Show simple item record

An ionizing radiation acoustic imaging (iRAI) technique for real‐time dosimetric measurements for FLASH radiotherapy

dc.contributor.authorOraiqat, Ibrahim
dc.contributor.authorZhang, Wei
dc.contributor.authorLitzenberg, Dale
dc.contributor.authorLam, Kwok
dc.contributor.authorBa Sunbul, Noora
dc.contributor.authorMoran, Jean
dc.contributor.authorCuneo, Kyle
dc.contributor.authorCarson, Paul
dc.contributor.authorWang, Xueding
dc.contributor.authorEl Naqa, Issam
dc.date.accessioned2020-11-04T16:03:00Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:03:00Z
dc.date.issued2020-10
dc.identifier.citationOraiqat, Ibrahim; Zhang, Wei; Litzenberg, Dale; Lam, Kwok; Ba Sunbul, Noora; Moran, Jean; Cuneo, Kyle; Carson, Paul; Wang, Xueding; El Naqa, Issam (2020). "An ionizing radiation acoustic imaging (iRAI) technique for real‐time dosimetric measurements for FLASH radiotherapy." Medical Physics 47(10): 5090-5101.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/163494
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFLASH radiotherapy
dc.subject.otherIn vivo dosimetry
dc.subject.othermedical imaging
dc.subject.otherradiation acoustics
dc.subject.otherultrasound
dc.titleAn ionizing radiation acoustic imaging (iRAI) technique for real‐time dosimetric measurements for FLASH radiotherapy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163494/2/mp14358_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163494/1/mp14358.pdfen_US
dc.identifier.doi10.1002/mp.14358
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceZhang W, Oraiqat I, Lei H, Carson P, El Naqa I, Wang W. X‐ray induced radiation acoustic and ultrasound imaging for real‐time monitoring of radiotherapy. BME Frontiers; 2020.
dc.identifier.citedreferenceEzzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys. 2003; 30: 2089 – 2115.
dc.identifier.citedreferenceMontay‐Gruel P, Acharya MM, Petersson K, et al. Long‐term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci USA. 2019; 116: 10943 – 10951.
dc.identifier.citedreferenceSimmons DA, Lartey FM, Schüler E, et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother Oncol. 2019; 139: 4 – 10.
dc.identifier.citedreferenceMontay‐Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017; 124: 365 – 369.
dc.identifier.citedreferenceMontay‐Gruel P, Bouchet A, Jaccard M, et al. X‐rays can trigger the FLASH effect: ultra‐high dose‐rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother Oncol. 2018; 129: 582 – 588.
dc.identifier.citedreferenceFavaudon V, Caplier L, Monceau V, et al. Ultrahigh dose‐rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014; 6: 245ra93.
dc.identifier.citedreferenceFavaudon V, Fouillade C, Vozenin MC. Ultrahigh dose‐rate, "flash" irradiation minimizes the side‐effects of radiotherapy. Cancer Radiother. 2015; 19: 526 – 531.
dc.identifier.citedreferenceVozenin MC, De Fornel P, Petersson K, et al. The advantage of FLASH radiotherapy confirmed in mini‐pig and cat‐cancer patients. Clin Cancer Res. 2019; 25: 35 – 42.
dc.identifier.citedreferenceBourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH‐radiotherapy. Radiother Oncol. 2019; 139: 18 – 22.
dc.identifier.citedreferenceJaccard M, Duran MT, Petersson K, et al. High dose‐per‐pulse electron beam dosimetry: commissioning of the oriatron eRT6 prototype linear accelerator for preclinical use. Med Phys. 2018; 45: 863 – 874.
dc.identifier.citedreferencePetersson K, Jaccard M, Germond JF, et al. High dose‐per‐pulse electron beam dosimetry ‐ a model to correct for the ion recombination in the advanced Markus ionization chamber. Med Phys. 2017; 44: 1157 – 1167.
dc.identifier.citedreferenceJaccard M, Petersson K, Buchillier T, et al. High dose‐per‐pulse electron beam dosimetry: usability and dose‐rate independence of EBT3 Gafchromic films. Med Phys. 2017; 44: 725 – 735.
dc.identifier.citedreferenceLei H, Zhang W, Oraiqat I, et al. Toward in vivo dosimetry in external beam radiotherapy using x‐ray acoustic computed tomography: a soft‐tissue phantom study validation. Med Phys. 2018; 45: 4191 – 4200.
dc.identifier.citedreferenceHickling S, Lei H, Hobson M, Léger P, Wang X, El Naqa I. Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications. Med Phys. 2017; 44: 608 – 617.
dc.identifier.citedreferenceXiang L, Tang S, Ahmad M, Xing L. High resolution x‐ray‐induced acoustic tomography. Sci Rep. 2016; 6: 26118.
dc.identifier.citedreferenceXiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray induced photoacoustic tomography. In: SPIE BiOS; 2013. International Society for Optics and Photonics.
dc.identifier.citedreferenceZhang W, Lei H, Oraiqat I, Naqa IE, Wang X. Real‐time monitoring the alignment of x‐ray beam relative to treatment target during radiation treatment based on ultrasound and x‐ray acoustic dual‐modality imaging (Conference Presentation). SPIE BiOS. Vol. 10494; 2018.SPIE.
dc.identifier.citedreferenceHickling S, Xiang L, Jones KC, et al. Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications. Med Phys. 2018; 45: e707 – e721.
dc.identifier.citedreferenceHickling S, Hobson M, El Naqa I. Feasibility of x‐ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry. Int J Radiat Oncol Biol Phys. 2014; 90: S843.
dc.identifier.citedreferenceHayakawa Y, Tada J, Arai N, et al. Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat Oncol Investig. 1995; 3: 42 – 45.
dc.identifier.citedreferenceSchuler E, Trovati S, King G, et al. Experimental platform for ultra‐high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys. 2017; 97: 195 – 203.
dc.identifier.citedreferenceLempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra‐high dose rate irradiation. Radiother Oncol. 2019; 139: 40 – 45.
dc.identifier.citedreferenceOraiqat I, DeBruin S, Pearce R, et al. Silicon photomultipliers for deep tissue Cerenkov emission detection during external beam radiotherapy. IEEE Photonics J. 2019; 11: 1 – 16.
dc.identifier.citedreferenceGerbi BJ, Antolak JA, Deibel FC, et al. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25. Med Phys. 2009; 36: 3239 – 3279.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.