Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence
dc.contributor.author | Menzies, Allyson K. | |
dc.contributor.author | Studd, Emily K. | |
dc.contributor.author | Majchrzak, Yasmine N. | |
dc.contributor.author | Peers, Michael J. L. | |
dc.contributor.author | Boutin, Stan | |
dc.contributor.author | Dantzer, Ben | |
dc.contributor.author | Lane, Jeffrey E. | |
dc.contributor.author | McAdam, Andrew G. | |
dc.contributor.author | Humphries, Murray M. | |
dc.date.accessioned | 2020-12-02T14:36:07Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-12-02T14:36:07Z | |
dc.date.issued | 2020-11 | |
dc.identifier.citation | Menzies, Allyson K.; Studd, Emily K.; Majchrzak, Yasmine N.; Peers, Michael J. L.; Boutin, Stan; Dantzer, Ben; Lane, Jeffrey E.; McAdam, Andrew G.; Humphries, Murray M. (2020). "Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence." Functional Ecology 34(11): 2292-2301. | |
dc.identifier.issn | 0269-8463 | |
dc.identifier.issn | 1365-2435 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/163535 | |
dc.description.abstract | Organisms survive environmental variation by combining homeostatic regulation of critical states with allostatic variation of other traits, and species differences in these responses can contribute to coexistence in temporally variable environments.In this paper, we simultaneously record variation in three functional traits—body temperature (Tb), heart rate and activity—in relation to three forms of environmental variation—air temperature (Ta), photoperiod and experimentally manipulated resource levels—in free‐ranging snowshoe hares and North American red squirrels to characterize distinctions in homeotherm responses to the extreme conditions of northern boreal winters.Hares and squirrels differed in the level and precision of Tb regulation, but also in the allostatic pathways necessary to maintain thermal homeostasis. Hares demonstrated a stronger metabolic pathway (through heart rate variation reflective of the thermogenesis), while squirrels demonstrated a stronger behavioural pathway (through activity variation that minimizes cold exposure).As intermediate‐sized, winter‐active homeotherms, hares and squirrels share many functional attributes, yet, through the integrated monitoring of multiple functional traits in response to shared environmental variation, our study reveals many pairwise species differences in homeostatic and allostatic traits, that both define and are defined by the natural history, functional niches and coexistence of sympatric species.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article. | |
dc.publisher | Oxford University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | endothermy | |
dc.subject.other | herbivore | |
dc.subject.other | homeothermy | |
dc.subject.other | differential response | |
dc.subject.other | accelerometer | |
dc.subject.other | food‐addition | |
dc.subject.other | boreal forest | |
dc.subject.other | biologging | |
dc.title | Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163535/4/fec13640-sup-0002-Supinfo.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163535/3/fec13640-sup-0001-Summary.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163535/2/fec13640_am.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163535/1/fec13640.pdf | en_US |
dc.identifier.doi | 10.1111/1365-2435.13640 | |
dc.identifier.source | Functional Ecology | |
dc.identifier.citedreference | Ramsay, D. S., & Woods, S. C. ( 2014 ). Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychology Reviews, 121 ( 2 ), 225 – 247. https://doi.org/10.1037/a0035942 | |
dc.identifier.citedreference | McNab, B. ( 2012 ). Extreme measures: The ecological energetics of birds and mammals. Chicago, IL: University of Chicago Press. | |
dc.identifier.citedreference | Menzies, A. K., Studd, E. K., Majchrzak, Y. N., Peers, M. J. L., Boutin, S., Dantzer, B., … Humphries, M. M. ( 2020 ). Data from: Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Dryad Digital Repository, https://doi.org/10.5061/dryad.r7sqv9s90 | |
dc.identifier.citedreference | Murray, D. ( 2003 ). Snowshoe hares and other hares. In G. Feldhamer, B. Thompson, & J. Chapman (Eds.), Wild mammals of North America: Biology, management and conservation ( 2nd ed., pp. 147 – 157 ). Baltimore, MD: John Hopkins University Press. | |
dc.identifier.citedreference | Pauls, R. W. ( 1978 ). Behavioural strategies relevant to the energy economy of the red squirrels ( Tamiasciurus hudsonicus ). Canadian Journal of Zoology, 56, 1519 – 1525. https://doi.org/10.1139/z78‐210 | |
dc.identifier.citedreference | Pauls, R. W. ( 1979 ). Body temperature dynamics of the red squirrel ( Tamiasciurus hudsonicus ): Adaptations for energy conservation. Canadian Journal of Zoology, 57 ( 7 ), 1349 – 1354. https://doi.org/10.1139/z79‐175 | |
dc.identifier.citedreference | Pauls, R. W. ( 1981 ). Energetics of the red squirrel: A laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise. Journal of Thermal Biology, 6, 79 – 86. https://doi.org/10.1016/0306‐4565(81)90057‐7 | |
dc.identifier.citedreference | Rauch, T. M., Welch, D. I., & Gallego, L. ( 1989 ). Hypothermia impairs performance in the Morris water maze. Physiology & Behavior, 46 ( 2 ), 315 – 320. https://doi.org/10.1016/0031‐9384(89)90273‐4 | |
dc.identifier.citedreference | Rojas, A. D., Körtner, G., & Geiser, F. ( 2012 ). Cool running: Locomotor performance at low body temperature in mammals. Biology Letters, 8 ( 5 ), 868 – 870. https://doi.org/10.1098/rsbl.2012.0269 | |
dc.identifier.citedreference | Rudolf, V. H. ( 2019 ). The role of seasonal timing and phenological shifts for species coexistence. Ecology Letters, 22, 1324 – 1338. | |
dc.identifier.citedreference | Ruf, T., & Geiser, F. ( 2015 ). Daily torpor and hibernation in birds and mammals. Biological Reviews, 90 ( 3 ), 891 – 926. https://doi.org/10.1111/brv.12137 | |
dc.identifier.citedreference | Rutz, C., & Hays, G. C. ( 2009 ). New frontiers in biologging science. Biology Letters, 5, 289 – 292. https://doi.org/10.1098/rsbl.2009.0089 | |
dc.identifier.citedreference | Scholander, P. F., Hock, R., Walters, V., Johnson, F., & Irving, L. ( 1950 ). Heat regulation in some arctic and tropical mammals and birds. The Biological Bulletin, 99 ( 2 ), 237 – 258. https://doi.org/10.2307/1538741 | |
dc.identifier.citedreference | Secor, S. M., & Diamond, J. ( 1995 ). Adaptive responses to feeding in Burmese pythons: Pay before pumping. Journal of Experimental Biology, 198 ( 6 ), 1313 – 1325. | |
dc.identifier.citedreference | Severaid, J. H. ( 1942 ). The snowshoe hare, its life history and artificial propagation (p. 95 ). Augusta, GA: Maine Department of Inland Fisheries and Game. | |
dc.identifier.citedreference | Sheriff, M. J., Kuchel, L., Boutin, S., & Humphries, M. M. ( 2009 ). Seasonal metabolic acclimatization in a northern population of free‐ranging snowshoe hares, Lepus americanus. Journal of Mammalogy, 90 ( 3 ), 761 – 767. https://doi.org/10.1644/08‐mamm‐a‐247r.1 | |
dc.identifier.citedreference | Sheriff, M. J., Speakman, J. R., Kuchel, L., Boutin, S., & Humphries, M. M. ( 2009 ). The cold shoulder: Free‐ranging snowshoe hares maintain a low cost of living in cold climates. Canadian Journal of Zoology, 87 ( 10 ), 956 – 964. https://doi.org/10.1139/z09‐087 | |
dc.identifier.citedreference | Signer, C., Ruf, T., & Arnold, W. ( 2011 ). Hypometabolism and basking: The strategies of Alpine ibex to endure harsh over‐wintering conditions. Functional Ecology, 25 ( 3 ), 537 – 547. https://doi.org/10.1111/j.1365‐2435.2010.01806.x | |
dc.identifier.citedreference | Sinclair, A. R. E., Krebs, C. J., & Smith, J. N. M. ( 1982 ). Diet quality and food limitation in herbivores: The case of the snowshoe hare. Canadian Journal of Zoology, 60, 889 – 897. https://doi.org/10.1139/z82‐121 | |
dc.identifier.citedreference | Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., Slotsbo, S., … Huey, R. B. ( 2016 ). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecology Letters, 19 ( 11 ), 1372 – 1385. https://doi.org/10.1111/ele.12686 | |
dc.identifier.citedreference | Smit, B., Harding, C. T., Hockey, P. A., & McKechnie, A. E. ( 2013 ). Adaptive thermoregulation during summer in two populations of an arid‐zone passerine. Ecology, 94 ( 5 ), 1142 – 1154. https://doi.org/10.1890/12‐1511.1 | |
dc.identifier.citedreference | Spicer, J. I., & Gaston, K. J. ( 1999 ). Physiological diversity and its ecological implications. Oxford, UK: Blackwell Science. | |
dc.identifier.citedreference | Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., … Rich, L. N. ( 2017 ). Scaling‐up camera traps: Monitoring the planet’s biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment, 15 ( 1 ), 26 – 34. https://doi.org/10.1002/fee.1448 | |
dc.identifier.citedreference | Sterling, P., & Eyer, J. ( 1988 ). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629 – 649 ). Oxford: John Wiley & Sons. | |
dc.identifier.citedreference | Studd, E. K., Boudreau, M. R., Majchrzak, Y. N., Menzies, A. K., Peers, M. J. L., Seguin, J. L., … Humphries, M. M. ( 2019 ). Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free‐ranging snowshoe hares. Frontiers in Ecology and Evolution, 7, 154. | |
dc.identifier.citedreference | Studd, E. K., Boutin, S., McAdam, A. G., & Humphries, M. M. ( 2016 ). Nest attendance of lactating red squirrels ( Tamiasciurus hudsonicus ): Influences of biological and environmental correlates. Journal of Mammalogy, 97 ( 3 ), 806 – 814. | |
dc.identifier.citedreference | Studd, E. K., Landry‐Cuerrier, M., Menzies, A. K., Boutin, S., McAdam, A. G., Lane, J. E., & Humphries, M. M. ( 2019 ). Behavioral classification of low‐frequency acceleration and temperature data from a free‐ranging small mammal. Ecology and Evolution, 9 ( 1 ), 619 – 630. https://doi.org/10.1002/ece3.4786 | |
dc.identifier.citedreference | Tomanek, L. ( 2008 ). The importance of physiological limits in determining biogeographical range shifts due to global climate change: The heat‐shock response. Physiological and Biochemical Zoology, 81 ( 6 ), 709 – 717. https://doi.org/10.1086/590163 | |
dc.identifier.citedreference | Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito‐Garzón, M., … Zavala, M. A. ( 2014 ). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17 ( 11 ), 1351 – 1364. https://doi.org/10.1111/ele.12348 | |
dc.identifier.citedreference | Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. ( 2007 ). Let the concept of trait be functional! Oikos, 116 ( 5 ), 882 – 892. | |
dc.identifier.citedreference | Wellborn, G. A., & Langerhans, R. B. ( 2015 ). Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution, 5 ( 1 ), 176 – 195. https://doi.org/10.1002/ece3.1347 | |
dc.identifier.citedreference | Wilson, R. P., Quintana, F., & Hobson, V. J. ( 2011 ). Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proceedings of the Royal Society B: Biological Sciences, 279 ( 1730 ), 975 – 980. https://doi.org/10.1098/rspb.2011.1544 | |
dc.identifier.citedreference | Chmura, H. E., Glass, T. W., & Williams, C. T. ( 2018 ). Biologging physiological and ecological responses to climatic variation: New tools for the climate change era. Frontiers in Ecology and Evolution, 6, 92. | |
dc.identifier.citedreference | Christian, K. A., & Tracy, C. R. ( 1981 ). The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia, 49 ( 2 ), 218 – 223. https://doi.org/10.1007/bf00349191 | |
dc.identifier.citedreference | Agafonkin, V., & Thieurmel, B. ( 2017 ). suncalc: Compute sun position, sunlight phases, moon position, and lunar phase. R package version 0.3. Retrieved from https://CRAN.R‐project.org/package=suncalc | |
dc.identifier.citedreference | Angilletta, M. J. ( 2009 ). Thermal adaptation: A theoretical and empirical synthesis. Oxford, UK: Oxford University Press. | |
dc.identifier.citedreference | Angilletta, M. J., Cooper, B. S., Schuler, M. S., & Boyles, J. G. ( 2010 ). The evolution of thermal physiology in endotherms. Frontiers in Bioscience, E2, 861 – 881. https://doi.org/10.2741/e148 | |
dc.identifier.citedreference | Arnold, W., Ruf, T., Reimoser, S., Tataruch, F., Onderscheka, K., & Schober, F. ( 2004 ). Nocturnal hypometabolism as an overwintering strategy of red deer ( Cervus elaphus ). American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, 286 ( 1 ), R174 – R181. | |
dc.identifier.citedreference | Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., … Green, P. ( 2018 ). Package ‘lme4’. Version, 1. (p. 17 ). Retrieved from https://cran.r‐project.org/web/packages/lme4/lme4.pdf | |
dc.identifier.citedreference | Bennett, A. F. ( 1984 ). Thermal dependence of muscle function. American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, 247 ( 2 ), R217 – R229. | |
dc.identifier.citedreference | Boutin, S. ( 1990 ). Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Canadian Journal of Zoology, 68 ( 2 ), 203 – 220. https://doi.org/10.1139/z90‐031 | |
dc.identifier.citedreference | Boyles, J. G., Thompson, A. B., McKechnie, A. E., Malan, E., Humphries, M. M., & Careau, V. ( 2013 ). A global heterothermic continuum in mammals. Global Ecology and Biogeography, 22 ( 9 ), 1029 – 1039. https://doi.org/10.1111/geb.12077 | |
dc.identifier.citedreference | Boyles, J. G., & Warne, R. W. ( 2013 ). A novel framework for predicting the use of facultative heterothermy by endotherms. Journal of Theoretical Biology, 336, 242 – 245. https://doi.org/10.1016/j.jtbi.2013.08.010 | |
dc.identifier.citedreference | Brigham, R. M., & Geiser, F. ( 2012 ). Do red squirrels ( Tamiasciurus hudsonicus ) use daily torpor during winter? Ecoscience, 19 ( 2 ), 127 – 132. | |
dc.identifier.citedreference | Butler, P. J., & Woakes, A. J. ( 2001 ). Seasonal hypothermia in a large migrating bird: Saving energy for fat deposition? Journal of Experimental Biology, 204, 1361 – 1367. | |
dc.identifier.citedreference | Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. ( 1987 ). Plant responses to multiple environmental factors. BioScience, 37 ( 1 ), 49 – 57. https://doi.org/10.2307/1310177 | |
dc.identifier.citedreference | Chapman, B. R., & Bolen, E. G. ( 2015 ). Boreal forest. In Ecology of North America ( 2nd ed., pp. 41 – 60 ). West Sussex, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118971550 | |
dc.identifier.citedreference | Charrassin, J. B., Park, Y. H., Maho, Y. L., & Bost, C. A. ( 2002 ). Penguins as oceanographers unravel hidden mechanisms of marine productivity. Ecology Letters, 5 ( 3 ), 317 – 319. https://doi.org/10.1046/j.1461‐0248.2002.00341.x | |
dc.identifier.citedreference | Chesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31 ( 1 ), 343 – 366. https://doi.org/10.1146/annurev.ecolsys.31.1.343 | |
dc.identifier.citedreference | Clarke, A., & O’Connor, M. I. ( 2014 ). Diet and body temperature in mammals and birds. Global Ecology and Biogeography, 23 ( 9 ), 1000 – 1008. https://doi.org/10.1111/geb.12185 | |
dc.identifier.citedreference | Dyck, A. P., & MacArthur, R. A. ( 1992 ). Seasonal patterns of body temperature and activity in free‐ranging beaver ( Castor canadensis ). Canadian Journal of Zoology, 70 ( 9 ), 1668 – 1672. | |
dc.identifier.citedreference | Fletcher, Q. E., Landry‐Cuerrier, M., Boutin, S., McAdam, A. G., Speakman, J. R., & Humphries, M. M. ( 2013 ). Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia, 173 ( 4 ), 1203 – 1215. https://doi.org/10.1007/s00442‐013‐2699‐3 | |
dc.identifier.citedreference | Foresman, K. R., & Pearson, D. E. ( 1999 ). Activity patterns of American martens, Martes americana, snowshoe hares, Lepus americanus, and red squirrels, Tamiasciurus hudsonicus, in westcentral Montana. Canadian Field Naturalist, 113, 386 – 389. | |
dc.identifier.citedreference | Garini, Y., Vermolen, B. J., & Young, I. T. ( 2005 ). From micro to nano: Recent advances in high‐resolution microscopy. Current Opinion in Biotechnology, 16 ( 1 ), 3 – 12. https://doi.org/10.1016/j.copbio.2005.01.003 | |
dc.identifier.citedreference | Garland Jr., T., & Adolph, S. C. ( 1991 ). Physiological differentiation of vertebrate populations. Annual Review of Ecology and Systematics, 22 ( 1 ), 193 – 228. https://doi.org/10.1146/annurev.es.22.110191.001205 | |
dc.identifier.citedreference | Garland Jr., T., & Adolph, S. C. ( 1994 ). Why not to do two‐species comparative studies: Limitations on inferring adaptation. Physiological Zoology, 67 ( 4 ), 797 – 828. | |
dc.identifier.citedreference | Geiser, F. ( 2004 ). Metabolic rate and body temperature reduction during hibernation and daily torpor. Annual Reviews in Physiology, 66, 239 – 274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 | |
dc.identifier.citedreference | Geiser, F., Christian, N., Cooper, C. E., Körtner, G., McAllan, B. M., Pavey, C. R., … Brigham, R. M. ( 2008 ). Torpor in marsupials: Recent advances. In B. G. Lovegrove, & A. E. McKechnie (Eds.), Hypometabolism in animals: Torpor, hibernation and cryobiology (pp. 297 – 306 ). Thirteenth international hibernation symposium. Pietermaritzburg, South Africa: University of KwaZulu‐Natal. | |
dc.identifier.citedreference | Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. ( 2001 ). Effects of size and temperature on metabolic rate. Science, 293 ( 5538 ), 2248 – 2251. https://doi.org/10.1126/science.1061967 | |
dc.identifier.citedreference | Graf, R. P., & Sinclair, A. R. E. ( 1987 ). Parental care and adult aggression toward juvenile snowshoe hares. Arctic, 40, 175 – 178. | |
dc.identifier.citedreference | Green, J. A., Halsey, L. G., Wilson, R. P., & Frappell, P. B. ( 2009 ). Estimating energy expenditure of animals using the accelerometry technique: Activity, inactivity and comparison with the heart‐rate technique. Journal of Experimental Biology, 212 ( 4 ), 471 – 482. https://doi.org/10.1242/jeb.026377 | |
dc.identifier.citedreference | Griffin, P. C., Griffin, S. C., Waroquiers, C., & Mills, L. S. ( 2005 ). Mortality by moonlight: Predation risk and the snowshoe hare. Behavioral Ecology, 16 ( 5 ), 938 – 944. https://doi.org/10.1093/beheco/ari074 | |
dc.identifier.citedreference | Grout, A. J. ( 1947 ). Mosses with a hand‐lens ( 4th ed., p. 344 ). Laneaster, PA: Intelligencer Printing Co. | |
dc.identifier.citedreference | Halsey, L. G., Green, J. A., Wilson, R. P., & Frappell, P. B. ( 2008 ). Accelerometry to estimate energy expenditure during activity: Best practice with data loggers. Physiological and Biochemical Zoology, 82 ( 4 ), 396 – 404. https://doi.org/10.1086/589815 | |
dc.identifier.citedreference | Harrison, J. B. ( 1965 ). Temperature effects on responses in the auditory system of the little brown bat Myotis lucifugus. Physiological Zoology, 38 ( 1 ), 34 – 48. | |
dc.identifier.citedreference | Hart, J. S., Pohl, H., & Tener, J. S. ( 1965 ). Seasonal acclimatization in varying hare ( Lepus americanus ). Canadian Journal of Zoology, 43 ( 5 ), 731 – 744. https://doi.org/10.1139/z65‐077 | |
dc.identifier.citedreference | Hetem, R. S., Maloney, S. K., Fuller, A., & Mitchell, D. ( 2016 ). Heterothermy in large mammals: Inevitable or implemented? Biological Reviews, 91 ( 1 ), 187 – 205. | |
dc.identifier.citedreference | Hetem, R. S., Strauss, W. M., Fick, L. G., Maloney, S. K., Meyer, L. C., Shobrak, M., … Mitchell, D. ( 2012 ). Activity re‐assignment and microclimate selection of free‐living Arabian oryx: Responses that could minimise the effects of climate change on homeostasis? Zoology, 115 ( 6 ), 411 – 416. https://doi.org/10.1016/j.zool.2012.04.005 | |
dc.identifier.citedreference | Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A., Jess, M., & Williams, S. E. ( 2012 ). Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367 ( 1596 ), 1665 – 1679. https://doi.org/10.1098/rstb.2012.0005 | |
dc.identifier.citedreference | Humphries, M. M., & Careau, V. ( 2011 ). Heat for nothing or activity for free? Evidence and implications of activity‐thermoregulatory heat substitution. Integrative and Comparative Biology, 51 ( 3 ), 419 – 431. https://doi.org/10.1093/icb/icr059 | |
dc.identifier.citedreference | Humphries, M. M., Kramer, D. L., & Thomas, D. W. ( 2003 ). The role of energy availability in mammalian hibernation: An experimental test in free‐ranging eastern chipmunks. Physiological and Biochemical Zoology, 76 ( 2 ), 180 – 186. https://doi.org/10.1086/367949 | |
dc.identifier.citedreference | Humphries, M. M., Studd, E. K., Menzies, A. K., & Boutin, S. ( 2017 ). To everything there is a season: Summer‐to‐winter food webs and the functional traits of keystone species. Integrative and Comparative Biology, 57 ( 5 ), 961 – 976. https://doi.org/10.1093/icb/icx119 | |
dc.identifier.citedreference | Humphries, M. M., Thomas, D. W., & Kramer, D. L. ( 2001 ). Torpor and digestion in food‐storing hibernators. Physiological and Biochemical Zoology, 74 ( 2 ), 283 – 292. https://doi.org/10.1086/319659 | |
dc.identifier.citedreference | IPCC (Intergovernmental Panel on Climate Change). ( 2014 ). Fifth Assessment Report AR5. Cambridge, UK: Cambridge University Press. | |
dc.identifier.citedreference | Jones, P. D., & Briffa, K. R. ( 1992 ). Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal and seasonal details. The Holocene, 2 ( 2 ), 165 – 179. https://doi.org/10.1177/095968369200200208 | |
dc.identifier.citedreference | Krebs, C. J., Boutin, S., & Boonstra, R. ( 2001 ). Ecosystem dynamics of the boreal forest. New York, NY: The Kluane Project. | |
dc.identifier.citedreference | Kronfeld‐Schor, N., & Dayan, T. ( 2003 ). Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34 ( 1 ), 153 – 181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 | |
dc.identifier.citedreference | Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. ( 2017 ). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82 ( 13 ), 1 – 26. | |
dc.identifier.citedreference | Langer, P. ( 2002 ). The digestive tract and life history of small mammals. Mammal Review, 32 ( 2 ), 107 – 131. https://doi.org/10.1046/j.1365‐2907.2002.00101.x | |
dc.identifier.citedreference | Lepock, J. R. ( 2003 ). Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage. International Journal of Hyperthermia, 19 ( 3 ), 252 – 266. https://doi.org/10.1080/0265673031000065042 | |
dc.identifier.citedreference | Levesque, D. L., Nowack, J., & Stawski, C. ( 2016 ). Modelling mammalian energetics: The heterothermy problem. Climate Change Responses, 3 ( 1 ), 7. https://doi.org/10.1186/s40665‐016‐0022‐3 | |
dc.identifier.citedreference | Levesque, D. L., Tuen, A. A., & Lovegrove, B. G. ( 2018 ). Staying hot to fight the heat‐high body temperatures accompany a diurnal endothermic lifestyle in the tropics. Journal of Comparative Physiology B, 188 ( 4 ), 707 – 716. https://doi.org/10.1007/s00360‐018‐1160‐7 | |
dc.identifier.citedreference | Levy, O., Dayan, T., & Kronfeld‐Schor, N. ( 2011 ). Adaptive thermoregulation in golden spiny mice: The influence of season and food availability on body temperature. Physiological and Biochemical Zoology, 84 ( 2 ), 175 – 184. https://doi.org/10.1086/658171 | |
dc.identifier.citedreference | Lovegrove, B. G. ( 2000 ). The zoogeography of mammalian basal metabolic rate. The American Naturalist, 156 ( 2 ), 201 – 219. https://doi.org/10.1086/303383 | |
dc.identifier.citedreference | Lovegrove, B. G. ( 2012a ). The evolution of endothermy in Cenozoic mammals: A plesiomorphic‐apomorphic continuum. Biological Reviews, 87 ( 1 ), 128 – 162. | |
dc.identifier.citedreference | Lovegrove, B. G. ( 2012b ). The evolution of mammalian body temperature: The Cenozoic supraendothermic pulses. Journal of Comparative Physiology B, 182 ( 4 ), 579 – 589. | |
dc.identifier.citedreference | MacArthur, R. A. ( 1979 ). Seasonal patterns of body temperature and activity in free‐ranging muskrats ( Ondatra zibethicus ). Canadian Journal of Zoology, 57 ( 1 ), 25 – 33. | |
dc.identifier.citedreference | Marsh, R. L., & Bennett, A. F. ( 1986 ). Thermal dependence of sprint performance of the lizard Sceloporus occidentalis. Journal of Experimental Biology, 126, 79 – 87. | |
dc.identifier.citedreference | Marshall, N. K., & Donchin, E. ( 1981 ). Circadian variation in the latency of brainstem responses and its relation to body temperature. Science, 212 ( 4492 ), 356 – 358. https://doi.org/10.1126/science.7209538 | |
dc.identifier.citedreference | Mazerolle, M. J. ( 2013 ). AICcmodavg: Model selection and multimodel inference based on (Q) AIC (c), R package version 1.35. Vienna, Austria: R Foundation for Statistical Computing. | |
dc.identifier.citedreference | McCommons, J. H. ( 2019 ). Camera hunter: George Shiras III and the birth of wildlife photography. Albuquerque, NM: University of New Mexico Press. | |
dc.identifier.citedreference | McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. ( 2006 ). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21 ( 4 ), 178 – 185. https://doi.org/10.1016/j.tree.2006.02.002 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.