
dc.identifier.citedreferenceR. Oda, I. Huc, S. J. Candau, Angew. Chem., Int. Ed. 1998, 37, 2689.
dc.identifier.citedreferenceT. Delclos, C. Aimé, E. Pouget, A. Brizard, I. Huc, M.‐H. Delville, R. Oda, Nano Lett. 2008, 8, 1929.
dc.identifier.citedreferencea) Y. Sang, M. Liu, Mol. Syst. Des. Eng. 2019, 4, 11; b) J. H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, J. Am. Chem. Soc. 2000, 122, 5008; c) Y. Ono, K. Nakashima, M. Sano, J. Hojo, S. Shinkai, J. Mater. Chem. 2001, 11, 2412.
dc.identifier.citedreferenceX. Wu, H. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S. Che, Chem. Mater. 2006, 18, 241.
dc.identifier.citedreferenceX. Wu, J. Ruan, T. Ohsuna, O. Terasaki, S. Che, Chem. Mater. 2007, 19, 1577.
dc.identifier.citedreferenceH. Qiu, S. Wang, W. Zhang, K. Sakamoto, O. Terasaki, Y. Inoue, S. Che, J. Phys. Chem. C 2008, 112, 1871.
dc.identifier.citedreferenceG.‐L. Lin, Y.‐H. Tsai, H.‐P. Lin, C.‐Y. Tang, C.‐Y. Lin, Langmuir 2007, 23, 4115.
dc.identifier.citedreferenceJ. Wang, W. Wang, P. Sun, Z. Yuan, B. Li, Q. Jin, D. Ding, T. Chen, J. Mater. Chem. 2006, 16, 4117.
dc.identifier.citedreferenceL. Zhou, G. Hong, L. Qi, Y. Lu, Langmuir 2009, 25, 6040.
dc.identifier.citedreferenceL. Zhao, P. Yuan, N. Liu, Y. Hu, Y. Zhang, G. Wei, L. Zhou, X. Zhou, Y. Wang, C. Yu, J. Phys. Chem. B 2009, 113, 16178.
dc.identifier.citedreferenceR. Atluri, N. Hedin, A. E. Garcia‐Bennett, J. Am. Chem. Soc. 2009, 131, 3189.
dc.identifier.citedreferenceB. Liu, L. Han, S. Che, Angew. Chem., Int. Ed. 2012, 51, 923.
dc.identifier.citedreferenceH. Qiu, Y. Inoue, S. Che, Angew. Chem., Int. Ed. 2009, 48, 3069.
dc.identifier.citedreferenceK. Banerjee‐Ghosh, O. Ben Dor, F. Tassinari, E. Capua, S. Yochelis, A. Capua, S.‐H. Yang, S. S. P. Parkin, S. Sarkar, L. Kronik, L. T. Baczewski, R. Naaman, Y. Paltiel, Science 2018, 360, 1331.
dc.identifier.citedreferenceY. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, Chem. Commun. 2005, 4462.
dc.identifier.citedreferenceZ. Qinghong, L. Fei, L. Changli, W. Ye, W. Huilin, Chem. Lett. 2006, 35, 190.
dc.identifier.citedreferenceH. Jin, H. Qiu, Y. Sakamoto, P. Shu, O. Terasaki, S. Che, Chem. ‐ Eur. J. 2008, 14, 6413.
dc.identifier.citedreferenceJ. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 2002, 14, 1445.
dc.identifier.citedreferenceS. Liu, L. Han, Y. Duan, S. Asahina, O. Terasaki, Y. Cao, B. Liu, L. Ma, J. Zhang, S. Che, Nat. Commun. 2012, 3, 1215.
dc.identifier.citedreferenceC. Wang, S. Liu, Y. Duan, Z. Huang, S. Che, Sci. Technol. Adv. Mater. 2015, 16, 054206.
dc.identifier.citedreferenceK. E. Shopsowitz, A. Stahl, W. Y. Hamad, M. J. MacLachlan, Angew. Chem., Int. Ed. 2012, 51, 6886.
dc.identifier.citedreferenceK. M. Krause, M. J. Brett, Adv. Funct. Mater. 2008, 18, 3111.
dc.identifier.citedreferenceG. D. Gesesse, C. Li, E. Paineau, Y. Habibi, H. Remita, C. Colbeau‐Justin, M. N. Ghazzal, Chem. Mater. 2019, 31, 4851.
dc.identifier.citedreferenceZ. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, J. Am. Chem. Soc. 2002, 124, 12954.
dc.identifier.citedreferenceX. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Science 2004, 303, 1348.
dc.identifier.citedreferencea) X. Y. Kong, Z. L. Wang, Appl. Phys. Lett. 2004, 84, 975; b) M.‐Q. Zhao, Q. Zhang, W. Fei, in Advanced Hierarchical Nanostructured Materials (Eds: Q. Zhang, F. Wei ), Wiley‐VCH, Weinheim, Germany 2014, p. 193; c) Z. L. Wang, Mater. Today 2004, 7, 26.
dc.identifier.citedreferenceH. Gao, X. Zhang, M. Zhou, E. Zhang, Z. Zhang, Solid State Commun. 2006, 140, 455.
dc.identifier.citedreferenceW. Xiang, C. Wei, Q. Feng‐Yu, Chin. Phys. B 2009, 18, 1669.
dc.identifier.citedreferencea) X. Y. Kong, Z. L. Wang, Nano Lett. 2003, 3, 1625; b) P. X. Gao, W. Mai, Z. L. Wang, Nano Lett. 2006, 6, 2536.
dc.identifier.citedreferenceZ. C. Tu, X. Hu, Phys. Rev. B 2006, 74, 035434.
dc.identifier.citedreferenceJ. Lin, B. Huang, Y. Dai, J. Wei, Y. Chen, Mater. Sci. Eng., C 2018, 93, 739.
dc.identifier.citedreferenceJ. A. Switzer, H. M. Kothari, P. Poizot, S. Nakanishi, E. W. Bohannan, Nature 2003, 425, 490.
dc.identifier.citedreferenceR. Widmer, F.‐J. Haug, P. Ruffieux, O. Gröning, M. Bielmann, P. Gröning, R. Fasel, J. Am. Chem. Soc. 2006, 128, 14103.
dc.identifier.citedreferenceM. Ortega Lorenzo, C. J. Baddeley, C. Muryn, R. Raval, Nature 2000, 404, 376.
dc.identifier.citedreferenceY. Wang, H. Li, W. Qi, Y. Yang, Y. Yan, B. Li, L. Wu, J. Mater. Chem. 2012, 22, 9181.
dc.identifier.citedreferencea) D.‐Y. Du, L.‐K. Yan, Z.‐M. Su, S.‐L. Li, Y.‐Q. Lan, E.‐B. Wang, Coord. Chem. Rev. 2013, 257, 702; b) B. Hasenknopf, K. Micoine, E. Lacôte, S. Thorimbert, M. Malacria, R. Thouvenot, Eur. J. Inorg. Chem. 2008, 2008, 5001; c) J. Crassous, Chem. Soc. Rev. 2009, 38, 830.
dc.identifier.citedreferencea) C. J. Besecker, V. W. Day, W. G. Klemperer, M. R. Thompson, J. Am. Chem. Soc. 1984, 106, 4125; b) V. W. Day, W. G. Klemperer, C. Schwartz, J. Am. Chem. Soc. 1987, 109, 6030; c) C. J. Besecker, V. W. Day, W. G. Klemperer, M. R. Thompson, Inorg. Chem. 1985, 24, 44.
dc.identifier.citedreferenceM. Inoue, T. Yamase, Bull. Chem. Soc. Jpn. 1995, 68, 3055.
dc.identifier.citedreferenceJ. Iijima, H. Naruke, T. Sanji, Inorg. Chem. 2018, 57, 13351.
dc.identifier.citedreferenceC. Yvon, A. J. Surman, M. Hutin, J. Alex, B. O. Smith, D.‐L. Long, L. Cronin, Angew. Chem., Int. Ed. 2014, 53, 3336.
dc.identifier.citedreferenceZ. Xiao, B. Huang, Y. Wang, Y. Chen, T. Zhai, X. Hu, D. Ke, P. Wu, J. Cluster Sci. 2019, 30, 837.
dc.identifier.citedreferenceH.‐Y. An, E.‐B. Wang, D.‐R. Xiao, Y.‐G. Li, Z.‐M. Su, L. Xu, Angew. Chem., Int. Ed. 2006, 45, 904.
dc.identifier.citedreferenceX. Fang, T. M. Anderson, C. L. Hill, Angew. Chem., Int. Ed. 2005, 44, 3540.
dc.identifier.citedreferenceY.‐Q. Lan, S.‐L. Li, Z.‐M. Su, K.‐Z. Shao, J.‐F. Ma, X.‐L. Wang, E.‐B. Wang, Chem. Commun. 2008, 58.
dc.identifier.citedreferenceJ. Zhang, J. Hao, Y. Wei, F. Xiao, P. Yin, L. Wang, J. Am. Chem. Soc. 2010, 132, 14.
dc.identifier.citedreferenceS. T. Zheng, J. Zhang, G. Y. Yang, Angew. Chem., Int. Ed. 2008, 47, 3909.
dc.identifier.citedreferenceJ. Crassous, Chem. Commun. 2012, 48, 9684.
dc.identifier.citedreferenceW. Xuan, R. Pow, N. Watfa, Q. Zheng, A. J. Surman, D.‐L. Long, L. Cronin, J. Am. Chem. Soc. 2019, 141, 1242.
dc.identifier.citedreferenceC. Feng, K. C. Khulbe, T. Matsuura, R. Farnood, A. F. Ismail, J. Membr. Sci. Res. 2015, 1, 49.
dc.identifier.citedreferenceV. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta, C. J. O’Connor, Science 1993, 259, 1596.
dc.identifier.citedreferenceJ. Sun, C. Bonneau, Á. Cantín, A. Corma, M. J. Díaz‐Cabañas, M. Moliner, D. Zhang, M. Li, X. Zou, Nature 2009, 458, 1154.
dc.identifier.citedreferenceT. Lu, W. Yan, R. Xu, Inorg. Chem. Front. 2019, 6, 1938.
dc.identifier.citedreferenceJ. Yu, R. Xu, J. Mater. Chem. 2008, 18, 4021.
dc.identifier.citedreferencea) M. E. Davis, R. F. Lobo, Chem. Mater. 1992, 4, 756; b) C. B. Dartt, M. E. Davis, Catal. Today 1994, 19, 151.
dc.identifier.citedreferenceM. Tong, D. Zhang, W. Fan, J. Xu, L. Zhu, W. Guo, W. Yan, J. Yu, S. Qiu, J. Wang, F. Deng, R. Xu, Sci. Rep. 2015, 5, 11521.
dc.identifier.citedreferenceG. Zhang, B. Wang, W. Zhang, M. Li, Z. Tian, Dalton Trans. 2016, 45, 6634.
dc.identifier.citedreferenceT. Lu, L. Zhu, X. Wang, W. Yan, W. Shi, R. Xu, Inorg. Chem. Front. 2018, 5, 1640.
dc.identifier.citedreferenceF. Daeyaert, M. W. Deem, ChemistrySelect 2019, 4, 3531.
dc.identifier.citedreferenceY. Zhou, M. Yang, K. Sun, Z. Tang, N. A. Kotov, J. Am. Chem. Soc. 2010, 132, 6006.
dc.identifier.citedreferencea) B. Banerjee, G. Misra, M. T. Ashraf, in Data Processing Handbook for Complex Biological Data Sources (Ed: G. Misra ), Academic Press, MA, USA 2019, p. 21; b) B. Ranjbar, P. Gill, Chem. Biol. Drug Des. 2009, 74, 101.
dc.identifier.citedreferenceY. Duan, L. Han, J. Zhang, S. Asahina, Z. Huang, L. Shi, B. Wang, Y. Cao, Y. Yao, L. Ma, C. Wang, R. K. Dukor, L. Sun, C. Jiang, Z. Tang, L. A. Nafie, S. Che, Angew. Chem., Int. Ed. 2015, 54, 15170.
dc.identifier.citedreferencea) S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga, Carbon 1991, 29, 379; b) S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga, Appl. Phys. Lett. 1990, 56, 321.
dc.identifier.citedreferenceD. L. Liu, D. X. Ye, F. Khan, F. Tang, B. K. Lim, R. C. Picu, G. C. Wang, T. M. Lu, J. Nanosci. Nanotechnol. 2003, 3, 492.
dc.identifier.citedreferenceJ.‐F. Lambert, Origins Life Evol. Biospheres 2008, 38, 211.
dc.identifier.citedreferenceK. B. Ghosh, W. Zhang, F. Tassinari, Y. Mastai, O. Lidor‐Shalev, R. Naaman, P. Möllers, D. Nürenberg, H. Zacharias, J. Wei, E. Wierzbinski, D. H. Waldeck, J. Phys. Chem. C 2019, 123, 3024.
dc.identifier.citedreferenceD. Wang, Y. Li, G. Li Puma, C. Wang, P. Wang, W. Zhang, Q. Wang, Chem. Commun. 2013, 49, 10367.
dc.identifier.citedreferenceC. Zhang, Y. Li, D. Wang, W. Zhang, Q. Wang, Y. Wang, P. Wang, Environ. Sci. Pollut. Res. 2015, 22, 10444.
dc.identifier.citedreferenceY. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem., Int. Ed. 2014, 53, 11926.
dc.identifier.citedreferenceS. Shaw, J. D. White, Chem. Rev. 2019, 119, 9381.
dc.identifier.citedreferenceA. J. Bendelsmith, S. C. Kim, M. Wasa, S. P. Roche, E. N. Jacobsen, J. Am. Chem. Soc. 2019, 141, 11414.
dc.identifier.citedreferenceC. Tan, J. Jiao, Z. Li, Y. Liu, X. Han, Y. Cui, Angew. Chem., Int. Ed. 2018, 57, 2085.
dc.identifier.citedreferenceT.‐J. Yue, W.‐M. Ren, L. Chen, G.‐G. Gu, Y. Liu, X.‐B. Lu, Angew. Chem. 2018, 130, 12852.
dc.identifier.citedreferencea) G. Xu, C. H. Senanayake, W. Tang, Acc. Chem. Res. 2019, 52, 1101; b) A. J. Argüelles, S. Sun, B. G. Budaitis, P. Nagorny, Angew. Chem., Int. Ed. 2018, 57, 5325; c) K. Y. Wan, F. Roelfes, A. J. Lough, F. E. Hahn, R. H. Morris, Organometallics 2018, 37, 491; d) S. Luo, Z. Xiong, Y. Lu, Q. Zhu, Org. Lett. 2018, 20, 1837.
dc.identifier.citedreferenceI. Sato, K. Kadowaki, H. Urabe, J. H. Jung, Y. Ono, S. Shinkai, K. Soai, Tetrahedron Lett. 2003, 44, 721.
dc.identifier.citedreferenceY. Ren, M. Wang, X. Chen, B. Yue, H. He, Materials 2015, 8, 1545.
dc.identifier.citedreferenceL. Zhang, S. Luo, J.‐P. Cheng, Catal. Sci. Technol. 2011, 1, 507.
dc.identifier.citedreferenceH. Wang, T. Sakata, M. Azuma, T. Ohta, H. Takaya, Chem. Lett. 1990, 19, 1331.
dc.identifier.citedreferenceA. Hu, G. T. Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486.
dc.identifier.citedreferenceS. Kohtani, A. Kawashima, F. Masuda, M. Sumi, Y. Kitagawa, E. Yoshioka, Y. Hasegawa, H. Miyabe, Chem. Commun. 2018, 54, 12610.
dc.identifier.citedreferencea) O. V. Fedorova, M. S. Valova, Y. A. Titova, I. G. Ovchinnikova, A. N. Grishakov, M. A. Uimin, A. A. Mysik, A. E. Ermakov, G. L. Rusinov, V. N. Charushin, Kinet. Catal. 2011, 52, 226; b) O. V. Fedorova, Y. A. Titova, A. Y. Vigorov, M. S. Toporova, O. A. Alisienok, A. N. Murashkevich, V. P. Krasnov, G. L. Rusinov, V. N. Charushin, Catal. Lett. 2016, 146, 493.
dc.identifier.citedreferencea) G. K. E. Scriba, Chromatographia 2012, 75, 815; b) G. K. E. Scriba, in Chiral Separations: Methods and Protocols (Ed: G. K. E. Scriba ), Springer, New York 2019, p. 1.
dc.identifier.citedreferenceS. Xu, Y. Wang, Y. Tang, Y. Ji, New J. Chem. 2018, 42, 13520.
dc.identifier.citedreferenceA. Gogolashvili, E. Tatunashvili, L. Chankvetadze, T. Sohajda, J. Szeman, M. Gumustas, S. A. Ozkan, A. Salgado, B. Chankvetadze, J. Chromatogr. A 2018, 1571, 231.
dc.identifier.citedreferenceS. Adhikari, W. Lee, J. Pharm. Invest. 2018, 48, 225.
dc.identifier.citedreferenceB. Chankvetadze, in Chiral Separations: Methods and Protocols (Ed: G. K. E. Scriba ), Springer, New York 2019, p. 93.
dc.identifier.citedreferencea) J. Wu, P. Su, J. Huang, S. Wang, Y. Yang, J. Colloid Interface Sci. 2013, 399, 107; b) Z.‐S. Gong, L.‐P. Duan, A.‐N. Tang, Microchim. Acta 2015, 182, 1297; c) S. Xu, R. Mo, C. Jin, X. Cui, R. Bai, Y. Ji, J. Pharm. Biomed. Anal. 2017, 140, 190; d) X. Deng, W. Li, G. Ding, T. Xue, X. Chen, Sep. Purif. Rev. 2019, 48, 14; e) C. Chang, X. Wang, Y. Bai, H. Liu, TrAC, Trends Anal. Chem. 2012, 39, 195; f) A. K. Visheratina, F. Purcell‐Milton, R. Serrano‐García, V. A. Kuznetsova, A. O. Orlova, A. V. Fedorov, A. V. Baranov, Y. K. Gun’ko, J. Mater. Chem. C 2017, 5, 1692.
dc.identifier.citedreferenceY. Fu, T. Huang, B. Chen, J. Shen, X. Duan, J. Zhang, W. Li, Sep. Purif. Technol. 2013, 107, 11.
dc.identifier.citedreferenceS. Ghosh, T. H. Fang, M. S. Uddin, K. Hidajat, Colloids Surf., B 2013, 105, 267.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.