Show simple item record

Carbon budget of the Harvard Forest Long- Term Ecological Research site: pattern, process, and response to global change

dc.contributor.authorFinzi, Adrien C.
dc.contributor.authorGiasson, Marc‐andré
dc.contributor.authorBarker Plotkin, Audrey A.
dc.contributor.authorAber, John D.
dc.contributor.authorBoose, Emery R.
dc.contributor.authorDavidson, Eric A.
dc.contributor.authorDietze, Michael C.
dc.contributor.authorEllison, Aaron M.
dc.contributor.authorFrey, Serita D.
dc.contributor.authorGoldman, Evan
dc.contributor.authorKeenan, Trevor F.
dc.contributor.authorMelillo, Jerry M.
dc.contributor.authorMunger, J. William
dc.contributor.authorNadelhoffer, Knute J.
dc.contributor.authorOllinger, Scott V.
dc.contributor.authorOrwig, David A.
dc.contributor.authorPederson, Neil
dc.contributor.authorRichardson, Andrew D.
dc.contributor.authorSavage, Kathleen
dc.contributor.authorTang, Jianwu
dc.contributor.authorThompson, Jonathan R.
dc.contributor.authorWilliams, Christopher A.
dc.contributor.authorWofsy, Steven C.
dc.contributor.authorZhou, Zaixing
dc.contributor.authorFoster, David R.
dc.date.accessioned2020-11-04T16:03:04Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-11-04T16:03:04Z
dc.date.issued2020-11
dc.identifier.citationFinzi, Adrien C.; Giasson, Marc‐andré ; Barker Plotkin, Audrey A.; Aber, John D.; Boose, Emery R.; Davidson, Eric A.; Dietze, Michael C.; Ellison, Aaron M.; Frey, Serita D.; Goldman, Evan; Keenan, Trevor F.; Melillo, Jerry M.; Munger, J. William; Nadelhoffer, Knute J.; Ollinger, Scott V.; Orwig, David A.; Pederson, Neil; Richardson, Andrew D.; Savage, Kathleen; Tang, Jianwu; Thompson, Jonathan R.; Williams, Christopher A.; Wofsy, Steven C.; Zhou, Zaixing; Foster, David R. (2020). "Carbon budget of the Harvard Forest Long- Term Ecological Research site: pattern, process, and response to global change." Ecological Monographs 90(4): n/a-n/a.
dc.identifier.issn0012-9615
dc.identifier.issn1557-7015
dc.identifier.urihttps://hdl.handle.net/2027.42/163495
dc.description.abstractHow, where, and why carbon (C) moves into and out of an ecosystem through time are long- standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C- cycle observations at the Harvard Forest in central Massachusetts, USA, a mid- latitude landscape dominated by 80- 120- yr- old closed- canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest- s C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680- 750 g C·m- 2·yr- 1; belowground NPP contributed 38- 47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil- C pools; however, radiocarbon data suggest a small but persistent sink of 10- 30 g C·m- 2·yr- 1. Net ecosystem production (NEP) in hardwood stands averaged ~300 g C·m- 2·yr- 1. NEP in hemlock- dominated forests averaged ~450 g C·m- 2·yr- 1 until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992- 2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for ~30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy- scale light- use efficiency. Compared to long- term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.othernet primary production
dc.subject.otherpermanent plots
dc.subject.othergross primary production
dc.subject.otherbelowground production
dc.subject.othercarbon cycling
dc.subject.otherclimate change
dc.subject.otherdisturbance
dc.subject.otherecosystem ecology
dc.subject.othereddy covariance
dc.subject.otherforest ecosystems
dc.subject.otherlong- term ecological research
dc.titleCarbon budget of the Harvard Forest Long- Term Ecological Research site: pattern, process, and response to global change
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/3/ecm1423_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/2/ecm1423-sup-0001-AppendixS1.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/1/ecm1423.pdfen_US
dc.identifier.doi10.1002/ecm.1423
dc.identifier.sourceEcological Monographs
dc.identifier.citedreferenceOrwig, D. A., P. Boucher, I. Paynter, E. Saenz, Z. Li, and C. Schaaf. 2018. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA. Interface Focus 8: 20170044.
dc.identifier.citedreferencePan, Y., et al. 2011. A large and persistent carbon sink in the world- s forests. Science 333: 988 - 993.
dc.identifier.citedreferencePapale, D., et al. 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3: 571 - 583.
dc.identifier.citedreferencePederson, N., et al. 2015. Climate remains an important driver of post- European vegetation change in the eastern United States. Global Change Biology 21: 2105 - 2110.
dc.identifier.citedreferencePederson, N., A. R. Bell, E. R. Cook, U. Lall, N. Devineni, R. Seager, K. Eggleston, and K. P. Vranes. 2013. Is an epic pluvial masking the water insecurity of the greater New York City region? Journal of Climate 26: 1339 - 1354.
dc.identifier.citedreferencePhillips, R. P., Y. Erlitz, R. Bier, and E. S. Bernhardt. 2008. New approach for capturing soluble root exudates in forest soils. Functional Ecology 22: 990 - 999.
dc.identifier.citedreferencePregitzer, K. S., and E. S. Euskirchen. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology 10: 2052 - 2077.
dc.identifier.citedreferenceR Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R- project.org
dc.identifier.citedreferenceRaich, J. W., and K. J. Nadelhoffer. 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70: 1346 - 1354.
dc.identifier.citedreferenceRaymer, P. C. L., D. A. Orwig, and A. C. Finzi. 2013. Hemlock loss due to the hemlock woolly adelgid does not affect ecosystem C storage but alters its distribution. Ecosphere 4: art63.
dc.identifier.citedreferenceReich, P. B., S. E. Hobbie, and T. D. Lee. 2014. Plant growth enhancement by elevated CO 2 eliminated by joint water and nitrogen limitation. Nature Geoscience 7: 920.
dc.identifier.citedreferenceReichstein, M., et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11: 1424 - 1439.
dc.identifier.citedreferenceReichstein, M., A. M. Moffat, T. Wutzler, K. Sickel, O. Menzer, and M. Migliavacca. 2016. REddyProc: Data processing and plotting utilities of (half- ) hourly eddy- covariance measurements. R package version 1.0.0. http://cran.r- project.org/package=REddyProc
dc.identifier.citedreferenceRichardson, A. D., et al. 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B 365: 3227 - 3246.
dc.identifier.citedreferenceRichardson, A. D., D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H. Braswell. 2007. Environmental variation is directly responsible for short- but not long- term variation in forest- atmosphere carbon exchange. Global Change Biology 13: 788 - 803.
dc.identifier.citedreferenceRyan, M. G., D. Binkley, and J. H. Fownes. 1997. Age- related decline in forest productivity: pattern and process. Advances in Ecological Research 27: 213 - 262.
dc.identifier.citedreferenceSanderman, J., T. Hengl, and G. J. Fiske. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences USA 114: 9575 - 9580.
dc.identifier.citedreferenceSargent, M., S. C. Wofsy, and T. Nehrkorn. 2018. CO 2 observations, modeled emissions, and NAM- HYSPLIT footprints, Boston MA, 2013- 2014. ORNL DAAC, Oak Ridge, Tennessee, USA.
dc.identifier.citedreferenceSavage, K. E., W. J. Parton, E. A. Davidson, S. E. Trumbore, and S. D. Frey. 2013. Long- term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Global Change Biology 19: 2389 - 2400.
dc.identifier.citedreferenceScharlemann, J. P. W., E. V. J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5: 81 - 91.
dc.identifier.citedreferenceSchimel, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology 1: 77 - 91.
dc.identifier.citedreferenceSchlesinger, W. H., and E. S. Bernhardt 2013. Biogeochemistry: an analysis of global change. Third edition. Academic Press, Waltham, Massachusetts, USA.
dc.identifier.citedreferenceSchulze, E. D. 1989. Air pollution and forest decline in a spruce ( Picea abies ) forest. Science 244: 776 - 783.
dc.identifier.citedreferenceSchwalm, C. R., C. A. Williams, and K. Schaefer. 2011. Carbon consequences of global hydrologic change, 1948- 2009. Journal of Geophysical Research 116: G03042.
dc.identifier.citedreferenceShuman, B. N., and J. Marsicek. 2016. The structure of Holocene climate change in mid- latitude North America. Quaternary Science Reviews 141: 38 - 51.
dc.identifier.citedreferenceSiccama, T. G., T. J. Fahey, C. E. Johnson, T. W. Sherry, E. G. Denny, E. Binney Girdler, G. E. Likens, and P. A. Schwarz. 2007. Population and biomass dynamics of trees in a northern hardwood forest at Hubbard Brook. Canadian Journal of Forest Research 37: 737 - 749.
dc.identifier.citedreferenceSierra, C. A., S. E. Trumbore, E. A. Davidson, S. D. Frey, K. E. Savage, and F. M. Hopkins. 2012. Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences 9: 3013 - 3028.
dc.identifier.citedreferenceSRCC. 2019. Southern Regional Climate Center- Climate Trends. http://charts.srcc.lsu.edu/trends/
dc.identifier.citedreferenceStephenson, N. L., et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90 - 93.
dc.identifier.citedreferenceStoddard, J. L., et al. 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401: 575 - 578.
dc.identifier.citedreferenceStrand, A. E., S. G. Pritchard, M. L. McCormack, M. A. Davis, and R. Oren. 2008. Irreconcilable differences: fine- root life spans and soil carbon persistence. Science 319: 456 - 458.
dc.identifier.citedreferenceTang, G., B. Beckage, and B. Smith. 2014. Potential future dynamics of carbon fluxes and pools in New England forests and their climatic sensitivities: A model- based study. Global Biogeochemical Cycles 28: 286 - 299.
dc.identifier.citedreferenceTans, P., and R. Keeling. 2019. Trends in atmospheric carbon dioxide. h ttps://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
dc.identifier.citedreferenceThomas, R. Q., C. D. Canham, K. C. Weathers, and C. L. Goodale. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3: 13 - 17.
dc.identifier.citedreferenceThompson, J. R., C. D. Canham, L. Morreale, D. B. Kittredge, and B. Butler. 2017. Social and biophysical variation in regional timber harvest regimes. Ecological Applications 27: 942 - 955.
dc.identifier.citedreferenceThompson, J. R., D. N. Carpenter, C. V. Cogbill, and D. R. Foster. 2013. Four centuries of change in northeastern United States forests. PLoS ONE 8: e72540.
dc.identifier.citedreferenceThompson, J. R., D. R. Foster, R. Scheller, and D. Kittredge. 2011. The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Ecological Applications 21: 2425 - 2444.
dc.identifier.citedreferenceTierney, G. L., and T. J. Fahey. 2002. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research 32: 1692 - 1697.
dc.identifier.citedreferenceTurnbull, M. H., D. Whitehead, D. T. Tissue, W. S. Schuster, K. J. Brown, V. C. Engel, and K. L. Griffin. 2002. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Oecologia 130: 515 - 524.
dc.identifier.citedreferenceUrbano, A. R., and W. S. Keeton. 2017. Carbon dynamics and structural development in recovering secondary forests of the northeastern U.S. Forest Ecology and Management 392: 21 - 35.
dc.identifier.citedreferenceUrbanski, S., C. Barford, S. Wofsy, C. Kucharik, E. Pyle, J. Budney, K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger. 2007. Factors controlling CO 2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research 112: G02020.
dc.identifier.citedreferenceWaller, K., C. Driscoll, J. Lynch, D. Newcomb, and K. Roy. 2012. Long- term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmospheric Environment 46: 56 - 64.
dc.identifier.citedreferenceWang, W. J., H. S. He, F. R. Thompson, J. S. Fraser, and W. D. Dijak. 2017. Changes in forest biomass and tree species distribution under climate change in the northeastern United States. Landscape Ecology 32: 1399 - 1413.
dc.identifier.citedreferenceWehr, R., J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, and S. R. Saleska. 2016. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534: 680 - 683.
dc.identifier.citedreferenceWilliams, C. A., H. Gu, R. MacLean, J. G. Masek, and G. James Collatz. 2016. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Global and Planetary Change 143: 66 - 80.
dc.identifier.citedreferenceWilliams, C. A., G. James Collatz, J. Masek, and S. N. Goward. 2012. Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles 26: GB1005.
dc.identifier.citedreferenceWilliams, C. A., M. K. Vanderhoof, M. Khomik, and B. Ghimire. 2013. Post- clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment. Global Change Biology 20: 992 - 1007.
dc.identifier.citedreferenceWilson, H. F., J. E. Saiers, P. A. Raymond, and W. V. Sobczak. 2013. Hydrologic drivers and seasonality of dissolved organic carbon concentration, nitrogen content, bioavailability, and export in a forested New England stream. Ecosystems 16: 604 - 616.
dc.identifier.citedreferenceWofsy, S. C., M. L. Goulden, J. W. Munger, S.- M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz. 1993. Net exchange of CO 2 in a mid- latitude forest. Science 260: 1314 - 1317.
dc.identifier.citedreferenceYang, X., J. F. Mustard, J. Tang, and H. Xu. 2012. Regional- scale phenology modeling based on meteorological records and remote sensing observations. Journal of Geophysical Research: Biogeosciences 117: G03029.
dc.identifier.citedreferenceZhou, G., S. Liu, Z. Li, D. Zhang, X. Tang, C. Zhou, J. Yan, and J. Mo. 2006. Old- growth forests can accumulate carbon in soils. Science 314: 1417.
dc.identifier.citedreferenceZhou, Z., S. V. Ollinger, and L. C. Lepine. 2018. Landscape variation in canopy nitrogen and carbon assimilation in a temperate mixed forest. Oecologia 188: 595 - 606.
dc.identifier.citedreferenceAber, J. D., K. J. Nadelhoffer, P. Steudler, and J. M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378 - 386.
dc.identifier.citedreferenceAber, J. D., P. B. Reich, and M. L. Goulden. 1996. Extrapolating leaf CO 2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia 106: 257 - 265.
dc.identifier.citedreferenceAbramoff, R. Z., and A. C. Finzi. 2015. Are above- and below- ground phenology in sync? New Phytologist 205: 1054 - 1061.
dc.identifier.citedreferenceAbramoff, R. Z., and A. C. Finzi. 2016. Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest. Ecosphere 7: e01547.
dc.identifier.citedreferenceà gren, G. I., and E. Bosatta. 1988. Nitrogen saturation of terrestrial ecosystems. Environmental Pollution 54: 185 - 197.
dc.identifier.citedreferenceAlbani, M., D. Medvigy, G. C. Hurtt, and P. R. Moorcroft. 2006. The contributions of land- use change, CO 2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology 12: 2370 - 2390.
dc.identifier.citedreferenceAmiro, B. D., et al. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research 115: G00K02.
dc.identifier.citedreferenceAmiro, B., A. Barr, T. Black, H. Iwashita, N. Kljun, J. Mccaughey, K. Morgenstern, S. Murayama, Z. Nesic, and A. Orchansky. 2006. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology 136: 237 - 251.
dc.identifier.citedreferenceAverill, C., B. L. Turner, and A. C. Finzi. 2014. Mycorrhiza- mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543 - 545.
dc.identifier.citedreferenceBarford, C. C., S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore. 2001. Factors controlling long- and short- term sequestration of atmospheric CO 2 in a mid- latitude forest. Science 294: 1688 - 1691.
dc.identifier.citedreferenceBarker Plotkin, A. 2017. Litterfall in hemlock removal experiment at Harvard Forest since 2005. Harvard Forest Data Archive, HF161.
dc.identifier.citedreferenceBarker Plotkin, A., D. R. Foster, J. Carlson, and A. H. Magill. 2013. Survivors, not invaders, control forest development following simulated hurricane. Ecology 94: 414 - 423.
dc.identifier.citedreferenceBarr, A. G., T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic. 2004. Inter- annual variability in the leaf area index of a boreal aspen- hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology 126: 237 - 255.
dc.identifier.citedreferenceBassow, S. L., and F. A. Bazzaz. 1997. Intra- and inter- specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109: 507 - 515.
dc.identifier.citedreferenceBattipaglia, G., M. Saurer, P. Cherubini, C. Calfapietra, H. R. McCarthy, R. J. Norby, and M. Francesca Cotrufo. 2013. Elevated CO 2 increases tree- level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. New Phytologist 197: 544 - 554.
dc.identifier.citedreferenceBazzaz, F. A., and S. L. Miao. 1993. Successional status, seed size, and responses of tree seedlings to CO 2, light, and nutrients. Ecology 74: 104 - 112.
dc.identifier.citedreferenceBeachley, G., M. Puchalski, C. Rogers, and G. Lear. 2016. A summary of long- term trends in sulfur and nitrogen deposition in the United States 1990- 2013. JSM Environmental Science and Ecology 4: 1030.
dc.identifier.citedreferenceBelmecheri, S., R. S. Maxwell, A. H. Taylor, K. J. Davis, K. H. Freeman, and W. J. Munger. 2014. Tree- ring δ 13 C tracks flux tower ecosystem productivity estimates in a NE temperate forest. Environmental Research Letters 9:074011.
dc.identifier.citedreferenceBindoff, N. L., et al. 2013. Detection and attribution of climate change: from global to regional. In T. F. Stocker, D. Qin, G.- K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceBishop, D. A., and N. Pederson. 2015. Regional variation of transient precipitation and rainless- day frequency across a subcontinental hydroclimate gradient. Journal of Extreme Events 02: 1550007.
dc.identifier.citedreferenceBoose, E. R., K. E. Chamberlin, and D. R. Foster. 2001. Landscape and regional impacts of hurricanes in New England. Ecological Monographs 71: 27 - 48.
dc.identifier.citedreferenceBorken, W., E. A. Davidson, K. Savage, E. T. Sundquist, and P. Steudler. 2006. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biology & Biochemistry 38: 1388 - 1395.
dc.identifier.citedreferenceBowen, J. L., and I. Valiela. 2001. Historical changes in atmospheric nitrogen deposition to Cape Cod, Massachusetts, USA. Atmospheric Environment 35: 1039 - 1051.
dc.identifier.citedreferenceBrown, H. T., and F. Escombe. 1902. The influence of varying amounts of carbon dioxide in the air on the photosynthetic process of leaves and on the mode of growth of plants. Proceedings of the Royal Society B 70: 397 - 413.
dc.identifier.citedreferenceBrzostek, E. R., A. Greco, J. E. Drake, and A. C. Finzi. 2013. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115: 65 - 76.
dc.identifier.citedreferenceBurkle, L. A., and B. A. Logan. 2003. Seasonal acclimation of photosynthesis in eastern hemlock and partridgeberry in different light environments. Northeastern Naturalist 10: 1 - 16.
dc.identifier.citedreferenceButler, B. J. 2016. Forests of Massachusetts, 2015. Resource Update FS- 89. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceButler, B. J. 2017. Forests of Massachusetts, 2016. Resource Update FS- 138. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceButler, B. J. 2018. Forests of Massachusetts, 2017. Resource Update FS- 161. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceButler, T., F. Vermeylen, C. M. Lehmann, G. E. Likens, and M. Puchalski. 2016. Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network. Atmospheric Environment 146: 132 - 140.
dc.identifier.citedreferenceCairns, M. A., S. Brown, E. H. Helmer, and G. A. Baumgardner. 1997. Root biomass allocation in the world- s upland forests. Oecologia 111: 1 - 11.
dc.identifier.citedreferenceCanham, C. D., N. Rogers, and T. Buchholz. 2013. Regional variation in forest harvest regimes in the northeastern United States. Ecological Applications 23: 515 - 522.
dc.identifier.citedreferenceCarey, E. V., A. Sala, R. Keane, and R. M. Callaway. 2001. Are old forests underestimated as global carbon sinks? Global Change Biology 7: 339 - 344.
dc.identifier.citedreferenceChalot, M., and A. Brun. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22: 21 - 44.
dc.identifier.citedreferenceChapin, F. S., et al. 2006. Reconciling carbon- cycle concepts, terminology, and methods. Ecosystems 9: 1041 - 1050.
dc.identifier.citedreferenceClark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11: 356 - 370.
dc.identifier.citedreferenceCollins, M., et al. 2013. Long- term climate change: projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G.- K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceCompton, J. E., and R. D. Boone. 2000. Long- term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81: 2314 - 2330.
dc.identifier.citedreferenceCook, E. R., and P. J. Krusic. 2005. Program ARSTAN: a tree- ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Lamont- Doherty Earth Observatory, Columbia University, Palisades, New York, USA.
dc.identifier.citedreferenceCurrie, W. S., and K. J. Nadelhoffer. 2002. The imprint of land- use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5: 446 - 460.
dc.identifier.citedreferenceD- Amato, A. W., D. A. Orwig, D. R. Foster, A. Barker Plotkin, P. K. Schoonmaker, and M. R. Wagner. 2017. Long- term structural and biomass dynamics of virgin Tsuga canadensis- Pinus strobus forests after hurricane disturbance. Ecology 98: 721 - 733.
dc.identifier.citedreferenceD- Orangeville, L., et al. 2018. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Global Change Biology 24: 2339 - 2351.
dc.identifier.citedreferenceDeLucia, E. H.,et al. 1999. Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science 284: 1177 - 1179.
dc.identifier.citedreferenceDietze, M. C. 2015. The PEcAn Project. https://github.com/PecanProject/pecan/blob/develop/modules/allometry/vignettes/AllomVignette.Rmd
dc.identifier.citedreferenceDodds, K. J., and D. A. Orwig. 2011. An invasive urban forest pest invades natural environments- Asian longhorned beetle in northeastern US hardwood forests. Canadian Journal of Forest Research 41: 1729 - 1742.
dc.identifier.citedreferenceDriscoll, C. T., G. E. Likens, and M. R. Church. 1998. Recovery of surface waters in the northeastern U.S. from decreases in atmospheric deposition of sulfur. Water, Air, and Soil Pollution 105: 319 - 329.
dc.identifier.citedreferenceDu, E., W. de Vries, J. N. Galloway, X. Hu, and J. Fang. 2014. Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environmental Research Letters 9:09500 4.
dc.identifier.citedreferenceDuveneck, M. J., and J. R. Thompson. 2017. Climate change imposes phenological tradeoffs on forest net primary productivity. Journal of Geophysical Research: Biogeosciences 122: 2298 - 2313.
dc.identifier.citedreferenceDuveneck, M. J., J. R. Thompson, E. J. Gustafson, Y. Liang, and A. de Bruijn. 2017. Recovery dynamics and climate change effects to future New England forests. Landscape Ecology 32: 1385 - 1397.
dc.identifier.citedreferenceDye, A., A. Barker Plotkin, D. Bishop, N. Pederson, B. Poulter, and A. Hessl. 2016. Comparing tree- ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7: e01454.
dc.identifier.citedreferenceEisen, K., and A. Barker Plotkin. 2015. Forty years of forest measurements support steadily increasing aboveground biomass in a maturing, Quercus - dominant northeastern forest. Journal of the Torrey Botanical Society 142: 97 - 112.
dc.identifier.citedreferenceEllison, A. M., et al. 2006. Analytic webs support the synthesis of ecological data sets. Ecology 87: 1345 - 1358.
dc.identifier.citedreferenceEllison, A., and A. Barker Plotkin. 2015. Overstory vegetation in Hemlock Removal Experiment at Harvard Forest since 2003. Harvard Forest Data Archive. HF126.
dc.identifier.citedreferenceEllison, A., and A. Barker Plotkin. 2018. Coarse woody debris in hemlock removal experiment at Harvard Forest since 2005. Harvard Forest Data Archive. HF125.
dc.identifier.citedreferenceEllison, A. M., A. A. Barker Plotkin, D. R. Foster, and D. A. Orwig. 2010. Experimentally testing the role of foundation species in forests: the Harvard Forest Hemlock Removal Experiment. Methods in Ecology and Evolution 1: 168 - 179.
dc.identifier.citedreferenceEllison, A. M., D. A. Orwig, M. C. Fitzpatrick, and E. L. Preisser. 2018. The past, present, and future of the hemlock woolly Adelgid ( Adelges tsugae ) and its ecological interactions with eastern Hemlock ( Tsuga canadensis ) forests. Insects 9: 172 - 189.
dc.identifier.citedreferenceEmmett, B. A., D. Boxman, M. Bredemeier, P. Gundersen, O. J. Kjønaas, F. Moldan, P. Schleppi, A. Tietema, and R. F. Wright. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem- scale experiments. Ecosystems 1: 352 - 360.
dc.identifier.citedreferenceEPA 2019. Air data: air quality data collected at outdoor monitors across the US. https://www.epa.gov/outdoor- air- quality- data
dc.identifier.citedreferenceFahey, T. J., et al. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109 - 176.
dc.identifier.citedreferenceFahey, T. J., et al. 2015. The promise and peril of intensive- site- based ecological research: insights from the Hubbard Brook ecosystem study. Ecology 96: 885 - 901.
dc.identifier.citedreferenceFahey, T. J., and J. W. Hughes. 1994. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology 82: 533 - 548.
dc.identifier.citedreferenceFahey, T. J., R. E. Sherman, and D. A. Weinstein. 2013. Demography, biomass and productivity of a northern hardwood forest on the Allegheny Plateau. Journal of the Torrey Botanical Society 140: 52 - 64.
dc.identifier.citedreferenceFalge, E., et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107: 43 - 69.
dc.identifier.citedreferenceFernández- Martínez, M., et al. 2017. Atmospheric deposition, CO 2, and change in the land carbon sink. Scientific Reports 7: 9632.
dc.identifier.citedreferenceFinzi, A. C., et al. 2007. Increases in nitrogen uptake rather than nitrogen- use efficiency support higher rates of temperate forest productivity under elevated CO 2. Proceedings of the National Academy of Sciences USA 104: 14014 - 14019.
dc.identifier.citedreferenceFinzi, A. C., P. C. L. Raymer, M.- A. Giasson, and D. A. Orwig. 2014. Net primary production and soil respiration in New England hemlock forests affected by the hemlock woolly adelgid. Ecosphere 5: art98.
dc.identifier.citedreferenceFoster, D. R., and J. D. Aber. 2004. Forests in time: The environmental consequences of 1,000 years of change in New England. Yale University Press, New Haven, Connecticut, USA.
dc.identifier.citedreferenceFoster, D. R., T. Zebryk, P. Schoonmaker, and A. Lezberg. 1992. Post- settlement history of human land- use and vegetation dynamics of a Tsuga canadensis (hemlock) woodlot in central New England. Journal of Ecology 80: 773 - 786.
dc.identifier.citedreferenceFrey, S. D., et al. 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121: 305 - 316.
dc.identifier.citedreferenceGaudinski, J. B., M. S. Torn, W. J. Riley, T. E. Dawson, J. D. Joslin, and H. Majdi. 2010. Measuring and modeling the spectrum of fine- root turnover times in three forests using isotopes, minirhizotrons, and the Radix model. Global Biogeochemical Cycles 24: GB3029.
dc.identifier.citedreferenceGaudinski, J. B., S. E. Trumbore, E. A. Davidson, and S. Zheng. 2000. Soil carbon cycling in a temperate forest: radiocarbon- based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51: 33 - 69.
dc.identifier.citedreferenceGiasson, M.- A., et al. 2013. Soil respiration in a northeastern US temperate forest: a 22- year synthesis. Ecosphere 4: art140.
dc.identifier.citedreferenceGough, C. M., P. S. Curtis, B. S. Hardiman, C. M. Scheuermann, and B. Bond- Lamberty. 2016. Disturbance, complexity, and succession of net ecosystem production in North America- s temperate deciduous forests. Ecosphere 7: art01375.
dc.identifier.citedreferenceGreenland, D., and T. Kittel. 1997. A climatic analysis of long- term ecological research sites. https://lternet.edu/wp- content/uploads/2013/12/CLIMDES.pdf
dc.identifier.citedreferenceGriffith, G. E., J. M. Omernik, S. A. Bryce, J. Royte, W. D. Hoar, J. W. Homer, D. Keirstead, K. J. Metzler, and G. Hellyer. 2009. Ecoregions of New England (color poster with map, descriptive text, summary tables, and photographs). U.S. Geological Survey, Reston, Virginia, USA.
dc.identifier.citedreferenceHadley, J. L., P. S. Kuzeja, M. J. Daley, N. G. Phillips, T. Mulcahy, and S. Singh. 2008. Water use and carbon exchange of red oak- and eastern hemlock- dominated forests in the northeastern USA: implications for ecosystem- level effects of hemlock woolly adelgid. Tree Physiology 28: 615 - 627.
dc.identifier.citedreferenceHadley, J. L., and J. L. Schedlbauer. 2002. Carbon exchange of an old- growth eastern hemlock ( Tsuga canadensis ) forest in central New England. Tree Physiology 22: 1079 - 1092.
dc.identifier.citedreferenceHall, B., G. Motzkin, D. R. Foster, M. Syfert, and J. Burk. 2002. Three hundred years of forest and land- use change in Massachusetts, USA. Journal of Biogeography 29: 1319 - 1335.
dc.identifier.citedreferenceHarmon, M. E., and J. Sexton. 1996. Guidelines for measurements of woody detritus in forest ecosystems. Publication No. 20, U.S. LTER Network Office, University of Washington: Seattle, Washington, USA. 73 pp.
dc.identifier.citedreferenceHobbie, E. A., and J. E. Hobbie. 2008. Natural abundance of 15 N in nitrogen- limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11: 815 - 830.
dc.identifier.citedreferenceHögberg, P., H. Fan, M. Quist, D. A. N. Binkley, and C. O. Tamm. 2006. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12: 489 - 499.
dc.identifier.citedreferenceHooker, T. D., and J. E. Compton. 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications 13: 299 - 313.
dc.identifier.citedreferenceIsaac, L. A., and H. G. Hopkins. 1937. The forest soil of the Douglas fir region, and changes wrought upon it by logging and slash burning. Ecology 18: 264 - 279.
dc.identifier.citedreferenceJackson, R. B., K. Lajtha, S. E. Crow, G. Hugelius, M. G. Kramer, and G. Piñeiro. 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics 48: 419 - 445.
dc.identifier.citedreferenceJenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey. 2003. National- scale biomass estimators for United States tree species. Forest Science 49: 12 - 35.
dc.identifier.citedreferenceJenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey. 2004. Comprehensive database of diameter- based biomass regressions for North American tree species. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, Pennsylvania, USA.
dc.identifier.citedreferenceJoshi, A. B., D. R. Vann, A. H. Johnson, and E. K. Miller. 2003. Nitrogen availability and forest productivity along a climosequence on Whiteface Mountain, New York. Canadian Journal of Forest Research 33: 1880 - 1891.
dc.identifier.citedreferenceKeenan, T. F., et al. 2014. Net carbon uptake has increased through warming- induced changes in temperate forest phenology. Nature Climate Change 4: 598 - 604.
dc.identifier.citedreferenceKeenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson. 2013. Increase in forest water- use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499: 324 - 327.
dc.identifier.citedreferenceKeenan, T. F., I. C. Prentice, J. G. Canadell, C. A. Williams, H. Wang, M. Raupach, and G. J. Collatz. 2016. Recent pause in the growth rate of atmospheric CO 2 due to enhanced terrestrial carbon uptake. Nature Communications 7: 13428.
dc.identifier.citedreferenceKeeton, W. S., A. A. Whitman, G. C. McGee, C. L. Goodale, G. C. Whitman, G. G. McGree, and K. Goodale. 2011. Late- successional biomass development in northern hardwood- conifer forests of the northeastern United States. Forest Science 57: 489 - 505.
dc.identifier.citedreferenceKhomik, M., C. A. Williams, M. K. Vanderhoof, R. G. MacLean, and S. Y. Dillen. 2014. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiology 34: 686 - 700.
dc.identifier.citedreferenceKim, J., T. Hwang, C. L. Schaaf, D. A. Orwig, E. Boose, and J. William Munger. 2017. Increased water yield due to the hemlock woolly adelgid infestation in New England. Geophysical Research Letters 44: 2327 - 2335.
dc.identifier.citedreferenceKira, T., and T. Shidei. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Japanese Journal of Ecology 17: 70 - 87.
dc.identifier.citedreferenceLajtha, K., R. D. Bowden, and K. Nadelhoffer. 2014. Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal 78: S261 - S269.
dc.identifier.citedreferenceLiebhold, A. M., D. G. McCullough, L. M. Blackburn, S. J. Frankel, B. Von Holle, and J. E. Aukema. 2013. A highly aggregated geographical distribution of forest pest invasions in the USA. Diversity and Distributions 19: 1208 - 1216.
dc.identifier.citedreferenceLindahl, B. D., R. D. Finlay, and J. W. G. Cairney. 2005. Enzymatic activities of mycelia in mycorrhizal fungal communities. Pages 331 - 348 in J. Dighton, J. F. White, and P. Oudemans, editors. The fungal community: its organization and role in the ecosystem. Third edition. CRC Press, Boca Raton, Florida, USA.
dc.identifier.citedreferenceLitton, C. M., J. W. Raich, and M. G. Ryan. 2007. Carbon allocation in forest ecosystems. Global Change Biology 13: 2089 - 2109.
dc.identifier.citedreferenceLovett, G. M., et al. 2016. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecological Applications 26: 1437 - 1455.
dc.identifier.citedreferenceLovett, G. M., M. A. Arthur, K. C. Weathers, R. D. Fitzhugh, and P. H. Templer. 2013. Nitrogen addition increases carbon storage in soils, but not in trees, in an eastern US deciduous forest. Ecosystems 16: 980 - 1001.
dc.identifier.citedreferenceLutz, J. A., A. J. Larson, M. E. Swanson, and J. A. Freund. 2012. Ecological importance of large- diameter trees in a temperate mixed- conifer forest. PLoS ONE 7: e36131.
dc.identifier.citedreferenceLuyssaert, S., E.- D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B. E. Law, P. Ciais, and J. Grace. 2008. Old- growth forests as global carbon sinks. Nature 455: 213 - 215.
dc.identifier.citedreferenceMarlon, J. R., et al. 2017. Climatic history of the northeastern United States during the past 3000 years. Climate of the Past 13: 1355 - 1379.
dc.identifier.citedreferenceMartin- Benito, D., and N. Pederson. 2015. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest. Journal of Biogeography 42: 925 - 937.
dc.identifier.citedreferenceMcClaugherty, C. A., J. D. Aber, and J. M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481 - 1490.
dc.identifier.citedreferenceMcDonald, R. I., G. Motzkin, M. S. Bank, D. B. Kittredge, J. Burk, and D. R. Foster. 2006. Forest harvesting and land- use conversion over two decades in Massachusetts. Forest Ecology and Management 227: 31 - 41.
dc.identifier.citedreferenceMcEwan, R. W., J. M. Dyer, and N. Pederson. 2011. Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 34: 244 - 256.
dc.identifier.citedreferenceMcFarlane, K. J., M. S. Torn, P. J. Hanson, R. C. Porras, C. W. Swanston, M. A. Jr Callaham, and T. P. Guilderson. 2013. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry 112: 457 - 476.
dc.identifier.citedreferenceMcGarvey, J. C., J. R. Thompson, H. E. Epstein, and H. H. Jr Shugart. 2015. Carbon storage in old- growth forests of the Mid- Atlantic: toward better understanding the eastern forest carbon sink. Ecology 96: 311 - 317.
dc.identifier.citedreferenceMcGee, G. G., D. J. Leopold, and R. D. Nyland. 1999. Structural characteristics of old- growth, maturing, and partially cut northern hardwood forests. Ecological Applications 9: 1316 - 1329.
dc.identifier.citedreferenceMcGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. III Moore, and C. J. Vorosmarty. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles 6: 101 - 124.
dc.identifier.citedreferenceMelillo, J. M., et al. 2011. Soil warming, carbon- nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences USA 108: 9508 - 9512.
dc.identifier.citedreferenceMelillo, J. M., T. V. Callaghan, F. I. Woodward, E. Salati, and S. K. Sinha. 1990. Climate change- effects on ecosystems. In J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, editors. Climate Change- The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceMelillo, J. M., S. D. Frey, K. M. DeAngelis, W. J. Werner, M. J. Bernard, F. P. Bowles, G. Pold, M. A. Knorr, and A. S. Grandy. 2017. Long- term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358: 101 - 105.
dc.identifier.citedreferenceMelillo, J. M., P. A. Steudler, J. D. Aber, K. Newkirk, H. Lux, F. P. Bowles, C. Catricala, A. Magill, T. Ahrens, and S. Morrisseau. 2002. Soil warming and carbon- cycle feedbacks to the climate system. Science 298: 2173 - 2176.
dc.identifier.citedreferenceMiao, S. 1995. Acorn mass and seedling growth in Quercus rubra in response to elevated CO 2. Journal of Vegetation Science 6: 697 - 700.
dc.identifier.citedreferenceMorris, S. J., S. Bohm, S. Haile- Mariam, and E. A. Paul. 2007. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology 13: 1145 - 1156.
dc.identifier.citedreferenceMotzkin, G., P. Wilson, D. R. Foster, and A. Allen. 1999. Vegetation patterns in heterogeneous landscapes: The importance of history and environment. Journal of Vegetation Science 10: 903 - 920.
dc.identifier.citedreferenceNadelhoffer, K. J., M. R. Downs, and B. Fry. 1999a. Sinks for 15 N additions to an oak forest and a red pine plantation. Ecological Applications 9: 72 - 86.
dc.identifier.citedreferenceNadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjønaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright. 1999b. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145 - 148.
dc.identifier.citedreferenceNADP 2019. National Atmospheric Deposition Program data and maps. http://nadp.slh.wisc.edu/data
dc.identifier.citedreferenceNave, L. E., C. M. Gough, C. H. Perry, K. L. Hofmeister, J. M. Le Moine, G. M. Domke, C. W. Swanston, and K. J. Nadelhoffer. 2017. Physiographic factors underlie rates of biomass production during succession in Great Lakes forest landscapes. Forest Ecology and Management 397: 157 - 173.
dc.identifier.citedreferenceNave, L. E., C. W. Swanston, U. Mishra, and K. J. Nadelhoffer. 2013. Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Science Society of America Journal 77: 1035 - 1047.
dc.identifier.citedreferenceNOAA 2019. Average annual atmospheric CO 2 concentration at the Mauna Loa Observatory. ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt
dc.identifier.citedreferenceO- Keefe, J. 2015. Phenology of woody species. Harvard Forest Data Archive. HF003.
dc.identifier.citedreferenceOdum, E. P. 1969. The strategy of ecosystem development. Science 164: 262 - 270.
dc.identifier.citedreferenceOliver, C. D. 1975. The development of northern red oak ( Quercus rubra L.) in mixed species, even- age stands in central New England. Yale University, New Haven, Connecticut, USA.
dc.identifier.citedreferenceOliver, C.D. 1978. The development of northern red oak in mixed stands in central New England. Yale School of Forestry & Environmental Studies Bulletin Series, No. 8. 63 pp.
dc.identifier.citedreferenceOliver, C. D., and E. P. Stephens. 1977. Reconstruction of a mixed- species forest in central New England. Ecology 58: 562 - 572.
dc.identifier.citedreferenceOllinger, S. V., et al. 2008. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences USA 105: 19336 - 19341.
dc.identifier.citedreferenceOllinger, S. V., J. D. Aber, P. B. Reich, and R. J. Freuder. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO 2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology 8: 545 - 562.
dc.identifier.citedreferenceOllinger, S. V., and M.- L. Smith. 2005. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data. Ecosystems 8: 760 - 778.
dc.identifier.citedreferenceOrwig, D. A., A. A. Barker Plotkin, E. A. Davidson, H. Lux, K. E. Savage, and A. M. Ellison. 2013. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ 1: e41.
dc.identifier.citedreferenceOrwig, D. A., R. C. Cobb, A. W. D- Amato, M. L. Kizlinski, and D. R. Foster. 2008. Multi- year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Canadian Journal of Forest Research 38: 834 - 843.
dc.identifier.citedreferenceOrwig, D. A., and D. R. Foster. 1998. Forest response to the introduced hemlock woolly adelgid in southern New England, USA. The Journal of the Torrey Botanical Society 125: 60 - 73.
dc.identifier.citedreferenceOrwig, D. A., J. R. Thompson, N. A. Povak, M. Manner, D. Niebyl, and D. R. Foster. 2012. A foundation tree at the precipice: Tsuga canadensis health after the arrival of Adelges tsugae in central New England. Ecosphere 3: art10.
dc.identifier.citedreferenceOuimette, A. P., S. V. Ollinger, A. D. Richardson, D. Y. Hollinger, T. Keenan, L. C. Lepine, and M. Vadeboncoeur. 2018. Carbon fluxes and interannual drivers in a temperate forest ecosystem assessed through comparison of top- down and bottom up approaches. Agricultural and Forest Meteorology 256- 257: 420 - 430.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.