Show simple item record

Rapamycin‐mediated mouse lifespan extension: Late‐life dosage regimes with sex‐specific effects

dc.contributor.authorStrong, Randy
dc.contributor.authorMiller, Richard A.
dc.contributor.authorBogue, Molly
dc.contributor.authorFernandez, Elizabeth
dc.contributor.authorJavors, Martin A.
dc.contributor.authorLibert, Sergiy
dc.contributor.authorMarinez, Paul Anthony
dc.contributor.authorMurphy, Michael P.
dc.contributor.authorMusi, Nicolas
dc.contributor.authorNelson, James F.
dc.contributor.authorPetrascheck, Michael
dc.contributor.authorReifsnyder, Peter
dc.contributor.authorRichardson, Arlan
dc.contributor.authorSalmon, Adam B.
dc.contributor.authorMacchiarini, Francesca
dc.contributor.authorHarrison, David E.
dc.date.accessioned2020-12-02T14:36:36Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:36:36Z
dc.date.issued2020-11
dc.identifier.citationStrong, Randy; Miller, Richard A.; Bogue, Molly; Fernandez, Elizabeth; Javors, Martin A.; Libert, Sergiy; Marinez, Paul Anthony; Murphy, Michael P.; Musi, Nicolas; Nelson, James F.; Petrascheck, Michael; Reifsnyder, Peter; Richardson, Arlan; Salmon, Adam B.; Macchiarini, Francesca; Harrison, David E. (2020). "Rapamycin‐mediated mouse lifespan extension: Late‐life dosage regimes with sex‐specific effects." Aging Cell (11): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/163548
dc.description.abstractTo see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3‐month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug‐free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, β‐guanidinopropionic acid, MitoQ, and 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin (17‐DMAG), but none of these led to a change in survival in either sex.Intermittent (1 month on/1 month off) or a limited 3‐month exposure to rapamycin, beginning at 20 months, was as effective as continuous exposure in increasing survival in males. In females, only intermittent exposure increased survival but the increase was not as great as continuous exposure.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherβ‐GPA
dc.subject.otherrapamycin
dc.subject.other17‐DMAG
dc.subject.otherminocycline
dc.subject.otherMitoQ
dc.subject.othersurvival
dc.titleRapamycin‐mediated mouse lifespan extension: Late‐life dosage regimes with sex‐specific effects
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163548/2/acel13269.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163548/1/acel13269_am.pdfen_US
dc.identifier.doi10.1111/acel.13269
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceParibello, C., Tao, L., Folino, A., Berry‐Kravis, E., Tranfaglia, M., Ethell, I. M., & Ethell, D. W. ( 2010 ). Open‐label add‐on treatment trial of minocycline in fragile X syndrome. BMC Neurology, 10, 91.
dc.identifier.citedreferenceKlein, N. C., & Cunha, B. A. ( 1995 ). Tetracyclines. Medical Clinics of North America, 79, 789 – 801.
dc.identifier.citedreferenceLamming, D. W., Ye, L., Katajisto, P., Goncalves, M. D., Saitoh, M., Stevens, D. M., Davis, J. G., Salmon, A. B., Richardson, A., Ahima, R. S., Guertin, D. A., Sabatini, D. M., & Baur, J. A. ( 2012 ). Rapamycin‐induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science, 335, 1638 – 1643.
dc.identifier.citedreferenceLampl, Y., Boaz, M., Gilad, R., Lorberboym, M., Dabby, R., Rapoport, A., Anca‐Hershkowitz, M., & Sadeh, M. ( 2007 ). Minocycline treatment in acute stroke: An open‐label, evaluator‐blinded study. Neurology, 69, 1404 – 1410.
dc.identifier.citedreferenceLangevitz, P., Bank, I., Zemer, D., Book, M., & Pras, M. ( 1992 ). Treatment of resistant rheumatoid arthritis with minocycline: An open study. Journal of Rheumatology, 19, 1502 – 1504.
dc.identifier.citedreferenceLu, X., Nurmemet, D., Bolduc, D. L., Elliott, T. B., & Kiang, J. G. ( 2013 ). Radioprotective effects of oral 17‐dimethylaminoethylamino‐17‐demethoxygeldanamycin in mice: Bone marrow and small intestine. Cell & Bioscience, 3, 36.
dc.identifier.citedreferenceMadrigal‐Matute, J., Fernandez‐Garcia, C. E., Gomez‐Guerrero, C., Lopez‐Franco, O., Munoz‐Garcia, B., Egido, J., Blanco‐Colio, L. M., & Martin‐Ventura, J. L. ( 2012 ). HSP90 inhibition by 17‐DMAG attenuates oxidative stress in experimental atherosclerosis. Cardiovascular Research, 95, 116 – 123.
dc.identifier.citedreferenceMadrigal‐Matute, J., Lopez‐Franco, O., Blanco‐Colio, L. M., Munoz‐Garcia, B., Ramos‐Mozo, P., Ortega, L., Egido, J., & Martin‐Ventura, J. L. ( 2010 ). Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovascular Research, 86, 330 – 337.
dc.identifier.citedreferenceMcManus, M. J., Murphy, M. P., & Franklin, J. L. ( 2011 ). The mitochondria‐targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 31, 15703 – 15715.
dc.identifier.citedreferenceMeglasson, M. D., Wilson, J. M., Yu, J. H., Robinson, D. D., Wyse, B. M., & de Souza, C. J. ( 1993 ). Antihyperglycemic action of guanidinoalkanoic acids: 3‐guanidinopropionic acid ameliorates hyperglycemia in diabetic KKAy and C57BL6Job/ob mice and increases glucose disappearance in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 266, 1454 – 1462.
dc.identifier.citedreferenceMehrotra, S., Pecaut, M. J., & Gridley, D. S. ( 2013 ). Effects of minocycline on hematopoietic recovery after whole‐body irradiation. In Vivo, 27, 11 – 28.
dc.identifier.citedreferenceMiller, R. A., Harrison, D., Astle, C. M., Baur, J. A., Boyd, A. R., de Cabo, R., Fernandez, E., Flurkey, K., Javors, M. A., Nelson, J. F., Orihuela, C. J., Pletcher, S., Sharp, Z. D., Sinclair, D., Starnes, J. W., Wilkinson, J. E., Nadon, N. L., & Strong, R. ( 2011 ). Rapamycin, but not resveratrol or simvastatin, extends lifespan of genetically heterogeneous mice. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 66, 191 – 201.
dc.identifier.citedreferenceMiller, R. A., Harrison, D. E., Astle, C. M., Fernandez, E., Flurkey, K., Han, M., Javors, M. A., Li, X., Nadon, N. L., Nelson, J. F., Pletcher, S., Van Roekel, S., Salmon, A. B., Sharp, Z. D., Winkleman, L., & Strong, R. ( 2014 ). Rapamycin‐mediated lifespan increase in mice is dose and sex‐dependent and is metabolically distinct from dietary restriction. Aging Cell, 13, 468 – 477.
dc.identifier.citedreferenceMiquel, E., Cassin, A., Martínez‐Palma, L., Souza, J. M., Bolattoa, C., Rodríguez‐Botteroa, S., Logan, A., Smith, R. A. J., Murphy, M. P., Barbeito, L., Radi, R., & Cassina, P. ( 2014 ). Neuroprotective effects of the mitochondria‐targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 70, 204 – 213.
dc.identifier.citedreferenceMiyaoka, T., Wake, R., Furuya, M., Liaury, K., Ieda, M., Kawakami, K., Tsuchie, K., Taki, M., Ishihara, K., Araki, T., & Horiguchi, J. ( 2012 ). Minocycline as adjunctive therapy for patients with unipolar psychotic depression: An open‐label study. Progress in Neuro‐Psychopharmacology and Biological Psychiatry, 37, 222 – 226.
dc.identifier.citedreferenceNeubauer, S., Horn, M., & Schnackerz, K. ( 1998 ). Manipulating creatine levels post‐myocardial infarction—Chronic effects on left ventricular remodeling. Magnetic Resonance Materials in Physics, Biology and Medicine, 6, 126 – 128.
dc.identifier.citedreferenceO’Dell, J. R., Haire, C. E., Palmer, W., Drymalski, W., Wees, S., Blakely, K., Churchill, M., Eckhoff, P. J., Weaver, A., Doud, D., Erikson, N., Dietz, F., Olson, R., Maloley, P., Klassen, L. W., & Moore, G. F. ( 1997 ). Treatment of early rheumatoid arthritis with minocycline or placebo: Results of a randomized, double‐blind, placebo‐controlled trial. Arthritis and Rheumatism, 40, 842 – 848.
dc.identifier.citedreferenceOhira, Y., Ishine, S., Tabata, I., Kurata, H., Wakatsuki, T., Sugawara, S., Yasui, W., Tanaka, H., & Kuroda, Y. ( 1994 ). Non‐insulin and non‐exercise related increase of glucose utilization in rats and mice. Japanese Journal of Physiology, 44, 391 – 402.
dc.identifier.citedreferenceOxenkrug, G., Navrotskaya, V., Vorobyova, L., & Summergrad, P. ( 2012 ). Minocycline effect on life and health span of Drosophila melanogaster. Aging and Disease, 3, 352 – 359.
dc.identifier.citedreferenceReznick, R. M., Zong, H., Li, J. I., Morino, K., Moore, I. K., Yu, H. J., Liu, Z.‐X., Dong, J., Mustard, K. J., Hawley, S. A., Befroy, D., Pypaert, M., Hardie, D. G., Young, L. H., & Shulman, G. I. ( 2007 ). Aging‐associated reductions in AMP‐activated protein kinase activity and mitochondrial biogenesis. Cell Metabolism, 5, 151 – 156.
dc.identifier.citedreferenceRodriguez‐Cuenca, S., Cochemé, H. M., Logan, A., Abakumova, I., Prime, T. A., Rose, C., Vidal‐Puig, A., Smith, A. C., Rubinsztein, D. C., Fearnley, I. M., Jones, B. A., Pope, S., Heales, S. J. R., Lam, B. Y. H., Neogi, S. G., McFarlane, I., James, A. M., Smith, R. A. J., & Murphy, M. P. ( 2010 ). Consequences of long‐term oral administration of the mitochondria‐targeted antioxidant MitoQ to wild‐type mice. Free Radical Biology & Medicine, 48, 161 – 172.
dc.identifier.citedreferenceRossman, M. J., Santos‐Parker, J. R., Steward, C. A. C., Bispham, N. Z., Cuevas, L. M., Rosenberg, H. L., Woodward, K. A., Chonchol, M., Gioscia‐Ryan, R. A., Murphy, M. P., & Seals, D. R. ( 2018 ). Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension, 71, 1056 – 1063.
dc.identifier.citedreferenceShahzad, K., Thati, M., Wang, H., Kashif, M., Wolter, J., Ranjan, S., He, T., Zhou, Q., Blessing, E., Bierhaus, A., Nawroth, P. P., & Isermann, B. ( 2011 ). Minocycline reduces plaque size in diet induced atherosclerosis via p27(Kip1). Atherosclerosis, 219, 74 – 83.
dc.identifier.citedreferenceSilva‐Fernandes, A., Duarte‐Silva, S., Neves‐Carvalho, A., Amorim, M., Soares‐Cunha, C., Oliveira, P., Thirstrup, K., Teixeira‐Castro, A., & Maciel, P. ( 2014 ). Chronic treatment with 17‐DMAG improves balance and coordination in a new mouse model of Machado‐Joseph disease. Neurotherapeutics, 11, 433 – 449.
dc.identifier.citedreferenceSmith, R. A., Hartley, R. C., & Murphy, M. P. ( 2011 ). Mitochondria‐targeted small molecule therapeutics and probes. Antioxidants & Redox Signaling, 15, 3021 – 3038.
dc.identifier.citedreferenceSmith, R. A., & Murphy, M. P. ( 2010 ). Animal and human studies with the mitochondria targeted antioxidant MitoQ. Annals of the New York Academy of Sciences, 1201, 96 – 103.
dc.identifier.citedreferenceSmith, R. A., Porteous, C. M., Gane, A. M., & Murphy, M. P. ( 2003 ). of bioactive molecules to mitochondria in vivo. Proceedings of the National Academy of Sciences of the United States of America, 100, 5407 – 5412.
dc.identifier.citedreferenceSnow, B. J., Rolfe, F. L., Lockhart, M. M., Frampton, C. M., O’Sullivan, J. D., Fung, V., Smith, R. A. J., Murphy, M. P., & Taylor, K. M. ( 2010 ). A double‐blind, placebo‐controlled study to assess the mitochondria‐targeted antioxidant MitoQ as a disease‐modifying therapy in Parkinson’s disease. Movement Disorders, 25, 1670 – 1674.
dc.identifier.citedreferenceStrong, R., Miller, R. A., Antebi, A., Astle, C. M., Bogue, M., Denzel, M. S., Fernandez, E., Flurkey, K., Hamilton, K. L., Lamming, D. W., Javors, M. A., de Magalhães, J. P., Marinez, P. A., McCord, J. M., Miller, B. F., Müller, M., Nelson, J. F., Ndukum, J., Rainger, G. E., … Harrison, D. E. ( 2016 ). Longer lifespan in male mice treated with a weakly‐estrogenic agonist, an antioxidant, an α‐glucosidase inhibitor or a Nrf2‐inducer. Aging Cell, 5, 872 – 884.
dc.identifier.citedreferenceStrong, R., Miller, R. A., Astle, C. M., Baur, J. A., de Cabo, R., Fernandez, E., Guo, W., Javors, M., Kirkland, J. L., Nelson, J. F., Sinclair, D. A., Teter, B., Williams, D., Zaveri, N., Nadon, N. L., & Harrison, D. E. ( 2013 ). Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium‐chain triglyceride oil on life span of genetically heterogeneous mice. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 68, 6 – 16.
dc.identifier.citedreferenceTarallo, V., Hirano, Y., Gelfand, B. D., Dridi, S., Kerur, N., Kim, Y., Cho, W. G., Kaneko, H., Fowler, B. F., Bogdanovich, S., Albuquerque, R. J. C., Hauswirth, W. W., Chiodo, V. A., Kugel, J. F., Goodrich, J. A., Ponicsan, S. L., Chaudhuri, G., Murphy, M. P., Dunaief, J. L., … Ambati, J. ( 2012 ). DICER1 loss and Alu RNA induce age‐related macular degeneration via the NLRP3 inflammasome and MyD88. Cell, 149, 847 – 859.
dc.identifier.citedreferenceWang, C., Li, Q., Redden, D. T., Weindruch, R., & Allison, D. B. ( 2004 ). Statistical methods for testing effects on “maximum lifespan”. Mechanisms of Ageing and Development, 125, 629 – 632.
dc.identifier.citedreferenceWilkinson, J. E., Burmeister, L., Brooks, S. V., Carames, B., Friedline, S., Harrison, D. E., Lotz, M., Nadon, N., Strong, R., Wood, L. K., Woodward, M. A., & Miller, R. A. ( 2012 ). Rapamycin Slows Aging in Mice. Aging Cell, 11 ( 4 ), 675 – 682.
dc.identifier.citedreferenceYe, X., Linton, J. M., Schork, N. J., Buck, L. B., & Petrascheck, M. ( 2014 ). A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell, 13, 206 – 215.
dc.identifier.citedreferenceZhang, Y., Casas‐Tinto, S., Rincon‐Limas, D. E., & Fernandez‐Funez, P. ( 2014 ). Combined pharmacological induction of hsp70 suppresses prion protein neurotoxicity in Drosophila. PLoS One, 9, e88522.
dc.identifier.citedreferenceZong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., & Shulman, G. I. ( 2002 ). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15983 – 15987.
dc.identifier.citedreferenceColeman‐Hulbert, A. L., Johnson, E., Sedore, C. A., Banse, S. A., Guo, M., Driscoll, M., Lithgow, G. J., & Phillips, P. C. ( 2020 ). Caenorhabditis intervention testing program: The creatine analog β‐guanidinopropionic acid does not extend lifespan in nematodes. microPublication Biology. https://doi.org/10.17912/micropub.biology.000207
dc.identifier.citedreferenceAdlam, V. J., Harrison, J. C., Porteous, C. M., James, A. M., Smith, R. A. J., Murphy, M. P., & Sammut, I. A. ( 2005 ). Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. The FASEB Journal, 19, 1088 – 1095.
dc.identifier.citedreferenceAnisimov, V. N., Zabezhinski, M. A., Popovich, I. G., Piskunova, T. S., Semenchenko, A. V., Tyndyk, M. L., Yurova, M. N., Rosenfeld, S. V., & Blagosklonny, M. V. ( 2011 ). Rapamyin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle, 10, 4230 – 4236.
dc.identifier.citedreferenceArriola Apelo, S. I., Neuman, J. C., Baar, E. L., Syed, F. A., Cummings, N. E., Brar, H. K., Pumper, C. P., Kimple, M. E., & Lamming, D. W. ( 2016 ). Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell, 15, 28 – 33.
dc.identifier.citedreferenceArriola Apelo, S. I., Pumper, C. P., Baar, E. L., Cummings, N. E., & Lamming, D. W. ( 2016 ). Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 71 ( 7 ), 876 – 881.
dc.identifier.citedreferenceBergeron, R., Ren, J. M., Cadman, K. S., Moore, I. K., Perret, P., Pypaert, M., Young, L. H., Semenkovich, C. F., & Shulman, G. I. ( 2001 ). Chronic activation of AMP kinase results in NRF‐1 activation and mitochondrial biogenesis. American Journal of Physiology – Endocrinology and Metabolism, 281, E1340 – E1346.
dc.identifier.citedreferenceBiscaro, B., Lindvall, O., Tesco, G., Ekdahl, C. T., & Nitsch, R. M. ( 2012 ). Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neuro‐Degenerative Diseases, 9, 187 – 198.
dc.identifier.citedreferenceBitto, A., Ito, T. K., Pineda, V. V., LeTexier, N. J., Huang, H. Z., Sutlief, E., Tung, H., Vizzini, N., Chen, B., Smith, K., Meza, D., Yajima, M., Beyer, R. P., Kerr, K. F., Davis, D. J., Gillespie, C. H., Snyder, J. M., Treuting, P. M., & Kaeberlein, M. ( 2016 ). Transient rapamycin treatment can increase lifespan and healthspan in middle‐aged mice. eLife, 5, e16351.
dc.identifier.citedreferenceChacko, B. K., Reily, C., Srivastava, A., Johnson, M. S., Ye, Y., Ulasova, E., Agarwal, A., Zinn, K. R., Murphy, M. P., Kalyanaraman, B., & Darley‐Usmar, V. ( 2010 ). Prevention of diabetic nephropathy in Ins2(+/)(AkitaJ) mice by the mitochondria‐targeted therapy MitoQ. The Biochemical Journal, 432, 9 – 19.
dc.identifier.citedreferenceChaudhry, I. B., Hallak, J., Husain, N., Minhas, F., Stirling, J., Richardson, P., Dursun, S., Dunn, G., & Deakin, B. ( 2012 ). Minocycline benefits negative symptoms in early schizophrenia: A randomised double‐blind placebo controlled clinical trial in patients on standard treatment. Journal of Psychopharmacology, 26, 1185 – 1193.
dc.identifier.citedreferenceChen, C., Liu, Y., Liu, Y., & Pan, Z. ( 2009 ). mTOR regulation and therapeutic rejuvenation of aging hematopoietic stemcells. Science Signaling, 2, ra75.
dc.identifier.citedreferenceDu, Y., Ma, Z., Lin, S., Dodel, R. C., Gao, F., Bales, K. R., Triarhou, L. C., Chernet, E., Perry, K. W., Nelson, D. L., Luecke, S., Phebus, L. A., Bymaster, F. P., & Paul, S. M. ( 2001 ). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 14669 – 14674.
dc.identifier.citedreferenceFok, W. C., Zhang, Y., Salmon, A. B., Bhattacharya, A., Gunda, R., Jones, D., Ward, W., Fisher, K., Richardson, A., & Pérez, V. I. ( 2013 ). Short‐term treatment with rapamycin and dietary restriction have overlapping and distinctive effects in young mice. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 108 – 116.
dc.identifier.citedreferenceGane, E. J., Weilert, F., Orr, D. W., Keogh, G. F., Gibson, M., Lockhart, M. M., Frampton, C. M., Taylor, K. M., Smith, R. A. J., & Murphy, M. P. ( 2010 ). The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver International, 30, 1019 – 1026.
dc.identifier.citedreferenceGhosh, A., Chandran, K., Kalivendi, S. V., Joseph, J., Antholine, W. E., Hillard, C. J., Kanthasamy, A., Kanthasamy, A., & Klyanaramanb, B. ( 2010 ). Neuroprotection by a mitochondria‐targeted drug in a Parkinson’s disease model. Free Radical Biology & Medicine, 49, 1674 – 1684.
dc.identifier.citedreferenceGioscia‐Ryan, R. A., LaRocca, T. J., Sindler, A. L., Zigler, M. C., Murphy, M. P., & Seals, D. R. ( 2014 ). Mitochondria‐targeted antioxidant (MitoQ) ameliorates age‐related arterial endothelial dysfunction in mice. Journal of Physiology, 592, 2549 – 2561.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Allison, D. B., Ames, B. N., Astle, C. M., Atamna, H., Fernandez, E., Flurkey, F., Javors, M. A., Nadon, N. L., Nelson, J. F., Simpkins, J. W., Smith, D., Wilkinson, J. E., & Miller, R. A. ( 2014 ). Acarbose, 17‐α‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 13, 273 – 282.
dc.identifier.citedreferenceHarrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. ( 2009 ). Rapamycin fed late in life extends longevity of genetically heterogeneous mice. Nature, 460, 392 – 396.
dc.identifier.citedreferenceIkebe, E., Kawaguchi, A., Tezuka, K., Taguchi, S., Hirose, S., Matsumoto, T., Mitsui, T., Senba, K., Nishizono, A., Hori, M., Hasegawa, H., Yamada, Y., Ueno, T., Tanaka, Y., Sawa, H., Hall, W., Minami, Y., Jeang, K. T., Ogata, M., … Iha, H. ( 2013 ). Oral administration of an HSP90 inhibitor, 17‐DMAG, intervenes tumor‐cell infiltration into multiple organs and improves survival period for ATL model mice. Blood Cancer Journal, 3, e132.
dc.identifier.citedreferenceJez, J. M., Chen, J. C., Rastelli, G., Stroud, R. M., & Santi, D. V. ( 2003 ). Crystal structure and molecular modeling of 17‐DMAG in complex with human Hsp90. Chemistry & Biology, 10, 361 – 368.
dc.identifier.citedreferenceKelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A. J., & Murphy, M. P. ( 2001 ). Selective targeting of a redox‐active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. Journal of Biological Chemistry, 276, 4588 – 4596.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.