Show simple item record

Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites

dc.contributor.authorYang, Dongwang
dc.contributor.authorSu, Xianli
dc.contributor.authorLi, Jun
dc.contributor.authorBai, Hui
dc.contributor.authorWang, Shanyu
dc.contributor.authorLi, Zhi
dc.contributor.authorTang, Hao
dc.contributor.authorTang, Kechen
dc.contributor.authorLuo, Tingting
dc.contributor.authorYan, Yonggao
dc.contributor.authorWu, Jinsong
dc.contributor.authorYang, Jihui
dc.contributor.authorZhang, Qingjie
dc.contributor.authorUher, Ctirad
dc.contributor.authorKanatzidis, Mercouri G.
dc.contributor.authorTang, Xinfeng
dc.date.accessioned2020-11-04T16:01:34Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:01:34Z
dc.date.issued2020-10
dc.identifier.citationYang, Dongwang; Su, Xianli; Li, Jun; Bai, Hui; Wang, Shanyu; Li, Zhi; Tang, Hao; Tang, Kechen; Luo, Tingting; Yan, Yonggao; Wu, Jinsong; Yang, Jihui; Zhang, Qingjie; Uher, Ctirad; Kanatzidis, Mercouri G.; Tang, Xinfeng (2020). "Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites." Advanced Materials 32(40): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/163457
dc.description.abstractThe applications of mixed ionic–electronic conductors are limited due to phase instability under a high direct current and large temperature difference. Here, it is shown that Cu2Se is stabilized through regulating the behaviors of Cu+ ions and electrons in a Schottky heterojunction between the Cu2Se host matrix and in‐situ‐formed BiCuSeO nanoparticles. The accumulation of Cu+ ions via an ionic capacitive effect at the Schottky junction under the direct current modifies the space‐charge distribution in the electric double layer, which blocks the long‐range migration of Cu+ and produces a drastic reduction of Cu+ ion migration by nearly two orders of magnitude. Moreover, this heterojunction impedes electrons transferring from BiCuSeO to Cu2Se, obstructing the reduction reaction of Cu+ into Cu metal at the interface and hence stabilizes the β‐Cu2Se phase. Furthermore, incorporation of BiCuSeO in Cu2Se optimizes the carrier concentration and intensifies phonon scattering, contributing to the peak figure of merit ZT value of ≈2.7 at 973 K and high average ZT value of ≈1.5 between 400 and 973 K for the Cu2Se/BiCuSeO composites. This discovery provides a new avenue for stabilizing mixed ionic–electronic conduction thermoelectrics, and gives fresh insights into controlling ion migration in these ionic‐transport‐dominated materials.The space‐charge region between Cu2Se host matrix and in‐situ‐formed BiCuSeO under a direct current causes drastic suppression of the Cu+ ion migration in such composites and obstructs the reduction reaction of Cu+ into Cu metal. This, together with the effective regulation of carrier concentration as well as enhanced interfacial phonon scattering, greatly stabilizes the improved thermoelectric performance.
dc.publisherWiley Periodicals, Inc.
dc.publisherCRC Press
dc.subject.otherSchottky junction
dc.subject.otherCu2Se
dc.subject.othermixed ionic–electronic conductors
dc.subject.otherthermoelectric properties
dc.subject.otherstable thermoelectric materials
dc.titleBlocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/2/adma202003730-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/3/adma202003730_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163457/1/adma202003730.pdfen_US
dc.identifier.doi10.1002/adma.202003730
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceD. R. Brown, T. Day, T. Caillat, G. J. Snyder, J. Electron. Mater. 2013, 42, 2014.
dc.identifier.citedreferenceY. He, P. Lu, X. Shi, F. F. Xu, T. S. Zhang, G. J. Snyder, C. Uher, L. D. Chen, Adv. Mater. 2015, 27, 3639.
dc.identifier.citedreferenceT. Caillat, J. P. Fleurial, A. Borshchevsky, J. Phys. Chem. Solids 1997, 58, 1119.
dc.identifier.citedreferenceM. Ferhat, J. Nagao, J. Appl. Phys. 2000, 88, 813.
dc.identifier.citedreferenceY. F. Ding, Y. Qiu, K. F. Cai, Q. Yao, S. Chen, L. D. Chen, J. Q. He, Nat. Commun. 2019, 10, 841.
dc.identifier.citedreferenceY. Z. Pei, N. A. Heinz, G. J. Snyder, J. Mater. Chem. 2011, 21, 18256.
dc.identifier.citedreferenceD. W. Yang, X. L. Su, F. C. Meng, S. Wang, Y. G. Yan, J. H. Yang, J. He, Q. J. Zhang, C. Uher, M. G. Kanatzidis, X. F. Tang, J. Mater. Chem. A 2017, 5, 23243.
dc.identifier.citedreferenceX. Shi, H. Y. Chen, F. Hao, R. H. Liu, T. Wang, P. F. Qiu, U. Burkhardt, Y. Grin, L. Chen, Nat. Mater. 2018, 17, 421.
dc.identifier.citedreferenceB. Li, H. Wang, Y. Kawakita, Q. Zhang, M. Feygenson, H. L. Yu, D. Wu, K. Ohara, T. Kikuchi, K. Shibata, T. Yamada, X. K. Ning, Y. Chen, J. Q. He, D. Vaknin, R. Q. Wu, K. J. Nakajima, M. G. Kanatzidis, Nat. Mater. 2018, 17, 226.
dc.identifier.citedreferenceJ. L. Niedziela, D. Bansal, A. F. May, J. X. Ding, T. Lanigan‐Atkins, G. Ehlers, D. L. Abernathy, A. Said, O. Delaire, Nat. Phys. 2019, 15, 73.
dc.identifier.citedreferenceW. Li, S. Q. Lin, B. H. Ge, J. Yang, W. Q. Zhang, Y. Z. Pei, Adv. Sci. 2016, 3, 1600196.
dc.identifier.citedreferenceW. F. Kuhs, R. Nitsche, K. Scheunemann, Mater. Res. Bull. 1979, 14, 241.
dc.identifier.citedreferenceX. Shen, C. C. Yang, Y. M. Liu, G. W. Wang, H. Tan, Y. H. Tung, G. Y. Wang, X. Lu, J. He, X. Y. Zhou, ACS Appl. Mater. Interfaces 2019, 11, 2168.
dc.identifier.citedreferenceW. Li, S. Q. Lin, M. Weiss, Z. W. Chen, J. Li, Y. D. Xu, W. G. Zeier, Y. Z. Pei, Adv. Energy Mater. 2018, 8, 1800030.
dc.identifier.citedreferenceS. Q. Lin, W. Li, S. Li, X. Zhang, Z. Chen, Y. Xu, Y. Chen, Y. Pei, Joule 2017, 1, 816.
dc.identifier.citedreferenceB. Jiang, P. Qiu, H. Chen, Q. Zhang, K. Zhao, D. Ren, X. Shi, L. Chen, Chem. Commun. 2017, 53, 11658.
dc.identifier.citedreferenceT. P. Bailey, C. Uher, Curr. Opin. Green Sustainable Chem. 2017, 4, 58.
dc.identifier.citedreferenceE. F. J. Hampl, Thermoelectric Materials Evaluation Program, Quarterly Technical Task Report No. 46 1976, U. S. Department of Energy 1976, https://doi.org/10.2172/5311720.
dc.identifier.citedreferenceN. B. Elsner, J. Chin, Radioisotope Space Power Generator, Annual Report for the Period July 1, 1973 ‐ June 30, 1974 (Report No. GA‐A‐13426), General Atomic Co., San Diego, California, USA 1975, https://doi.org/10.2172/4178631.
dc.identifier.citedreferenceT. E. Hammel, Selenide Isotope Generator for the Galileo Mission, Program Final Report, 1978, https://doi.org/10.2172/5928964.
dc.identifier.citedreferenceG. Stapfer, V. C. Truscello, Development of the Data Base for a Degradation Model of a Selenide RTG (Report No.19770066000), NASA JPL, 1977.
dc.identifier.citedreferenceG. Stapfer, Copper–Selenide System, P‐type TPM‐217 (Report No. DOE/ET/33003‐T5), NASA JPL, 1977.
dc.identifier.citedreferenceT. P. Bailey, H. Si, H. Y. Xie, A. Olvera, P. F. P. Poudeu, X. F. Tang, C. Uher, J. Mater. Chem. A 2016, 4, 17225.
dc.identifier.citedreferenceG. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, G. K. H. Madsen, Adv. Energy Mater. 2014, 4, 1301581.
dc.identifier.citedreferenceY. He, T. Day, T. S. Zhang, H. L. Liu, X. Shi, L. D. Chen, G. J. Snyder, Adv. Mater. 2014, 26, 3974.
dc.identifier.citedreferenceP. F. Qiu, M. T. Agne, Y. Y. Liu, Y. Q. Zhu, H. Y. Chen, T. Mao, J. Yang, W. Q. Zhang, S. M. Haile, W. G. Zeier, J. Janek, C. Uher, X. Shi, L. D. Chen, G. J. Snyder, Nat. Commun. 2018, 9, 2910.
dc.identifier.citedreferenceP. F. Qiu, T. Mao, Z. F. Huang, X. G. Xia, J. C. Liao, M. T. Agne, M. Gu, Q. H. Zhang, D. D. Ren, S. Q. Bai, X. Shi, G. J. Snyder, L. D. Chen, Joule 2019, 3, 1538.
dc.identifier.citedreferenceA. G. Merzhanov, Arch. Combust. 1981, 1, 23.
dc.identifier.citedreferenceA. G. Merzhanov, Combust. Sci. Technol. 1994, 98, 307.
dc.identifier.citedreferenceD. W. Yang, X. L. Su, Y. G. Yan, T. Z. Hu, H. Y. Xie, J. He, C. Uher, M. G. Kanatzidis, X. F. Tang, Chem. Mater. 2016, 28, 4628.
dc.identifier.citedreferenceW. J. Qiu, P. Lu, X. Yuan, F. F. Xu, L. H. Wu, X. Z. Ke, H. L. Liu, J. Yang, X. Shi, L. D. Chen, J. H. Yang, W. Q. Zhnag, J. Chem. Phys. 2016, 144, 194502.
dc.identifier.citedreferenceI. Yokota, J. Phys. Soc. Jpn. 1953, 8, 595.
dc.identifier.citedreferenceI. Yokota, J. Phys. Soc. Jpn. 1961, 16, 2213.
dc.identifier.citedreferenceY. Y. Liu, P. F. Qiu, H. Y. Chen, R. Chen, X. Shi, L. D. Chen, J. Inorg. Mater. 2017, 32, 1337.
dc.identifier.citedreferenceM. Oschatz, J. T. Lee, H. Kim, W. Nickel, L. Borchardt, W. I. Cho, C. Ziegler, S. Kaskel, G. Yushin, J. Mater. Chem. 2014, 2, 17649.
dc.identifier.citedreferenceV. M. Glazov, A. S. Pashinkin, V. A. Fedorov, Inorg. Mater. 2000, 36, 641.
dc.identifier.citedreferenceL. D. Zhao, J. Q. He, D. Berardan, Y. H. Lin, J. F. Li, C. W. Nan, N. Dragoe, Energy Environ. Sci. 2014, 7, 2900.
dc.identifier.citedreferenceD. J. Voneshen, H. C. Walker, K. Refson, J. P. Goff, Phys. Rev. Lett. 2017, 118, 145901.
dc.identifier.citedreferenceX. Liang, Appl. Phys. Lett. 2017, 111, 133902.
dc.identifier.citedreferenceD. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, USA 1995.
dc.identifier.citedreferenceH. J. Goldsmid, Introduction to Thermoelectricity, Springer, Berlin, Germany 2010.
dc.identifier.citedreferenceJ. He, T. M. Tritt, Science 2017, 357, 1369.
dc.identifier.citedreferenceH. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
dc.identifier.citedreferenceR. Nunna, P. F. Qiu, M. J. Yin, H. Y. Chen, L. D. Chen, Energy Environ. Sci. 2017, 10, 1928.
dc.identifier.citedreferenceA. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energy Environ. Sci. 2017, 10, 1668.
dc.identifier.citedreferenceX. L. Su, F. Fu, Y. G. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. W. Yang, H. Chi, X. F. Tang, Q. J. Zhang, C. Uher, Nat. Commun. 2014, 5, 4908.
dc.identifier.citedreferenceX. X. Xiao, W. J. Xie, X. F. Tang, Q. J. Zhang, Chin. Phys. B 2011, 20, 340.
dc.identifier.citedreferenceG. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen, Nat. Mater. 2004, 3, 458.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.