Show simple item record

Diagnostic and interventional circulating biomarkers in nonalcoholic steatohepatitis

dc.contributor.authorTincopa, Monica A.
dc.date.accessioned2020-11-04T16:02:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:02:57Z
dc.date.issued2020-10
dc.identifier.citationTincopa, Monica A. (2020). "Diagnostic and interventional circulating biomarkers in nonalcoholic steatohepatitis." Endocrinology, Diabetes & Metabolism 3(4): n/a-n/a.
dc.identifier.issn2398-9238
dc.identifier.issn2398-9238
dc.identifier.urihttps://hdl.handle.net/2027.42/163493
dc.description.abstractIntroductionIn the setting of the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become one of the most prevalent forms of chronic liver disease worldwide. Approximately 25% of adults globally have NAFLD which includes those with NAFL, or simple steatosis, and individuals with nonalcoholic steatohepatitis (NASH) where inflammation, hepatocyte injury and potentially hepatic fibrosis are found in conjunction with steatosis. Individuals with NASH, particularly those with hepatic fibrosis, have higher rates of liver‐related and overall mortality, making this distinction of significant clinical importance. One of the core challenges in current clinical practice is identifying this subset of individuals with NASH without the use of liver biopsy, the gold standard for both diagnostics and staging disease severity. Identifying noninvasive biomarkers, an accurately measured and reproducible parameter, would aide in identifying patients eligible for NASH pharmacotherapy clinical trials and to help tailor intensity of monitoring required.Methods, Results and ConclusionsIn this review, we highlight both the currently available and novel diagnostic and interventional circulating biomarkers under investigation for NASH, underscoring their accuracy and limitations relevant to our patient population and current clinical practice.One of the core challenges in NASH is the ability to accurately diagnose and stage individuals using non‐invasive methods. In this review, we highlight both the currently available and novel diagnostic and interventional circulating biomarkers under investigation for NASH, underscoring their accuracy and limitations relevant to our patient population and current clinical practice.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNAFLD
dc.subject.otherNASH
dc.subject.otherbiomarkers
dc.subject.otherdisease staging
dc.subject.otherhepatic fibrosis
dc.titleDiagnostic and interventional circulating biomarkers in nonalcoholic steatohepatitis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEndocrinology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163493/2/edm2177.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163493/1/edm2177_am.pdfen_US
dc.identifier.doi10.1002/edm2.177
dc.identifier.sourceEndocrinology, Diabetes & Metabolism
dc.identifier.citedreferencePingitore P, Dongiovanni P, Motta BM, et al. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. Hum Mol Genet. 2016; 25 ( 23 ): 5212 ‐ 5222.
dc.identifier.citedreferenceDongiovanni P, Meroni M, Mancina RM, et al. Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease. Hepatol Commun. 2018; 2 ( 6 ): 666 ‐ 675.
dc.identifier.citedreferenceEslam M, McLeod D, Kelaeng KS, et al. IFN‐λ3, not IFN‐λ4, likely mediates IFNL3‐IFNL4 haplotype‐dependent hepatic inflammation and fibrosis. Nat Genet. 2017; 49 ( 5 ): 795 ‐ 800.
dc.identifier.citedreferencePetta S, Valenti L, Tuttolomondo A, et al. Interferon lambda 4 rs368234815 TT>δG variant is associated with liver damage in patients with nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2017; 66 ( 6 ): 1885 ‐ 1893.
dc.identifier.citedreferenceVespasiani‐Gentilucci U, Gallo P, Dell’Unto C, Volpentesta M, Antonelli‐Incalzi R, Picardi A. Promoting genetics in non‐alcoholic fatty liver disease: Combined risk score through polymorphisms and clinical variables. World J Gastroenterol. 2018; 24 ( 43 ): 4835 ‐ 4845.
dc.identifier.citedreferenceVespasiani‐Gentilucci U, Dell’Unto C, De Vincentis A, et al. Combining genetic variants to improve risk prediction for NAFLD and its progression to cirrhosis: a proof of concept study. Can J Gastroenterol Hepatol. 2018; 2018: 1 ‐ 9.
dc.identifier.citedreferenceHarrison S, Praca E, Brozek J, et al. A new non‐invasive diagnostic score to monitor change in disease activity and predict fibrosis evolution in patients with NASH. J Hepatol. 2017; 66 ( 1 ): S110.
dc.identifier.citedreferenceAlkhouri N, Dixon LJ, Feldstein AE. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol. 2009; 3 ( 4 ): 445 ‐ 451.
dc.identifier.citedreferenceLoomba R, Quehenberger O, Armando A, Dennis EA. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 2015; 56 ( 1 ): 185 ‐ 192.
dc.identifier.citedreferencePuri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2007; 46 ( 4 ): 1081 ‐ 1090.
dc.identifier.citedreferencePerakakis N, Polyzos SA, Yazdani A, et al. Non‐invasive diagnosis of non‐alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study. Metab Clin Exp. 2019; 101: 154005.
dc.identifier.citedreferenceZhou Y, Oresic M, Leivonen M, et al. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin Gastroenterol Hepatol. 2016; 14 ( 10 ): 1463 ‐ 1472.e1466.
dc.identifier.citedreferenceAnand G, Zarrinpar A, Loomba R. Targeting dysbiosis for the treatment of liver disease. Semin Liver Dis. 2016; 36 ( 1 ): 37 ‐ 47.
dc.identifier.citedreferenceBoursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology (Baltimore, MD). 2016; 63 ( 3 ): 764 ‐ 775.
dc.identifier.citedreferenceLelouvier B, Servant F, Païssé S, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology (Baltimore, MD). 2016; 64 ( 6 ): 2015 ‐ 2027.
dc.identifier.citedreferenceLoomba R, Seguritan V, Li W, et al. Gut microbiome‐based metagenomic signature for non‐invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017; 25 ( 5 ): 1054 ‐ 1062.e1055.
dc.identifier.citedreferenceHoyles L, Fernández‐Real JM, Federici M, et al. Molecular phenomics and metagenomics of hepatic steatosis in non‐diabetic obese women. Nat Med. 2018; 24 ( 7 ): 1070 ‐ 1080.
dc.identifier.citedreferenceCaussy C, Hsu C, Lo MT, et al. Link between gut‐microbiome derived metabolite and shared gene‐effects with hepatic steatosis and fibrosis in NAFLD. Hepatology (Baltimore, MD). 2018; 68 ( 3 ): 918 ‐ 932.
dc.identifier.citedreferenceCaussy C, Tripathi A, Humphrey G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun. 2019; 10 ( 1 ): 1406.
dc.identifier.citedreferenceYounossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease‐Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology (Baltimore, MD). 2016; 64 ( 1 ): 73 ‐ 84.
dc.identifier.citedreferenceChalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology (Baltimore, MD). 2018; 67 ( 1 ): 328 ‐ 357.
dc.identifier.citedreferenceCotter TG, Rinella M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology. 2020; 158 ( 7 ): 1851 ‐ 1864.
dc.identifier.citedreferenceLonardo A, Nascimbeni F, Targher G, et al. AISF position paper on nonalcoholic fatty liver disease (NAFLD): updates and future directions. Dig Liver Dis. 2017; 49 ( 5 ): 471 ‐ 483.
dc.identifier.citedreferenceLoomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013; 10 ( 11 ): 686 ‐ 690.
dc.identifier.citedreferenceEuropean Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non‐alcoholic fatty liver disease. J Hepatol. 2016; 64 ( 6 ): 1388 ‐ 1402.
dc.identifier.citedreferenceCheung A, Neuschwander‐Tetri BA, Kleiner DE, et al. Defining improvement in nonalcoholic steatohepatitis for treatment trial endpoints: recommendations from the liver forum. Hepatology (Baltimore, MD). 2019; 70 ( 5 ): 1841 ‐ 1855.
dc.identifier.citedreferenceBrunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander‐Tetri BA, Network NCR. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology (Baltimore, MD). 2011; 53 ( 3 ): 810 ‐ 820.
dc.identifier.citedreferenceSumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non‐invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2014; 20 ( 2 ): 475 ‐ 485.
dc.identifier.citedreferenceRowe IA, Parker R. Liver biopsy for the selection of patients with nonalcoholic steatohepatitis for clinical trials. Gastroenterology. 2015; 148 ( 1 ): 262.
dc.identifier.citedreferenceSingh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta‐analysis of paired‐biopsy studies. Clin Gastroenterol Hepatol. 2015; 13 ( 4 ): 643 ‐ 654.e9.
dc.identifier.citedreferenceDulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta‐analysis. Hepatology (Baltimore, MD). 2017; 65 ( 5 ): 1557 ‐ 1565.
dc.identifier.citedreferenceAllen AM, Therneau TM, Larson JJ, Coward A, Somers VK, Kamath PS. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: a 20 year‐community study. Hepatology (Baltimore, MD). 2018; 67 ( 5 ): 1726 ‐ 1736.
dc.identifier.citedreferenceMa J, Hwang SJ, Pedley A, et al. Bi‐directional analysis between fatty liver and cardiovascular disease risk factors. J Hepatol. 2017; 66 ( 2 ): 390 ‐ 397.
dc.identifier.citedreferenceAngulo P, Kleiner DE, Dam‐Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long‐term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015; 149 ( 2 ): 389 ‐ 397.e310.
dc.identifier.citedreferenceVilar‐Gomez E, Calzadilla‐Bertot L, Wai‐Sun Wong V, et al. Fibrosis severity as a determinant of cause‐specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi‐national cohort study. Gastroenterology. 2018; 155 ( 2 ): 443 ‐ 457.e417.
dc.identifier.citedreferenceTaylor RS, Taylor RJ, Bayliss S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta‐analysis. Gastroenterology. 2020; 158 ( 6 ): 1611 ‐ 1625.e1612.
dc.identifier.citedreferenceEstes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology (Baltimore, MD). 2018; 67 ( 1 ): 123 ‐ 133.
dc.identifier.citedreferenceBedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006; 6: 33.
dc.identifier.citedreferenceLee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010; 42 ( 7 ): 503 ‐ 508.
dc.identifier.citedreferenceKotronen A, Peltonen M, Hakkarainen A, et al. Prediction of non‐alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009; 137 ( 3 ): 865 ‐ 872.
dc.identifier.citedreferencePoynard T, Peta V, Munteanu M, et al. The diagnostic performance of a simplified blood test (SteatoTest‐2) for the prediction of liver steatosis. Eur J Gastro Hepatol. 2019; 31 ( 3 ): 393 ‐ 402.
dc.identifier.citedreferenceYip TC, Ma AJ, Wong VW, et al. Laboratory parameter‐based machine learning model for excluding non‐alcoholic fatty liver disease (NAFLD) in the general population. Aliment Pharmacol Ther. 2017; 46 ( 4 ): 447 ‐ 456.
dc.identifier.citedreferenceKonerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: current and emerging. J Hepatol. 2018; 68 ( 2 ): 362 ‐ 375.
dc.identifier.citedreferenceVerhaegh P, Bavalia R, Winkens B, Masclee A, Jonkers D, Koek G. Noninvasive tests do not accurately differentiate nonalcoholic steatohepatitis from simple steatosis: a systematic review and meta‐analysis. Clin Gastroenterol Hepatol. 2018; 16 ( 6 ): 837 ‐ 861.
dc.identifier.citedreferenceVerma S, Jensen D, Hart J, Mohanty SR. Predictive value of ALT levels for non‐alcoholic steatohepatitis (NASH) and advanced fibrosis in non‐alcoholic fatty liver disease (NAFLD). Liver Int. 2013; 33 ( 9 ): 1398 ‐ 1405.
dc.identifier.citedreferenceWong VW, Wong GL, Tsang SW, et al. Metabolic and histological features of non‐alcoholic fatty liver disease patients with different serum alanine aminotransferase levels. Aliment Pharmacol Ther. 2009; 29 ( 4 ): 387 ‐ 396.
dc.identifier.citedreferenceVerrijken A, Francque S, Mertens I, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology (Baltimore, MD). 2014; 59 ( 1 ): 121 ‐ 129.
dc.identifier.citedreferenceAjmera V, Perito ER, Bass NM, et al. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2017; 65 ( 1 ): 65 ‐ 77.
dc.identifier.citedreferenceKaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE. Plasminogen activator inhibitor‐1 deficiency prevents hypertension and vascular fibrosis in response to long‐term nitric oxide synthase inhibition. Circulation. 2001; 104 ( 7 ): 839 ‐ 844.
dc.identifier.citedreferenceTargher G, Bertolini L, Scala L, et al. Plasma PAI‐1 levels are increased in patients with nonalcoholic steatohepatitis. Diabetes Care. 2007; 30 ( 5 ): e31 ‐ e32.
dc.identifier.citedreferenceCusi K, Chang Z, Harrison S, et al. Limited value of plasma cytokeratin‐18 as a biomarker for NASH and fibrosis in patients with non‐alcoholic fatty liver disease. J Hepatol. 2014; 60 ( 1 ): 167 ‐ 174.
dc.identifier.citedreferenceKwok R, Tse YK, Wong GL, et al. Systematic review with meta‐analysis: non‐invasive assessment of non‐alcoholic fatty liver disease–the role of transient elastography and plasma cytokeratin‐18 fragments. Aliment Pharmacol Ther. 2014; 39 ( 3 ): 254 ‐ 269.
dc.identifier.citedreferenceMusso G, Gambino R, Cassader M, Pagano G. Meta‐analysis: natural history of non‐alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non‐invasive tests for liver disease severity. Ann Med. 2011; 43 ( 8 ): 617 ‐ 649.
dc.identifier.citedreferenceYounossi ZM, Jarrar M, Nugent C, et al. A novel diagnostic biomarker panel for obesity‐related nonalcoholic steatohepatitis (NASH). Obes Surg. 2008; 18 ( 11 ): 1430 ‐ 1437.
dc.identifier.citedreferenceCao W, Zhao C, Shen C, Wang Y. Cytokeratin 18, alanine aminotransferase, platelets and triglycerides predict the presence of nonalcoholic steatohepatitis. PLoS One. 2013; 8 ( 12 ): e82092.
dc.identifier.citedreferenceChernbumroong S, Grove JI, Astbury S, et al. Advanced machine learning techniques to identify a panel of biomarkers that identify nonalcoholic steatohepatitis. Hepatology (Baltimore, MD). 2017; 66: 53A ‐ 54A.
dc.identifier.citedreferenceTucker B, Li H, Long X, Rye KA, Ong KL. Fibroblast growth factor 21 in non‐alcoholic fatty liver disease. Metab Clin Exp. 2019; 101: 153994.
dc.identifier.citedreferenceSanyal A, Charles ED, Neuschwander‐Tetri BA, et al. Pegbelfermin (BMS‐986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non‐alcoholic steatohepatitis: a randomised, double‐blind, placebo‐controlled, phase 2a trial. Lancet (London, England). 2019; 392 ( 10165 ): 2705 ‐ 2717.
dc.identifier.citedreferenceHe L, Deng L, Zhang Q, et al. Diagnostic value of CK‐18, FGF‐21, and related biomarker panel in nonalcoholic fatty liver disease: a systematic review and meta‐analysis. Biomed Res Int. 2017; 2017: 1 – 12.
dc.identifier.citedreferenceTong X, Muchnik M, Chen Z, et al. Transcriptional repressor E4‐binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem. 2010; 285 ( 47 ): 36401 ‐ 36409.
dc.identifier.citedreferenceMachado MV, Coutinho J, Carepa F, Costa A, Proenca H, Cortez‐Pinto H. How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease. Eur J Gastro Hepatol. 2012; 24 ( 10 ): 1166 ‐ 1172.
dc.identifier.citedreferenceShen J, Chan HL, Wong GL, et al. Non‐invasive diagnosis of non‐alcoholic steatohepatitis by combined serum biomarkers. J Hepatol. 2012; 56 ( 6 ): 1363 ‐ 1370.
dc.identifier.citedreferenceFeldstein AE, Lopez R, Tamimi TA, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010; 51 ( 10 ): 3046 ‐ 3054.
dc.identifier.citedreferenceMcPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non‐invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non‐alcoholic fatty liver disease. Gut. 2010; 59 ( 9 ): 1265 ‐ 1269.
dc.identifier.citedreferencePoynard T, Ratziu V, Charlotte F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non‐alcoholic fatty liver disease. BMC Gastroenterol. 2006; 6: 34.
dc.identifier.citedreferenceDixon JB, Bhathal PS, O’Brien PE. Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology. 2001; 121 ( 1 ): 91 ‐ 100.
dc.identifier.citedreferenceNobili V, Alkhouri N, Alisi A, et al. Retinol‐binding protein 4: a promising circulating marker of liver damage in pediatric nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009; 7 ( 5 ): 575 ‐ 579.
dc.identifier.citedreferenceSumida Y, Yoneda M, Hyogo H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011; 46 ( 2 ): 257 ‐ 268.
dc.identifier.citedreferenceSun W, Cui H, Li N, et al. Comparison of FIB‐4 index, NAFLD fibrosis score and BARD score for prediction of advanced fibrosis in adult patients with non‐alcoholic fatty liver disease: a meta‐analysis study. Hepatol Res. 2016; 46 ( 9 ): 862 ‐ 870.
dc.identifier.citedreferenceAnty R, Iannelli A, Patouraux S, et al. A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin‐18 for the diagnosis of non‐alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther. 2010; 32 ( 11–12 ): 1315 ‐ 1322.
dc.identifier.citedreferenceEkstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up. Hepatology (Baltimore, MD). 2015; 61 ( 5 ): 1547 ‐ 1554.
dc.identifier.citedreferenceAngulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology (Baltimore, MD). 2007; 45 ( 4 ): 846 ‐ 854.
dc.identifier.citedreferenceSterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology (Baltimore, MD). 2006; 43 ( 6 ): 1317 ‐ 1325.
dc.identifier.citedreferenceWai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology (Baltimore, MD). 2003; 38 ( 2 ): 518 ‐ 526.
dc.identifier.citedreferenceImajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016; 150 ( 3 ): 626 ‐ 637.e627.
dc.identifier.citedreferenceXiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta‐analysis. Hepatology (Baltimore, MD). 2017; 66 ( 5 ): 1486 ‐ 1501.
dc.identifier.citedreferenceVilar‐Gomez E, Chalasani N. Non‐invasive assessment of non‐alcoholic fatty liver disease: clinical prediction rules and blood‐based biomarkers. J Hepatol. 2018; 68 ( 2 ): 305 ‐ 315.
dc.identifier.citedreferenceYounossi ZM, Henry L. Are noninvasive scoring systems for persons with chronic liver disease ready for prime time? Gastroenterology. 2020; 158 ( 1 ): 40 ‐ 42.
dc.identifier.citedreferenceMcPherson S, Hardy T, Dufour JF, et al. Age as a confounding factor for the accurate non‐invasive diagnosis of advanced NAFLD fibrosis. Am J Gastroenterol. 2017; 112 ( 5 ): 740 ‐ 751.
dc.identifier.citedreferenceRatziu V, Giral P, Charlotte F, et al. Liver fibrosis in overweight patients. Gastroenterology. 2000; 118 ( 6 ): 1117 ‐ 1123.
dc.identifier.citedreferenceHarrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander‐Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008; 57 ( 10 ): 1441 ‐ 1447.
dc.identifier.citedreferenceCales P, Laine F, Boursier J, et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol. 2009; 50 ( 1 ): 165 ‐ 173.
dc.identifier.citedreferenceStaufer K, Halilbasic E, Spindelboeck W, et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United European Gastroenterol J. 2019; 7 ( 8 ): 1113 ‐ 1123.
dc.identifier.citedreferenceGuha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology (Baltimore, MD). 2008; 47 ( 2 ): 455 ‐ 460.
dc.identifier.citedreferencePoynard T, Morra R, Halfon P, et al. Meta‐analyses of FibroTest diagnostic value in chronic liver disease. BMC Gastroenterol. 2007; 7: 40.
dc.identifier.citedreferenceAdams LA, George J, Bugianesi E, et al. Complex non‐invasive fibrosis models are more accurate than simple models in non‐alcoholic fatty liver disease. J Gastroenterol Hepatol. 2011; 26 ( 10 ): 1536 ‐ 1543.
dc.identifier.citedreferenceAbdelmalek MF, Diehl AM, Guy CD, et al. Serum‐based biomarker accurately stratifies hepatic fibrosis in patients with nonalcoholic steatohepatitis. Hepatology (Baltimore, MD). 2017; 66: 55A ‐ 56A.
dc.identifier.citedreferenceDaniels SJ, Nielsen MJ, Krag A, et al. Serum Pro‐C3 combined with clinical parameters is superior to established serological fibrosis tests at identifying patients with advanced fibrosis among patients with non‐alcoholic fatty liver disease. J Hepatol. 2017; 66 ( 1 ): S671.
dc.identifier.citedreferencePimentel CF, Otsubo T, Challies TL, Nasser I, Francescucci A, Lai M. Combination of serum HA, CK18 and TIMP‐1 predicts advanced fibrosis in nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2015; 62: 1260A ‐ 1261A.
dc.identifier.citedreferenceTanwar S, Trembling PM, Guha IN, et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2013; 57 ( 1 ): 103 ‐ 111.
dc.identifier.citedreferenceBoyle M, Tiniakos D, Schattenberg JM, et al. Performance of the PRO‐C3 collagen neo‐epitope biomarker in non‐alcoholic fatty liver disease. JHEP Rep. 2019; 1 ( 3 ): 188 ‐ 198.
dc.identifier.citedreferenceAbdelaziz R, Elbasel M, Esmat S, Essam K, Abdelaaty S. Tissue inhibitors of metalloproteinase‐1 and 2 and obesity related non‐alcoholic fatty liver disease: is there a relationship. Digestion. 2015; 92 ( 3 ): 130 ‐ 137.
dc.identifier.citedreferenceMalik R, Chang M, Bhaskar K, et al. The clinical utility of biomarkers and the nonalcoholic steatohepatitis CRN liver biopsy scoring system in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2009; 24 ( 4 ): 564 ‐ 568.
dc.identifier.citedreferencePolyzos SA, Slavakis A, Koumerkeridis G, Katsinelos P, Kountouras J. Noninvasive liver fibrosis tests in patients with nonalcoholic fatty liver disease: an external validation cohort. Horm Metab Res. 2019; 51 ( 2 ): 134 ‐ 140.
dc.identifier.citedreferenceSookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic pathways in nonalcoholic fatty liver disease: insights from systems biology. Hepatology (Baltimore, MD). 2020; 72 ( 1 ): 330 ‐ 346.
dc.identifier.citedreferenceCermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non‐alcoholic fatty liver disease. PLoS One. 2011; 6 ( 8 ): e23937.
dc.identifier.citedreferenceBecker PP, Rau M, Schmitt J, et al. Performance of serum microRNAs ‐122, ‐192 and ‐21 as biomarkers in patients with non‐alcoholic steatohepatitis. PLoS One. 2015; 10 ( 11 ): e0142661.
dc.identifier.citedreferenceHardy T, Zeybel M, Day CP, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non‐alcoholic fatty liver disease. Gut. 2017; 66 ( 7 ): 1321 ‐ 1328.
dc.identifier.citedreferenceSookoian S, Pirola CJ. Meta‐analysis of the influence of I148M variant of patatin‐like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2011; 53 ( 6 ): 1883 ‐ 1894.
dc.identifier.citedreferenceMondul A, Mancina RM, Merlo A, et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr. 2015; 145 ( 8 ): 1687 ‐ 1691.
dc.identifier.citedreferenceSevastianova K, Kotronen A, Gastaldelli A, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss‐induced decrease in liver fat in humans. Am J Clin Nutr. 2011; 94 ( 1 ): 104 ‐ 111.
dc.identifier.citedreferenceKrawczyk M, Jimenez‐Aguero R, Alustiza JM, et al. PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg Obes Relat Dis. 2016; 12 ( 10 ): 1838 ‐ 1846.
dc.identifier.citedreferenceKozlitina J, Smagris E, Stender S, et al. Exome‐wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014; 46 ( 4 ): 352 ‐ 356.
dc.identifier.citedreferenceDongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology (Baltimore, MD). 2015; 61 ( 2 ): 506 ‐ 514.
dc.identifier.citedreferenceZain SM, Mohamed Z, Mohamed R. Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta‐analysis. J Gastroenterol Hepatol. 2015; 30 ( 1 ): 21 ‐ 27.
dc.identifier.citedreferencePetta S, Miele L, Bugianesi E, et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non‐alcoholic fatty liver disease. PLoS One. 2014; 9 ( 2 ): e87523.
dc.identifier.citedreferenceDonati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non‐cirrhotic individuals. Sci Rep. 2017; 7 ( 1 ): 4492.
dc.identifier.citedreferenceMancina RM, Dongiovanni P, Petta S, et al. The MBOAT7‐TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology. 2016; 150 ( 5 ): 1219 ‐ 1230.e1216.
dc.identifier.citedreferencePirola CJ, Garaycoechea M, Flichman D, et al. Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J Lipid Res. 2019; 60 ( 1 ): 176 ‐ 185.
dc.identifier.citedreferenceMa Y, Belyaeva OV, Brown PM, et al. 17‐Beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2019; 69 ( 4 ): 1504 ‐ 1519.
dc.identifier.citedreferenceSpeliotes EK, Yerges‐Armstrong LM, Wu J, et al. Genome‐wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011; 7 ( 3 ): e1001324.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.