Show simple item record

Filament‐Free Bulk Resistive Memory Enables Deterministic Analogue Switching

dc.contributor.authorLi, Yiyang
dc.contributor.authorFuller, Elliot J.
dc.contributor.authorSugar, Joshua D.
dc.contributor.authorYoo, Sangmin
dc.contributor.authorAshby, David S.
dc.contributor.authorBennett, Christopher H.
dc.contributor.authorHorton, Robert D.
dc.contributor.authorBartsch, Michael S.
dc.contributor.authorMarinella, Matthew J.
dc.contributor.authorLu, Wei D.
dc.contributor.authorTalin, A. Alec
dc.date.accessioned2020-12-02T14:36:34Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:36:34Z
dc.date.issued2020-11
dc.identifier.citationLi, Yiyang; Fuller, Elliot J.; Sugar, Joshua D.; Yoo, Sangmin; Ashby, David S.; Bennett, Christopher H.; Horton, Robert D.; Bartsch, Michael S.; Marinella, Matthew J.; Lu, Wei D.; Talin, A. Alec (2020). "Filament‐Free Bulk Resistive Memory Enables Deterministic Analogue Switching." Advanced Materials 32(45): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/163547
dc.description.abstractDigital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue‐memory‐based neuromorphic computing can be orders of magnitude more energy efficient at data‐intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer‐sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria‐stabilized zirconia (YSZ), toward eliminating filaments. Filament‐free, bulk‐RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk‐RRAM devices using TiO2‐X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk‐RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy‐efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.A resistive memory cell based on the electrochemical migration of oxygen vacancies for in‐memory neuromorphic computing is presented. By using the average statistical behavior of all oxygen vacancies to store analogue information states, this cell overcomes the stochastic and unpredictable switching plaguing filament‐forming memristors, and instead achieves linear, predictable, and deterministic switching.
dc.publisherWiley Periodicals, Inc.
dc.publisherIEEE
dc.subject.otheranalogue switching
dc.subject.otherneuromorphic computing
dc.subject.otherpoint defects
dc.subject.otherresistive switching
dc.subject.otherRRAM
dc.titleFilament‐Free Bulk Resistive Memory Enables Deterministic Analogue Switching
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/3/adma202003984_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/2/adma202003984-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/1/adma202003984.pdfen_US
dc.identifier.doi10.1002/adma.202003984
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceY. Li, E. J. Fuller, S. Asapu, S. Agarwal, T. Kurita, J. J. Yang, A. A. Talin, ACS Appl. Mater. Interfaces 2019, 11, 38982.
dc.identifier.citedreferenceR. A. De Souza, Adv. Funct. Mater. 2015, 25, 6326.
dc.identifier.citedreferenceS. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Adv. Funct. Mater. 2011, 21, 4487.
dc.identifier.citedreferenceD. Ielmini, F. Nardi, C. Cagli, Appl. Phys. Lett. 2010, 96, 053503.
dc.identifier.citedreferenceS. Yu, X. Guan, H. S. P. Wong, in Tech. Dig. ‐ Int. Electron Devices Meet., IEEE, Piscataway, NJ, USA 2011, 17.3.1.
dc.identifier.citedreferenceS. Ambrogio, S. Balatti, V. Mccaffrey, D. C. Wang, D. Ielmini, IEEE Trans. Electron Devices 2015, 62, 3812.
dc.identifier.citedreferenceS. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, IEEE Trans. Electron Devices 2014, 61, 2912.
dc.identifier.citedreferenceT. Gokmen, Y. Vlasov, Front. Neurosci. 2016, 10, 333.
dc.identifier.citedreferenceC. H. Bennett, D. Garland, R. B. Jacobs‐Gedrim, S. Agarwal, M. J. Marinella, in Proc. IEEE Int. Reliability Physics Symp., IEEE, Piscataway, NJ, USA 2019, https://doi.org/10.1109/IRPS.2019.8720596.
dc.identifier.citedreferenceS. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox, C. D. James, M. J. Marinella, in Int. Jt. Conf. Neural Networks, Proc., IEEE, Vancouver 2016, pp. 929 – 938.
dc.identifier.citedreferenceS. H. Jo, K. Kim, W. Lu, Nano Lett. 2009, 9, 496.
dc.identifier.citedreferenceY. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. Alec Talin, A. Salleo, Nat. Mater. 2017, 16, 414.
dc.identifier.citedreferenceJ. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin, K. Lee, P. Solomon, K. Chan, W. Haensch, J. Rozen, in Int. Electron Devices Meet., IEEE, Piscataway, NJ, USA 2018, pp. 13.1.1 – 13.1.4.
dc.identifier.citedreferenceM. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, F. Xiong, Adv. Mater. 2018, 30, 1802353.
dc.identifier.citedreferenceE. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 2019, 364, 570.
dc.identifier.citedreferenceY. Li, W. C. Chueh, Annu. Rev. Mater. Res. 2018, 48, 137.
dc.identifier.citedreferenceK. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee, H. Hwang, Faraday Discuss. 2019, 213, 421.
dc.identifier.citedreferenceH. Huang, C. Ge, Q. Zhang, C. Liu, J. Du, J. Li, C. Wang, L. Gu, G. Yang, K. Jin, Adv. Funct. Mater. 2019, 29, 1902702.
dc.identifier.citedreferenceA. Melianas, T. J. Quill, G. LeCroy, Y. Tuchman, H. v. Loo, S. T. Keene, A. Giovannitti, H. R. Lee, I. P. Maria, I. McCulloch, A. Salleo, Sci. Adv. 2020, 6, eabb2958.
dc.identifier.citedreferenceX. Yao, K. Klyukin, W. Lu, M. Onen, S. Ryu, D. Kim, N. Emond, I. Waluyo, A. Hunt, J. A. del Alamo, J. Li, B. Yildiz, Nat. Commun. 2020, 11, 3134.
dc.identifier.citedreferenceK. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 2006, 5, 312.
dc.identifier.citedreferenceA. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley And Sons, Hoboken, NJ, USA 2001.
dc.identifier.citedreferenceB. J. Morgan, G. W. Watson, Phys. Rev. B 2009, 80, 233102.
dc.identifier.citedreferenceC. Ahamer, A. K. Opitz, G. M. Rupp, J. Fleig, J. Electrochem. Soc. 2017, 164, F790.
dc.identifier.citedreferenceS. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon, K.‐T. Lee, M. Copel, D. B. Farmer, J. A. Ott, T. Ando, H. Miyazoe, V. Narayanan, J. Rozen, in Int. Electron Devices Meet., IEEE, Piscataway, NJ, USA 2019, pp. 35.7.1 – 35.7.4.
dc.identifier.citedreferenceJ. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2001, 3, 1668.
dc.identifier.citedreferenceD. Chen, S. R. Bishop, H. L. Tuller, Adv. Funct. Mater. 2013, 23, 2168.
dc.identifier.citedreferenceW. C. Chueh, S. M. Haile, Phys. Chem. Chem. Phys. 2009, 11, 8144.
dc.identifier.citedreferenceE. J. Fuller, Y. Li, C. Bennet, S. T. Keene, A. Melianas, S. Agrawal, M. J. Marinella, A. Salleo, A. A. Talin, IBM J. Res. Dev. 2019, 63, 9:1.
dc.identifier.citedreferenceC.‐H. Jan, F. Al‐amoody, H.‐Y. Chang, T. Chang, Y.‐W. Chen, N. Dias, W. Hafez, D. Ingerly, M. Jang, E. Karl, S. K.‐Y. Shi, K. Komeyli, H. Kilambi, A. Kumar, K. Byon, C.‐G. Lee, J. Lee, T. Leo, P.‐C. Liu, N. Nidhi, R. Olac‐vaw, C. Petersburg, K. Phoa, C. Prasad, C. Quincy, R. Ramaswamy, T. Rana, L. Rockford, A. Subramaniam, C. Tsai, P. Vandervoorn, L. Yang, A. Zainuddin, P. Bai, in Symp. VLSI Technol. (VLSI Technol.), IEEE, Piscataway, NJ, USA 2015, pp. T12 – T13.
dc.identifier.citedreferenceJ. C. Gonzalez‐Rosillo, R. Ortega‐Hernandez, B. Arndt, M. Coll, R. Dittmann, X. Obradors, J. Suñe, T. Puig, Adv. Electron. Mater. 2019, 5, 1800629.
dc.identifier.citedreferenceE. Herrmann, A. Rush, T. Bailey, R. Jha, IEEE Electron Device Lett. 2018, 39, 500.
dc.identifier.citedreferenceA. F. Jankowski, J. P. Haye, J. Vac. Sci. Technol., A 1995, 13, 658.
dc.identifier.citedreferenceR. Krishnamurthy, Y.‐G. Yoon, D. J. Srolovitz, R. Car, J. Am. Ceram. Soc. 2005, 87, 1821.
dc.identifier.citedreferenceJ. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 2013, 4, 2676.
dc.identifier.citedreferenceE. J. Fuller, F. El Gabaly, F. Léonard, S. Agarwal, S. J. Plimpton, R. B. Jacobs‐Gedrim, C. D. James, M. J. Marinella, A. A. Talin, Adv. Mater. 2017, 29, 1604310.
dc.identifier.citedreferenceG. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. Le Gallo, K. Moon, J. Woo, H. Hwang, Adv. Phys. X 2017, 2, 89.
dc.identifier.citedreferenceD. Ielmini, H.‐S. P. Wong, Nat. Electron. 2018, 1, 333.
dc.identifier.citedreferenceQ. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
dc.identifier.citedreferenceM. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs‐gedrim, J. Niroula, S. J. Plimpton, E. Ipek, C. D. James, IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 8, 86.
dc.identifier.citedreferenceM. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, J. P. Strachan, Adv. Mater. 2018, 30, 1705914.
dc.identifier.citedreferenceC. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Davila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, Q. Xia, Nat. Electron. 2018, 1, 52.
dc.identifier.citedreferenceF. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, W. D. Lu, Nat. Electron. 2019, 2, 290.
dc.identifier.citedreferenceP. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, H. Qian, Nature 2020, 577, 641.
dc.identifier.citedreferenceP. Lin, C. Li, Z. Wang, Y. Li, H. Jiang, W. Song, M. Rao, Y. Zhuo, N. K. Upadhyay, M. Barnell, Q. Wu, J. J. Yang, Q. Xia, Nat. Electron. 2020, 3, 225.
dc.identifier.citedreferenceS. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Chen, H. Yeon, S. Yu, J. Kim, Nat. Mater. 2018, 17, 335.
dc.identifier.citedreferenceM. Lübben, F. Cüppers, J. Mohr, M. Von Witzleben, U. Breuer, R. Waser, C. Neumann, I. Valov, Sci. Adv. 2020, 6, eaaz9079.
dc.identifier.citedreferenceJ. H. Yoon, J. Zhang, P. Lin, N. Upadhyay, P. Yan, Y. Liu, Q. Xia, J. J. Yang, Adv. Mater. 2020, 32, 1904599.
dc.identifier.citedreferenceS. Oh, T. Kim, M. Kwak, J. Song, J. Woo, IEEE Electron Device Lett. 2017, 38, 732.
dc.identifier.citedreferenceS. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S. Sidler, M. Giordano, M. Bodini, C. P. F. Nathan, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.
dc.identifier.citedreferenceK. Ding, J. Wang, Y. Zhou, H. Tian, L. L. Lu, R. Mazzarello, C. Jia, W. Zhang, F. Rao, E. Ma, Science 2019, 366, 210.
dc.identifier.citedreferenceH. Yeon, P. Lin, C. Choi, S. Tan, Y. Park, D. Lee, J. Lee, F. Xu, B. Gao, H. Wu, H. Qian, Y. Nie, S. Kim, J. Kim, Nat. Nanotechnol. 2020, 15, 574.
dc.identifier.citedreferenceR. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
dc.identifier.citedreferenceA. Sawa, Mater. Today 2008, 11, 28.
dc.identifier.citedreferenceR. Waser, R. Dittmann, C. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
dc.identifier.citedreferenceD. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. Li, G. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148.
dc.identifier.citedreferenceJ. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. Medeiros‐Ribeiro, R. S. Williams, Adv. Mater. 2010, 22, 3573.
dc.identifier.citedreferenceJ. J. Yang, D. B. Strukov, D. R. Stewart, Nat. Nanotechnol. 2013, 8, 13.
dc.identifier.citedreferenceM. Prezioso, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov, Nature 2015, 521, 61.
dc.identifier.citedreferenceS. Kumar, J. P. Strachan, R. S. Williams, Nature 2017, 548, 318.
dc.identifier.citedreferenceX. Zhu, D. Li, X. Liang, W. D. Lu, Nat. Mater. 2019, 18, 141.
dc.identifier.citedreferenceJ. Lee, W. D. Lu, Adv. Mater. 2018, 30, 1702770.
dc.identifier.citedreferenceS. Kim, S. Choi, W. Lu, ACS Nano 2014, 8, 2369.
dc.identifier.citedreferenceS. H. Lee, J. Moon, Y. Jeong, J. Lee, X. Li, H. Wu, W. D. Lu, ACS Appl. Electron. Mater. 2020, 2, 701.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.